НЕЧЕТКИЕ МОДЕЛИ РЕЙТИНГОВЫХ СИСТЕМ ОЦЕНКИ ЗНАНИЙ FUZZY MODELS OF RATING POINT SYSTEMS OF MARKS OF KNOWLEDGE'S LEVEL В.Г.Домрачев, О.М.Полещук, И.В.Ретинская, К.К.Рыбников Московский государственный университет леса, Мытищи Московской обл. Тел.: (095) 515-25-38, e-mail: pas@russbank.infotel.ru Существенной особенностью высшего образования является сложность количественного оценивания процессов обучения и управления. Однозначно понимаемого перечня показателей качества подготовки не существует, так как отсутствуют четкие представления о том, какие количественно измеримые факторы на него влияют, какими достоверно оценивающими показателями оно выражается, какова достоверность этих показателей и т.д. Нечеткость такого представления не позволяет устаревшим методам математического моделирования получать адекватные количественные описания исследуемых параметров, а поэтому заставляет искать решения классических задач образовательного процесса неклассическими методами. Остановимся на рейтинговой системе оценки знаний (РСОЗ), которая включается в систему внутреннего показателя качества подготовки и применяется во многих вузах. РСОЗ имеет цель снизить субъективизм, проявляющийся между преподавателями и студентами, а также устранить другие (возможно скрытые) факторы, мешающие объективно оценить уровень подготовки обучающихся. Рассмотрим два типа РСОЗ: – РСОЗ, применяемая для выставления итоговой оценки по одному предмету; – РСОЗ, применяемая для выставления итоговой оценки по результатам оценок по разным предметам. Рассмотрим рейтинговую систему для одного предмета. Предлагаемая, например, в [1] процедура РСОЗ состоит в том, что студент накапливает баллы за работу в течение семестра, а потом суммарный итог переводится в привычную для всех оценку. Но, во-первых, виды работ из предлагаемого перечня очевидно измеряются в различных единицах, а поэтому проблематична прямая накопительная система. Во-вторых, как правило, методика перевода суммарного итога в оценку или остается за пределами работы [1,2,3], или применяется стандартный подход работы со случайными величинами [4]. В настоящей работе предлагается заменить итоговые оценки на нечеткие множества по методу, изложенному в [5]. – функции принадлежности нечетких множеств "оценки", – средние по методу центра тяжести. Пусть студент получил за первый вид работы баллов из возможных, за второй вид баллов из возможных и т.д., за -й вид работы баллов из возможных. Таким образом, результат студента можно представить в виде вектора , или в виде нормированного вектора . С целью приведения к единой единице измерения всех видов деятельности студентов, заменим на по формулам . Итоговый рейтинговый балл вычисляется по формуле , где – веса видов работ. Однозначный перевод рейтингового балла в привычную для всех оценку будет производиться по правилу: если принадлежит 0,5-уровневому множеству функции принадлежности оценки "неудов", то студент получает оценку "неудов", если принадлежит 0,5-уровневому множеству функции принадлежности оценки "удов", то студент получает оценку "удов" и т.д. Рассмотрим рейтинговую систему для итогового оценивания по разным предметам. Пусть после получения степеней бакалавров решается вопрос о продолжении обучения студентов. Из них студентов продолжат обучение на бюджетной основе, студентов на условиях частичного контракта, а студентов на условиях полного контракта. Исходя из данных , строим 4 нечетких множества с условными названиями "образование закончено", "полный Э, "частичный контракт", "бюджетные места". Итоговый результат -го студента будет представлен согласно операциям между нечеткими множествами в виде нечеткого множества с функцией принадлежности , где – функции принадлежности оценок по предметам, – веса дисциплин, . Дефаззифицируя полученное нечеткое множество по методу центра тяжести, получим число, по которому однозначно определяется его принадлежность к одному из 0,5-уровневых множеств функций принадлежности четырех построенных нечетких множеств. Исходя из этого, -ый студент попадает в список по названию того нечеткого множества, чьему 0,5-уровневому множеству принадлежит . Литература 1. Панин М. Морфология рейтинга. Высшее образование в России, 1(1998), с. 90-94. 2. Ершиков С., Лобова Т., Филиппов С., Шидловска Т. Опыт использования рейтинговой системы. Высшее образование в России, 4(1997), с. 97-102. 3. Кругликов В. Рейтинговая система диагностики учебного процесса в вузах, Высшее образование в России, 2(1996), с. 100-102. 1 4. Хубаев Г. О построении шкалы оценок в системах тестирования. Высшее образование в России, 1(1996), с. 122125. 5. Полещук О.М. О применении нечетких множеств в задачах построения уровневых градаций. Лесной вестник, 4(13), 2000, с.143-146. 6. Аверкин А.Н., Батыршин И.З., Блишун А.Ф., Силов В.Б., Тарасов В.Б. Нечеткие множества в моделях управления и искусственного интеллекта. – М.:Наука. Гл. ред. физ-мат. лит., 1986. – 312 с. 7. Рыжов. Элементы теории нечетких множеств и измерения нечеткости. –М.: Диалог – МГУ, 1998.–116 с. 2