Баллистика Расстояние между спасательной вышкой в центре пляжа Пирита и рестораном = 800 м • ТОЧНОСТЬ СТРЕЛЬБЫ • Щит, изображавший пулемет, занимал площадку размерами 1X1 метр. Снаряд мог попасть в середину площадки, в любой ее край, — все равно «пулемет» был бы уничтожен. Граната стрелявшей пушки дает воронку радиусом около 75 сантиметров, а следовательно, при падении снаряда не далее 75 сантиметров от площадки «пулемет», несомненно, будет поражен. Значит, погрешность в десяток сантиметров здесь, очевидно, не имеет значения. Но на метры уже нельзя ошибиться. В этом случае пулемет может не получить «смертельного поражения». Иными словами, чтобы надежно поразить цель, отклонения снарядов от края площадки при данных условиях стрельбы должны быть примерно менее метра. • • Ты́ сячная — единица измерения углов, принятая в артиллерии и представляющая собой 1/1000 долю радиана (примерно 1/6283 оборота, т.е. [1]), округлённую для простоты угловых расчётов- принята тысячная, равная 1/6000 оборота Исходя из равенства 1 оборота 2π радиан или 360 градусам, и 6000 тысячных существуют следующие соотношения между всеми этими единицами измерения: 6000 т=360 градусов • 1 тысячная = 0,06 градуса = 3,6 угловой минуты = 3 угл. минуты 36 угл. Секунд • Большим удобством такой нестандартной единицы измерения углов является хорошая приспособленность к вычислениям линейных и угловых размеров объектов на местности без каких-либо средств механизации счёта. Пусть объект размером W наблюдается с дистанции L под небольшим углом α (то есть выполняется условие L >> W, обычно встречающееся в артиллерийской практике). Тогда при выражении угла α в радианной мере имеет место: • • • и, заменяя радианную меру на тысячные, получаем в итоге Упрощённое равенство формула тысячных. Из этой формулы следует правило для лучшего запоминания соотношения: «предмет, линейным размером 1 метр, удалённый от наблюдателя на 1 километр, виден под угловой величиной в 1 тысячную». • Какова должна быть при этом точность положения орудийного ствола при выстреле? • Оказывается при нормальных метеорологических условиях, то- есть при температуре воздуха +15°, атмосферном давлении 750 миллиметров и при отсутствии ветра, снаряд стрелявшей пушки должен вылететь под углом 158 «тысячных», чтобы упасть в 2000 метров от орудия. Если же снаряд вылетит под углом 157 или 159 «тысячных», то он не попадет {268} в цель, а упадет на 11 метров ближе или дальше цели. Отсюда видно, что изменение угла прицеливания на 1/10 «тысячной» вызовет отклонение точки падения снаряда примерно на метр. • Необходима, следовательно, точность до 1/10 «тысячной». А что означает на деле такая точность? Это означает: если изменить угол прицеливания в большую или в меньшую сторону на 1/10 «тысячной», то дуло ствола сместится вверх или вниз от нужного положения примерно на 0,1 миллиметра, то- есть на толщину лезвия безопасной бритвы, и снаряд полетит уже не по той траектории, которая нужна. • Отклонение снаряда в самом начале траектории (у дула) на толщину лезвия бритвы превратится в конце траектории (у цели) в отклонение на целые метры. • При стрельбе на 10 километров встречный ветер скоростью 10 метров в секунду уменьшает, а попутный увеличивает дальность полета 76-миллиметровых снарядов на 269 метров. • Теперь представим себе, что мы стреляем из 76миллиметровой: пушки под углом 19°55' в жаркий летний день, при температуре воздуха +30° и при попутном ветре 10 метров в секунду. Вместо 10 километров снаряды пролетят в среднем 10698 метров. А зимой, в 25-градусный мороз, при встречном ветре 10 метров в секунду, эти же снаряды пролетят в среднем 8587 метров. Разница — больше двух километров! Вот как влияют на полет снарядов атмосферные условия! • От лета до зимы, конечно, большой промежуток времени. Но даже в один и тот же день, после захода солнца, когда переменился ветер и стало холоднее, снаряд при стрельбе на 10 километров может упасть на 250–300 метров ближе, чем днем. • Скорость тела в произвольный момент времени • • Координаты тела в неподвижной системе отсчета • Максимальную дальность полета S тела, брошенного под углом α к горизонту, можно найти по формуле S = V02 sin2α/g, а максимальную высоту подъема H по формуле H = V02 cos2α/(2g) Общая структура персонального компьютера с подсоединенными периферийными устройствами • Как выполняется команда? • Как пpавило, этот процесс разбивается на следующие этапы: • из ячейки памяти, адрес которой хранится в счетчике команд, выбирается очередная команда; содержимое счетчика команд при этом увеличивается на длину команды; • выбранная команда передается в устройство управления на регистр команд; • устройство управления расшифровывает адресное поле команды; • по сигналам УУ операнды считываются из памяти и записываются в АЛУ на специальные регистры операндов; • УУ расшифровывает код операции и выдает в АЛУ сигнал выполнить соответствующую операцию над данными; • результат операции либо остается в процессоре, либо отправляется в память, если в команде был указан адрес результата; • все предыдущие этапы повторяются до достижения команды "стоп". На каких принципах построены компьютеры? В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом. • • • • • • • • 1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды "стоп". Таким образом, процессор исполняет программу автоматически, без вмешательства человека. 2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины. 3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен. Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т.е. они могут работать без "счетчика команд", указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фоннеймановскими.