04.Анализ случайных величин

реклама
Анализ случайных
величин
• Опр. Случайной называется
величина, которая в результате
опыта может принять то или
иное
возможное
значение,
неизвестное
заранее,
но
обязательно одно.
• Опр. Дискретной случайной
величиной называют такую
случайную величину, множество
возможных значений которой
либо конечно, либо бесконечно,
но обязательно счетно.
• Опр. Непрерывной случайной
величиной называют такую
случайную величину, которая
может принять любое значение
из некоторого конечного или
бесконечного интервала.
• Случайные величины:
• значения:
x, y, z,.... .
X ,Y , Z ,....;
Определение.
• Суммой X  Y случайных
величин X и Y
называется случайная
величина Z , возможные
значения которой есть
x1  y1 , x1  y2 , x1  y3 ,..., x1  y j ,
x2  y1 , x2  y2 ,..., x2  y j ,...,
xi  y1 ,
xi  y 2 ,
xi  y3 ,...,
xi  y j ,..., xn  y m .
• Опр. Произведением X  Y
случайных величин X и Y
называется случайная
величина Z , возможные
значения которой есть
x1  y1 , x1  y 2 , ..., x1  y j ,
x2  y1 , x2  y2 ,...,
x2  y j ,..
..., xi  y1 , xi  y2 ,..., xi  y j ,..
..., xn  ym .
• Опр. Произведением C  X
случайной величины X на C
постоянную называется случайная
величина Z , возможные значения
которой есть
Cx1 , Cx2 , Cx3 ,..., Cxi .
• Эмпирическая функция распределения
это функция равная отношению числа
вариант, меньших x , к объему
выборки:
.
n( x )
F ( x) 
n

Свойства эмпирической
функции распределения.
• 1)
• 2)
0  F ( x)  1;


F (x ) - неубывающая;
• 3) если x1 наименьшая варианта,

то F ( x)  0, при x  x1 ;
4) если x k наибольшая варианта,

то F ( x )  1, при
k
xx.
Математическое ожидание.
xi
x1
x2
x3
pi
p1
p2
p3
in
p
i 1
i
 1.
……..
……..
xn
pn
• Опр. Математическим ожиданием MX
дискретной случайной величины X наз.
сумма произведений всех возможных
значений случайной величины на
соответствующие вероятности появления
этих значений:
n
M ( X )   xi  pi .
i 1
• Пусть случайная величина X приняла
значения
x1 , x2 ,..., xk .
Причем x1 появилось m1 раз,
x 2 появилось m2 раз,
……………………….,
x k появилось m k раз.
x1  m1  x2  m2  ...  xk  mk
mk
m1
m2
X
 x1   x2   ...  xk  ,
m1  m2  ...  mk
n
n
n
где
m1  m2  ...  mk  n.
• При n  
• Тогда
mi
 pi .
n
X  MX
.
• Опр. Математическим ожиданием
непрерывной случайной величины X ,
возможные значения которой
принадлежат a; b , называется
b
 f ( x)dx.
a
• Если возможные значения принадлежат
 ;

, то
MX 
 f ( x)dx.

1. MC  C.
2. M (CX )  C  MC .
3.Если X , Y независимые случайные
величины, то
M ( X  Y )  MX  MY .
4.Если X , Y  независимые случайные
величины, то
M ( XY )  MX  MY .
5. M ( X  MX )  0.
• Пример 1.
xi
2
5
8
19
p i 0,2 0,3 0,4 0,1
MX  2  0,2  5  0,3  8  0,4  19  0,1  7.
Пример 2.
0 ,
 x  1,

f ( x)  

x

3
,

0,
x  1;
1  x  2;
2  x  3;
x  3.

MX   x  f ( x)dx 

1
2
3

2

1
2
3
1
  x  0dx   x  ( x  1)dx   x  (3  x)dx   x  0dx   ( x 2  x)dx 
3
  (3x  x 2 )dx 
2
2
x x 
   
 3 2 1
3
2
2
 3x x 
 
   2.
3 2
 2
2
3
f (x )
2
1
2
3
xi
Дисперсия
• Опр. Математическое ожидание
квадрата отклонения СВ X от её
математического ожидания MX
называют дисперсией СВ X :
•
DX  M ( X  MX ) .
2
• Если СВ
X
- дискретная СВ, то
n
DX   ( xi  MX )  pi .
2
i 1
• Если СВ
X
- дискретная СВ, то

DX   ( x  MX )  f ( x)dx.
2

• Среднее квадратическое отклонение
 ( x)  D( X ).
Свойства дисперсии
•
•
•
•
•
1.
2.
3.
4.
5.
D( X  Y )  DX  DY .
DC  0.
D(CX )  C  DX .
2
DX  MX  ( MX ) .
2
2
D( X  MX )  DX .
• Опр. СВ X  MX называется
центрированной:
M ( X  MX )  0, D( X  MX )  DX .
•
Опр. СВ
X  MX
x
называется стандартной:
 X  MX 
 X  MX 
  0, D
  1.
M 
 x 
 x 
• Опр. Начальным моментом k  го
порядка  k СВ X называется
 k  MX .
k
k
MX :
• Опр. Центральным моментом k
порядка  k СВ X называется
 го
M ( X  MX ) :  k  M ( X  MX ) .
k
k
• Опр. Коэффициентом асимметрии
наз-ся величина :  3

3
x
.
3
A 3.
x
A
• Опр. Эксцессом
E
наз-ся величина
4

3
.
4
x
4
E  4  3.
x
Скачать