Лекция 15. Тема: Случайные величины и их числовые характеристики. случайной величины и непрерывной

реклама
Кафедра математики и моделирования
Старший преподаватель Е.Г. Гусев
Курс «Высшая математика»
Лекция 15.
Тема: Случайные величины и их числовые
характеристики.
Цель: Ознакомиться с понятиями дискретной
случайной величины и непрерывной
случайной величины.
• Случайной
называется
величина, которая в результате
опыта может принять то или
иное
возможное
значение,
неизвестное
заранее,
но
обязательно одно.
• Дискретной случайной
величиной называют такую
случайную величину, множество
возможных значений которой
либо конечно, либо бесконечно,
но обязательно счетно.
• Непрерывной случайной
величиной называют такую
случайную величину, которая
может принять любое значение
из некоторого конечного или
бесконечного интервала.
• Случайные величины:
• значения:
x, y, z,.... .
X ,Y , Z ,....;
• Законом распределения
дискретной случайной величины
называется всякое соотношение,
устанавливающее связь между
возможными значениями
случайной величины и
соответствующими вероятностями.
• Закон распределения
случайной величины можно
задать, как и функцию:
табличным, графическим и
аналитическим способами.
• Две случайные величины
называются независимыми,
если закон распределения
вероятностей одной из них не
зависит от того какие
возможные значения приняла
другая.
Если F (x ) - функция распределения,
то lim F ( x)  0, lim F ( x)  1.
x  
x  
Если X - непрерывная случайная
величина, то P( X   )  0 .
P(  X   )  P(  X   ) 
 P(  X   )  P(  X   ).
• Если X - дискретная случайная величина,
F ( x)   P( X  xi ).
то
xi  x
xi
x1
x2
x3
pi
p1
p2
p3
in
p
i 1
i
 1.
……..
……..
xn
pn
x  x1 ,
F ( x)  P( X  x1 )  0;
x1  x  x2 ,
x2  x  x3 ,
F ( x)  P( X  x2 )  P( X  x1 )  p1;
F ( x)  P( X  x3 )  P( X  x1 )  P( X  x2 )  p1  p2 ;
…………………………………………...........
xn1  x  xn , F ( x)  P( X  xn )  P( X  x1 )  P( X  x2 )  ...  P( X  xn1 ) 
 p1  p2  ...  pn1;
x  xn ,
F ( x)  P( X  xn )  p1  p2  ...  pn  1.
x  x1 ;
0,
p ,
;
x

x

x
2
1
1

 p1  p2 ,
x2  x  x3 ;
F ( x)  
..........
..........

 p1  p2  ...  pn 1 , xn 1  x  xn ;

1,
x  xn .
F (x )
1
p1  p2  ...  pn1
...............
p1  p2
p1
x1 x 2 x3 ........ x n
pi
Дифференциальной функцией
распределения или плотностью
распределения вероятностей наз.
первая производная интегральной
функции распределения F (x ).
График дифференциальной функции
распределения f (x) наз. кривой
распределения:
f (x )
x
Свойства плотности
распределения вероятности.
• 1.Для x f ( x)  0.
• 2.Для f (x ) имеет место равенство


• 3.
P(  X   )   f ( x)dx.

 f ( x)dx  1.

x
• 4. F ( x) 
 f (t )dt

Числовые характеристики
случайных величин.
Математическое ожидание.
xi
x1
x2
x3
pi
p1
p2
p3
in
p
i 1
i
 1.
……..
……..
xn
pn
MX
Математическим ожиданием
дискретной случайной величины X наз.
сумма произведений всех возможных
значений случайной величины на
соответствующие вероятности появления
этих значений:
n
MX   xi  pi .
i 1
Пусть случайная величина X приняла
значения
x1 , x2 ,..., xk .
Причем x1 появилось m1 раз,
x 2 появилось m2 раз,
……………………….,
x k появилось m k раз.
x1  m1  x2  m2  ...  xk  mk
mk
m1
m2
X
 x1   x2   ...  xk  ,
m1  m2  ...  mk
n
n
n
где
m1  m2  ...  mk  n.
Математическим ожиданием
непрерывной случайной величины X ,
возможные значения которой
принадлежат a; b , называется
b
 f ( x)dx.
a
• Если возможные значения принадлежат
 ;

, то
MX 
 f ( x)dx.

Свойства математического
ожидания
1. MC  C.
2. M (CX )  C  MC .
3.Если X , Y независимые случайные
величины, то M ( X  Y )  MX  MY .
4.Если X , Y  независимые случайные
величины, то M ( XY )  MX  MY .
5. M ( X  MX )  0.
• Пример 1.
xi
2
5
8
19
p i 0,2 0,3 0,4 0,1
MX  2  0,2  5  0,3  8  0,4  19  0,1  7.
Пример 2.
0 ,
 x  1,

f ( x)  

x

3
,

0,
x  1;
1  x  2;
2  x  3;
x  3.

MX   x  f ( x)dx 

1
2
3

2

1
2
3
1
  x  0dx   x  ( x  1)dx   x  (3  x)dx   x  0dx   ( x 2  x)dx 
3
  (3x  x 2 )dx 
2
2
x x 
   
 3 2 1
3
2
2
 3x x 
 
   2.
3 2
 2
2
3
Дисперсия
• Математическое ожидание квадрата
отклонения СВ
от её X
математического ожидания MX
называют дисперсией СВ X :
•
DX  M ( X  MX ) .
2
• Если СВ
X
- дискретная СВ, то
n
DX   ( xi  MX )  pi .
2
i 1
• Если СВ
X
- дискретная СВ, то

DX   ( x  MX )  f ( x)dx.
2

• Среднее квадратическое отклонение
 ( x)  DX .
Свойства дисперсии
•
•
•
•
•
1.
2.
3.
4.
5.
D( X  Y )  DX  DY .
DC  0.
D(CX )  C  DX .
2
DX  MX  ( MX ) .
2
2
D( X  MX )  DX .
Вопросы:
1)Определения дискретной случайной
величины и непрерывной случайной
величины?
2)Числовые характеристики ДСВ?
3)Числовые характеристики НСВ?
Скачать