Моделирование процессов в биологии

реклама
Моделирование процессов в
биологии
1937 год.
Остров Протекшен
Phasanus
Colchicus
1937 год.
Остров Протекшен
Прошёл год.
Прошёл ещё год.
Этапы решения любой реальной
задачи
• Определение исходной
информации, необходимой для
решения задачи, а также путей её
получения;
• Привлечение знаний, позволяющих
связать исходную информацию с
результатами и определить путь
получения результатов;
• Извлечение исходной информации
и преобразование в результат.
Анализ
Анализ
Синтез
Какие факторы влияют на жизнь фазанов?
Какие факторы влияют на жизнь фазанов?
Климатические условия
Холодная зима
Засушливое лето
Какие факторы влияют на жизнь фазанов?
Появление (быстрый рост) другого вида
животных, имеющих ту же кормовую базу
Какие факторы влияют на жизнь фазанов?
Прирост числа фазанов за единицу времени
пропорционален их уже имеющемуся количеству
Существенная информация
Начальное количество (обозначим за M(o))
Коэффициент прироста за один год (k).
Допустим, через n лет фазанов стало M(n).
Тогда прирост за год: M(n + 1) - M(n)
Допустим, через n лет фазанов стало M(n).
Тогда прирост за год: M(n + 1) - M(n).
Можно записать равенство:
M(n + 1) - M(n) = kM(n)
Преобразуем:
M(n + 1) = M(n) + KM(n),
или
M(n + 1) = (1 + k)M(n)
M(n + 1) = (1 + k)M(n)
По этой формуле, зная изначальное количество M(0)
и коэффициент прироста k, можно сначала найти
M(1), т.е. число фазанов через год, затем найти
M(2), т.е. число фазанов через 2 года, затем M(3) и
т.д.
Это геометрическая прогрессия. Можно
сформулировать закономерность так: Если
действие окружающей среды сказывается лишь на
скорости прироста, то живые организмы
размножаются в геометрической прогрессии.
M(n) = (1 + k)nM(0)
это модель неограниченного роста.
Адекватно ли она отражает биологические
процессы на Земле?
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0
1937
1938
1939
1940
1941
1942
1943
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
7E+18
6E+18
5E+18
4E+18
3E+18
2E+18
1E+18
0
Есть некое предельное значение массы
растений, «проживающих» на той или иной
территории. Так, учёные показали, что запас
массы растений не может превосходить 20
тонн на гектар в полярной зоне, 350 тонн на
гектар в лесной зоне, и 440 тонн на гектар в
тропиках. А на всей Земле масса растений не
может превысить 5 * 1012 тонн.
Предположим
Чем ближе масса организмов к максимально
возможной, тем меньшим становится
коэффициент прироста k.
Коэффициент k не является неизменной
величиной, а зависит от разности L – M(n), где
L – предельное значение массы растений на
данной территории. Например, коэффициент
прироста меняется по формуле
k(n) = a(L – M(n))
Подставляя в M(n + 1) = (1 + k)M(n)
k(n) = a(L – M(n))
Получаем:
M(n + 1) = M(n) + aM(n)(L – M(n))
это модель ограниченного роста.
Но чему тогда равно M(n)?
Компьютерный эксперимент!
Исходные данные: M(0), k, a, L
M(0) = 1
L = 11 000
Значения коэффициента k
экспериментально полученные учёными
для растений:
Природная зона Коэффициент k
Тундра
Тайга
Степь
Пустыня
0,6
1,8
1,2
0,8
Через сколько лет масса
растений превысит 100?
Природная зона Коэффициент k
1) Тундра
2) Тайга
3) Степь
4) Пустыня
1
2
A
год
3
4
5
6
7
8
9
0
B
Природная зона
Тип модели
Коэффициент
размножения k
Предельное
значение массы L
Коэффициент a
Начальная масса
M(0)
0,6
1,8
1,2
0,8
C
Тундра
Неогр
D
Огран
0,6
0,6
11000
= D3/(D4 - D6)
1
1
= A6 +
Масса через 1 год = C6 * (1 + C3) = D6 * (1 + D5 * (D4 – D6)
1
= A7 + Масса через 2
= C7 * (1 + C3) = D7 * (1 + D5 * (D4 – D7)
1
года
= A8 + Масса через 3
1
года
Т ундра
600000
500000
Неогран
400000
О гран
300000
200000
100000
0
Начальная Мас с а через Мас с а через Мас с а через Мас с а через Мас с а через Мас с а через Мас с а через
мас с а M(0)
1 год
2 года
3 года
4 года
5 лет
6 лет
7 лет
Т айга
35000
30000
25000
Неогр
20000
О гран
15000
10000
5000
0
Начальная Мас с а Мас с а Мас с а Мас с а Мас с а Мас с а Мас с а мас с а Мас с а Мас с а
мас с а через 1 через 2 через 3 через 4 через 5 через 6 через 7 через 8 через 9 через 10
M(0)
год
года
года
года
лет
лет
лет
лет
лет
лет
Скачать