№5. Характеристика круговоротов основных биогенных элементов – 10 часов (14 часов для ОЗО). Цель: выяснить степень участия микроорганизмов 1. Круговорот азота: характеристика этапов круговорота, экологические условия, при которых они осуществляются, микроорганизмы, участвующие в этих процессах. 1) фиксации азота атмосферы; 2) окисления азота — нитрификации; 3) восстановления азота, включающего процессы аммонификации, или гниения, и де- нитрификации. Каждый из этих процессов осуществляется определенной группой бактерий. Фиксация азота атмосферы, который находится в свободном состоянии, возможна только с помощью двух групп азотфиксирующих микроорганизмов. Это свобод- ноживущие азотфиксирующие бактерии и микробы-симбионты— клубеньковые бактерии (схема 2, I). Они имеют ферменты, обладающие способностью связывать свободный азот с другими химическими элементами. Фиксируя азот атмосферы, эти микроорганизмы синтезируют сложные органические соединения. Значение азотфиксирующих микроорганизмов велико. Они обогащают почву связанным азотом и способствуют ее плодородию. Аммонификация, или гниение, — процесс разложения белков на менее сложные соединения: пептоны, пептиды, аминокислоты. Последние в свою очередь могут разрушаться до конечных продуктов — аммиака (схема 2, II). В процессах расщепления белка активное участие принимают аэробные микроорганизмы: В. subtilis, В. mycoides, В. mesentericus и пигментообразующие бактерии: В. pseudomonas fluorescens. В анаэробных условиях процессы разложения белка могут осуществлять протей, кишечная палочка, а также актиномицеты и плесневые грибы. В этих случаях, помимо аммиака и углекислого газа, образуются продукты промежуточного обмена: органические кислоты, спирты, амины и др. Существуют бактерии, расщепляющие мочевину до аммиака. Частично он улетучивается в атмосферу, но в основном подвергается дальнейшим превращениям в почве при так называемых процессах нитрификации. Процессы нитрификации, или окисления, аммиака в нитриты, а затем в нитраты осуществляют почвенные бактерии (схема 2, III). В результате этого процесса растения получают питательные вещества, необходимые для жизнедеятельности. На первом этапе нитрификации нитрозные бактерии (нитрозомонас, нитрозоцистис, нитрозоспира) окисляют аммиак в азотистую кислоту, получая при этом энергию, необходимую для своей жизни (схема 2, ІІІа). На втором этапе нитратные бактерии (нитробактер) окисляют азотистую кислоту в азотную (схема 2,III б). Азотная кислота, растворяя, например, фосфат кальция, приводит к образованию фосфатов, которые легко усваиваются растениями. Процессы денитрификации возможны в природных условиях при наличии в почве микробов-денитрификаторов, которые восстанавливают нитраты до молекулярного азота (схема 2, IV). Эти процессы протекают на глубине 10—15 см в почве в анаэробных условиях и ведут к понижению плодородия почвы, уменьшая в ней запасы нитратов. Образовавшийся азот улетучивается в атмосферу. 2. Круговорот кислорода - углерода: характеристика этапов круговорота, экологические условия, при которых они осуществляются, микроорганизмы, участвующие в этих процессах. Микроорганизмы играют главную роль в круговороте углерода и кислорода. В круговороте углерода различают два процесса, связанных с выделением и поглощением кислорода: 1) фиксация СО2 в процессе кислородного фотосинтеза и 2) минерализация органических веществ с выделением СО2. Первый процесс осуществляют высшие растения, водоросли и цианобактерии. Он обеспечивает перевод окисленной формы углерода в восстановленную (в этой форме углерод находится в органических веществах), при этом восстановленный кислород окисляется до молекулярного. Второй процесс совершается микроорганизмами, он идет с поглощением кислорода и прямо или косвенно связан с восстановлением молекулярного кислорода и образованием субстратов для кислородного фотосинтеза. 3. Круговорот водорода: характеристика этапов круговорота, экологические условия, при которых они осуществляются, микроорганизмы, участвующие в этих процессах. К водородным бактериям относятся эубактерии, способные получать энергию путем окисления молекулярного водорода с участием О2, а все вещества клетки строить из углерода СО2. Водородные бактерии - хемолитоавтотрофы, растущие при окислении Н2 в аэробных условиях. Н2 +1/5О2=Н2О. Помимо окисления для получения энергии молекулярный водород используется в конструктивном метаболизме. На 5 молекул Н2, окисленного в процессе дыхания приходится 1 молекула Н2, затраченная на образование биомассы. 6 Н2+2О2+СО2=СН2О +5Н2О. Молекулярный водород - наиболее распространенный неорганический субстрат, используемый бактериями для получения энергии в процессе окисления. К водородным бактериям относятся представители 20 родов, объединяющие грамположительные и грамотрицательные формы разной морфологии, подвижные и неподвижные, образующие спор и бесспоровые, размножающиеся делением и почкованием.(род Hydrogenobacter). Из всех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД+ окислением неорганического субстрата. К образованию молекулярного водорода приводят разные процессы, в том числе и биологические. Активными продуцентами Н2 являются эубактерии. Также активно осуществляется и потребление Н2 4. Круговорот серы: характеристика этапов круговорота, экологические условия, при которых они осуществляются, микроорганизмы, участвующие в этих процессах. Процессы восстановления серы происходят несколькими путями Под влиянием гнилостных бактерий — клостридий, протея — в анаэробных условиях при гниении белков, содержащих серу, происходит образование сероводорода и, реже, меркаптана. Большие количества сероводорода накапливаются также в результате жизнедеятельности сульфатвосстанавливающих бактерий. Они восстанавливают сульфаты почвы, ила и воды. Сероводород, образовавшийся в процессе восстановления, частично улетучивается в атмосферу, а частично накапливается в почве и воде. В дальнейшем он окисляется. Процессы окисления, которым подвергается образовавшийся сероводород, совершаются при участии серобактерий и тиобацилл (схема З, II). Серобактерии используют сероводород в биоэнергетических процессах окисления, обеспечивая себя энергией (ІІа). В результате этих реакций сероводород окисляется до серы, которая накапливается в цитоплазме бактерий. После того как запасы сероводорода во внешней среде исчерпаны, сера окисляется до серной кислоты ( II 6) и сульфатов ( II в), используемых растениями. Тиобациллы окисляют серу, сероводород, гипосульфит. Они накапливают серу внутри клетки и вне ее, иногда окисляют серу до сульфатов. Среди тиобацилл встречаются аутотрофы и гетеротрофы. 5. Круговорот фосфора: характеристика этапов круговорота, экологические условия, при которых они осуществляются, микроорганизмы, участвующие в этих процессах. Круговорот фосфора несколько отличается от круговорота остальных элементов. Освобождение фосфора из органических соединений происходит в результате процессов гниения. Однако до сих пор не обнаружены микроорганизмы, которые могли бы осуществлять процессы окисления и восстановления фосфора. Фосфорные бактерии, находящиеся в почве и воде, используют для своей жизнедеятельности нерастворимые соединения фосфора, переводя их в растворимые. Эти соединения затем могут быть использованы растениями. Переходу нерастворимых соединений фосфора в растворимые способствуют также нитрифицирующие и серные бактерии, образующие кислоты при процессах брожения.