Кафедра математических и естественнонаучных дисциплин

реклама
АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
« ИНДУСТРИАЛЬНЫЙ ИНСТИТУТ »
Кафедра математических и естественнонаучных дисциплин
УТВЕРЖДЕН
на заседании кафедры
протокол №___от «_____» __________ 201_ г.
Заведующий кафедрой математических и естественнонаучных дисциплин
_______________________Т.Ю.Ходаковская
(подпись, расшифровка подписи)
ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
ПО УЧЕБНОЙ ДИСЦИПЛИНЕ
ДИСКРЕТНАЯ МАТЕМАТИКА
38.03.01 (080100.62) ЭКОНОМИКА
ФИНАНСЫ И КРЕДИТ
БАКАЛАВР
Курск – 201_
ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ДИСЦИПЛИНЕ «ДИСКРЕТНАЯ
МАТЕМАТИКА»
1.Дискретная математика как наука. Области ее применения (ПК-1, ОК-13, ПК-12).
2.Понятие множества. Мощность множества. Способы задания множества(ПК-1, ПК-12).
3.Операции над множествами (объединение, пересечение, разность, дополнение).
4.Диаграммы Эйлера-Венна (изображение операций над множествами) (ПК-1).
5.Свойства операций над множествами. Доказательства свойств (ОК-13).
6.Булеан множества. Теорема: P( X )  2 n с доказательством. Алгоритм построения
булеана (ПК-1).
7.Декартово произведение множеств. N-местное отношение. Бинарное отношение.
Примеры (ПК-1, ОК-13, ПК-12).
8.Область определения бинарного отношения. Область значений бинарного отношений. Обратное
отношение для бинарного отношения. Образ множества. Прообраз множества.
Матрица бинарного отношения. Ее свойства (ПК-12).
9.Свойства бинарных отношений. Определение свойств бинарных отношений матричным
методом (ОК-13).
10.Функция. Частичная функция. Инъекция. Сюръекция. Биекция. (ПК-1, ОК-13, ПК-12).
11.Отношение эквивалентности. Классы эквивалентности (ПК-1).
12.Покрытие множества. Разбиение множества. Фактор-множество (ОК-13, ПК-12).
13.Теорема о связанности разбиения множества и отношения эквивалентности с
доказательством (ПК-12).
14.Классификация отношений. Отношения частичного порядка. Топологическая
сортировка. Диаграммы Хассе (ПК-1, ПК-12).
15.Комбинаторика, ее основные задачи. Правило суммы. Правило произведения (ПК-1).
16.Число размещений без повторений. Доказательство. Число размещений с
повторениями. Доказательство (ПК-12).
17.Число сочетаний без повторений. Доказательство. Число сочетаний с повторениями.
Доказательство (ПК-1, ОК-13, ПК-12).
18.Биномиальные коэффициенты. Элементарные свойства биномиальных коэффициентов.
Бином Ньютона и треугольник Паскаля. Способы их использования(ПК-1).
19.Формула включения и исключения. Форма записи формулы включения и исключения с
использованием свойств элементов множества (ОК-13, ПК-12).
20.Размещения заданного состава. Полиномиальная теорема (ПК-1, ОК-13).
21.Числа Фибоначчи, их свойства (ПК-1).
22.Основные определения теории вероятностей. Классическое определение вероятности
(ПК-1, ПК-12).
23.Условные вероятности. Формула полной вероятности. Формула Байеса и ее
использование (ПК-1).
24.Случайные величины и распределения вероятностей (ОК-13, ПК-12).
25.Математическое ожидание и дисперсия, их основные свойства (ПК-1, ОК-13, ПК-12).
26.Определение энтропии случайной схемы, ее свойства. Аксиоматическое определение
энтропии (ПК-12).
27.Строковые данные в различных разделах математики и приложениях. Основные
операции над строками (ПК-1).
28.Лексикографическое сравнение строк. Типичные задачи, решаемые со строками.
Методы поиска образца в строке. Классификация функций от строк (ПК-1, ОК-13, ПК-12).
30.Графы. Основные понятия и определения. Способы представления (ОК-13, ПК-12).
31.Представление графов матрицами инцидентности и смежности. Свойства данных
матриц (ОК-13, ПК-12).
32.Понятие связного графа, компоненты связности и сильной связности. Метрические
характеристики графов(ОК-13, ПК-12).
33.Нагруженные графы. Постановка задачи коммивояжера (ОК-13, ПК-12).
34.Задача о кратчайшем пути в графе (алгоритм фронта волны, алгоритмы ФордаБеллмана и Дейкстры) (ПК-12).
35.Деревья. Характеристическое свойство дерева. Алгоритм нахождения кратчайшего
остовного дерева (алгоритм Краскала) (ПК-1, ОК-13, ПК-12).
36.Алгоритм нахождения максимального потока. Теорема Форда-Фалкерсона (ОК-13, ПК12).
37.Функциональные системы с операциями. Булева алгебра. Способы задания булевых
функций. Элементарные функции булевой алгебры (ОК-13, ПК-12).
38.Булева алгебра Формулы булевой алгебры. Равносильные формулы. Двойственные
функции. Принцип двойственности (ПК-1, ОК-13, ПК-12).
39.Представление булевых функций в классе СДНФ, СКНФ. Алгоритм построения СДНФ,
СКНФ (ОК-13).
41.Замкнутые классы алгебры логики (TO, T1, S, M, L) (ПК-1).
42.Критерий функциональной полноты в алгебре логики. Теорема Поста (ПК-1, ОК-13).
43.Минимизация булевых функций в классе ДНФ. Интервал, максимальный интервал,
простая импликанта. Сокращенная ДНФ. Минимальная ДНФ. Примеры использования
алгоритмов минимизации (ПК-1, ОК-13, ПК-12).
44.Функциональная система: k-значная логика. Элементарные функции k-значной логики
(ПК-1).
45.Определение кодирования. Свойства кодирования. Код сообщения. Побуквенное
кодирование. Элементарные коды. Алфавитный код. Равномерное кодирование.
Разделимый код (ПК-1, ОК-13, ПК-12).
46.Схема кодирования. Префиксный код. Взаимно однозначное кодирование. Критерий
взаимной однозначности алфавитного кодирования (ПК-1).
47.Взаимно однозначное кодирование. Неравенство Крафта-Макмиллана. Коды с
минимальной избыточностью (ПК-12).
48.Кодовое дерево. Насыщенная вершина кодового дерева. Насыщенное кодовое дерево.
Исключительная вершина. Порядок ветвления исключительной вершины (ПК-1, ОК-13,
ПК-12).
49.Бинарный
код
Хэмминга.
Схема
кодирования.
Схема
декодирования.
Самокорректирующиеся коды Хэмминга (ПК-1, ОК-13, ПК-12).
50.Конечный автомат. Определение. Использование конечных автоматов в
программировании (ПК-1, ПК-12).
51.Марковская цепь. Основные определения. Граф переходов. Классификация состояний
марковской цепи (ПК-1, ОК-13, ПК-12).
52.Процесс принятия решений. Модель динамического программирования. Уравнение
Беллмана. Процессы в информатике (ПК-1, ОК-13).
53.Производящие функции. Асимптотика (ПК-1, ОК-13, ПК-12).
ТЕСТОВЫЕ ЗАДАНИЯ ПО ДЛЯ ДИСЦИПЛИНЕ «ДСКРЕТНАЯ МАТЕМАТИКА»
Тест №1
1. Будет ли пустое множество V каким-либо подмножеством некоторого множества?
а) будет собственным подмножеством;
б) будет несобственным подмножеством;
в) не будет никаким подмножеством.
2. Что есть множество А\В, если А - множество всех книг в библиотеке МЭСИ по
различным отделам науки и искусства, а В - множество всех книг во всех библиотеках
России?
а) множество математических книг в России без математических книг в МЭСИ;
б) множество книг в библиотеке МЭСИ по искусству и науке, кроме математических.
в) другое множество (укажите какое)
3. Совпадают ли дистрибутивные законы Булевой алгебры и алгебры действительных
чисел.
а) оба совпадают;
б) оба не совпадают;
в) один совпадает, другой – нет (какой именно).
4. Вытекает ли из равенства А\В=С что А=В∪С?
а) да;
б) нет;
в) вообще нет, но в частном случае да. (В каком случае?)
5. Есть ли законы для дополнений в алгебре действительных чисел?
а) да (укажите их);
б) нет;
в) некоторых нет, а некоторые есть (укажите их).
6. Справедливы ли законы идемпотентности Булевой алгебры в алгебре действительных
чисел? (Ответ обоснуйте.)
а) справедливы;
б) несправедливы;
в) один справедлив, другой нет.
7. Обладают ли свойством двойственности формулы поглощения?
а) да;
б) нет;
в) одна обладает, другая нет (какая именно).
8. Можно ли поставить в соответствие единицу или ноль соответственно универсальному
и пустому множеству, исходя из свойств операций? Если да, то, о каких операциях идёт
речь.
а) можно;
б) единицу - можно, ноль - нет;
в) ноль - можно, единицу - нет.
9. Обладают ли формулы склеивания свойством двойственности
а) нет;
б) да;
в) одна обладает, другая нет (какая именно).
10. Будет ли каждое из множеств A, В, С, D подмножеством другого (т.е. можно ли из них
составить цепочку вложенности из этих множеств), если A - множество действительных
чисел, B - множество рациональных чисел, С - множество целых чисел, D - множество
натуральных чисел.
а) да;
б) нет;
в) лишь некоторые из множеств являются подмножествами перечисленных множеств.
(Какие именно.)
Тест №2
1. Задано отображение f множества Х в Y. X={x1, x2, x3, x4} Y={y1, y2, y3}: f(x1)=y1,
f(x2)= y2, f(x3)= y2, f(x4)= y3, Будет ли это отображение f
а) сюръективно;
б) инъективно;
в) биективно.
2. Можно ли в любом бесконечном множестве выделить счетное подмножество?
а) нельзя;
б) можно;
в) можно, но не всегда (когда именно).
3. Выделим в бесконечном множестве М счетное подмножество А⊂М. В каком
отношении находятся мощности множеств М \ А и М?
а) мощность М \ А < мощности М;
б) мощность М < мощности М \ А;
в) мощность М = мощности М \ А.
4. Отношение "быть старше": "х старше у" является
а) рефлексивным;
б) симметричным;
в) асимметричным.
5. Отношение "х - победитель у" является
а) антирефлексивным;
б) симметричным;
в) транзитивным.
6. Каково максимально возможное число классов, на которое можно разбить сумму трех
пересекающихся множеств, не прибегая к произвольному делению отдельных областей на
диаграммах Эйлера-Венна?
а) 3;
б) 5;
в) 7.
7. Если отношение A на множестве М рефлексивно, симметрично и транзитивно, можно
ли разбить множество М на классы?
а) да;
б) нет;
в) можно, но не всегда (когда именно).
8. Пусть на множестве М задано отношение A: "х знаком с у". Почему нельзя разбить
множество М на классы?
а) отношение A не рефлексивно;
б) отношение A не симметрично;
в) отношение A не транзитивно.
9. Почему множество действительных чисел и множество натуральных чисел не являются
подобными?
а) множество натуральных чисел неупорядочено;
б) множество действительных чисел неупорядочено;
в) нет биективного соответствия между множествами.
10. Почему множество М точек отрезка [0, 1] не является вполне упорядоченным
множеством?
а) М не упорядочено;
б) не все подмножества М содержат первый элемент;
в) ни одно из подмножеств М не содержат первый элемент.
Тест №3
1. Следующее высказывание может быть интерпретировано как сложное высказывание:
"Неверно, что первым пришел Петр или Павел". Каковы составляющие его элементарные
высказывания?
а) А: "Неверно, что первым пришел Петр"
В: "Неверно, что первым пришел Павел";
б) А: "Первым пришел Петр"
В: "Неверно, что первым пришел Павел";
в) А: "Первым пришел Петр"
В: "Первым пришел Павел".
2. Какой из формул может быть записано высказывание предыдущего вопроса?
а) ;
б) ;
в) .
3. Будет ли высказывание S=(А→В)∧(В→С)→(А→С):
а) тождественно истинным;
б) тождественно ложным;
в) переменным.
4. Каково значение Х, определяемое уравнением =B ?
а) Х =В;
б) В;
в) В \ А.
5. Чему равносильна конъюнкция контроппозиции и ее конверсии?
а) импликации;
б) конверсии импликации;
в) двойной импликации.
6. В высказывании S: "Треугольники равны только тогда, когда равны их стороны".
Равенство углов в треугольнике является:
а) необходимым условием;
б) достаточным условием;
в) необходимым и достаточным условием.
7. Какая из функций соответствует формуле (см. табл.). S = x1 → x2 ∧ x3 ?
x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1
f1; 1 1 0 1 1 0 1 1
f2 0 0 0 1 0 0 0 1
а) f1;
б) f2;
в) ни f1, ни f2 (тогда напишите таблицу для правильного результата)
8. Какая из переменных х1, х2, х3 является фиктивной в формуле f, где f задана условием
f(0,0,1)=f(0,0,0)? На остальных наборах значений переменных f принимает значение
истинно.
а) х1;
б) х2;
в) х3.
9. Какие из переменных х1, х2 в функции f15 (табл. 3.11) являются фиктивными?
а) х1 - существенная переменная;
б) х2 - существенная переменная;
в) обе переменные х1 и х2 - фиктивные.
10. Какие из пар связок образуют полную систему связок?
а) (∨, );
б) (∨, →);
в) (∧, →).
Тест №4
1. Даны два высказывания S1: " Если треугольники равны, то равны их стороны", S2:
"Стороны треугольников равны тогда и только тогда, когда равны треугольники".
Существует ли отношение следствия между S1 и S2?
а) из S1 следует S2;
б) из S2 следует S1;
в) ни одно из высказываний не следует из другого.
2. Если между высказываниями S1 и S2 существует отношение следствия, являются ли эти
высказывания совместимыми?
а) да;
б) нет;
в) может быть и тот, и другой вариант (приведите примеры).
3. Если из высказывания S1 следует S2 и, наоборот, из S2 следует S1, являются ли
высказывания S1 и S2 эквивалентными?
а) да;
б) нет;
в) может быть и тот, и другой вариант (приведите примеры).
4. Если высказывания эквивалентны, существует ли между ними отношения следствия?
а) да;
б) нет;
в) может быть и тот, и другой вариант (приведите примеры).
5. Могут ли быть при правильном рассуждении все посылки истинными, если заключение
ложно?
а) да;
б) нет;
в) иногда да, иногда нет (приведите примеры).
6. Существует ли СКНФ у тождественно истинной формулы алгебры высказываний?
а) да;
б) нет;
в) иногда да, иногда нет (приведите примеры).
7. Существует ли СДНФ у невыполнимой формулы?
а) да;
б) нет;
в) иногда да, иногда нет (приведите примеры).
8. Каково множество истинности у невыполнимой формулы?
а) "U" - универсальное;
б) "V" - пустое;
в) некоторое множество A, не являющееся ни пустым, ни универсальным.
9. Сколько единиц имеет полная элементарная конъюнкция?
а) ни одной;
б) одну;
в) несколько.
10. Сколько нулей имеет полная элементарная дизъюнкция?
а) один;
б) ни одного;
в) несколько.
Тест №5
1. Сколько слагаемых содержит СДНФ, построенная по функции f(x1, x2, x3) заданной
так, что на всех наборах значений переменных x1, x2, x3 она принимает значение 1?
а) 2;
б) 4;
в) 8.
2. Сколько сомножителей содержит СКНФ, построенная по функции f(1,1,1) = f(1,0,1) = 0?
а) 2;
б) 4;
в) 8.
3. Можно ли для функции f(x1, x2, x3) заданной так, что на всех наборах значений
переменных x1, x2, x3 она принимает значение 0, построить какую-либо совершенную
нормальную форму?
а) можно СДНФ;
б) можно СКНФ;
в) нельзя построить ни одной совершенной нормальной формы.
4. Можно ли некоторое высказывание записать в виде релейно-контактной схемы?
а) да;
б) нет;
в) иногда можно, иногда нет.
5. Могут ли две релейно-контактные схемы, соответствующие одной и той же функции
проводимости, иметь различное число реле?
а) да;
б) нет; если функция проводимости особенная (какая именно)
в) никогда не могут.
6. Имеем формулу , выводимую из формул 1, 2, … n, т.е. 1, 2, … n  .
Являются ли выводимыми формулы 1, 2, … n?
а) да;
б) нет;
в) некоторые из них выводимы, некоторые нет (какие именно).
7. Если формула  выводима из аксиом исчисления высказываний, какой она является как
формула алгебры высказываний?
а)  является тождественно истинной;
б)  является тождественно ложной;
в)  - переменное высказывание.
8. Является ли противоречивым некоторое исчисление (формальная аксиомати¬ческая
система), если оно имеет некоторую содержательную интерпретацию?
а) противоречиво;
б) непротиворечиво;
в) может быть и тот, и другой вариант.
9. Формула  есть тождественно истинная формула алгебры высказываний. Будет ли 
выводима из аксиом как формула исчисления высказываний?
а)  выводима;
б)  не выводима;
в) может быть и тот, и другой вариант.
10. Можно ли какую-либо аксиому исчисления высказываний вывести из остальных
аксиом?
а) некоторую аксиому можно, некоторую нельзя (приведите примеры);
б) все можно;
в) все нельзя.
Тест №6
1. Сколько несобственных подмножеств имеет конечное множество, состоящее из n
элементов?
а) 1 (что это за множество?);
б) 2 (что это за множества?);
в) n.
2. Сколько собственных подмножеств имеет конечное множество Х={х1, х2, … хn}?
а) n-1;
б) nn=n2;
в) 2n-2.
3. В каком порядке нужно производить операции, преобразовывая формулу ?
а) ;
б) ;
в) .
4. Пусть n(A∪B) - мощность множества, являющегося объединением конечных множеств
А и В, m1= n(A∪B), если множества пересекаются, т.е. А∩В≠0 и m2=n(A∪B), если
A∩B=0. Равны ли мощности m1 и m2?
а) m1 = m2;
б) m1 > m2;
в) m1 < m2.
5. Мощность какого множества больше Х или Y, если Х - исходное конечное множество,
Y - множество подмножеств множества Х?
а) мощность Х больше мощности Y;
б) мощность Х меньше мощности Y;
в) мощность Х равно мощности Y.
6. Существует ли среди бесконечных множеств множества наименьшей и наибольшей
мощности?
а) существуют множества как наибольшей, так и наименьшей мощности;
б) существует множество наибольшей, а наименьшей мощности нет;
в) существует множество наименьшей, а наибольшей мощности нет.
7. Является ли сюръективное отображение инъективным?
а) сюръективное отображение всегда инъективно;
б) сюръективное отображение - неинъективно;
в) сюръективное отображение может быть инъективным, но может и не быть им
(приведите примеры).
8. Всегда ли биективное отображение сюръективно?
а) всегда;
б) никогда;
в) может быть сюръективным, но может и не быть им (приведите примеры).
9. Когда сумма конечного или счетного числа конечных или счетных множеств является
конечным множеством?
а) в случае конечного числа суммы счетных множеств;
б) в случае счетного числа суммы конечных множеств;
в) в случае конечного числа суммы конечных множеств.
10. Если к некоторому бесконечному множеству М прибавить счетное множество A, будет
ли отличаться мощность полученного множества М∪А от мощности множества М?
а) мощность множества М равна мощности множества М∪А;
б) мощность множества М меньше мощности множества М∪А;
в) мощность множества М больше мощности множества М∪А.
11. Может ли конечное множество A содержать собственное подмножество,
эквивалентное всему множеству A ?
а) всегда содержит;
б) никогда не содержит;
в) иногда содержит, иногда нет (приведите примеры).
12. Отсутствием какого из свойств отношений отличаются отношение толерантности от
отношения эквивалентности?
а) рефлексивности;
б) симметрии;
в) транзитивности.
13. Какие из высказываний S1, S2, S3, состоящих из двух элементарных A и B,
равносильны? S1:“Если A, то не B”. S2:“А или не B”. S3:”Неверно, что A и B”.
а) S1=S2;
б) S1=S3;
в) S2=S3.
14. Что означает высказывание “А только, если B”?
а) А достаточно для B;
б) А необходимо для B;
в) А необходимо и достаточно для В.
15. Чему равносильна конъюнкция импликации и её конверсии (ответ поясните)?
а) контроппозиции;
б) конверсии контроппозиции;
в) двойной импликации.
16. Какая формула соответствует функции f(х1, х2): f(1,1)=1?
а) x1→х2;
б) х1∨х2;
в) х1∧х2.
17. Какие из переменных функций f(х1, х2) являются существенными, если f(х1, х2):
f(1,i)=0
а) x1;
б) х2;
в) обе переменные фиктивны.
18. С помощью какой связки можно записать любую формулу алгебры высказываний?
а) с помощью дизъюнкции;
б) с помощью конъюнкции;
в) с помощью штриха Шеффера.
19. Если множество истинности высказывания A есть подмножество множества
истинности высказывания B, существует ли отношения следствия между A и B?
а) из A следует B;
б) из B следует A;
в) ни одного из них не следует из другого.
20. Если высказывания A и B несовместимы, что можно утверждать о множествах
истинности этих высказываний?
а) множество истинности A есть подмножество множества истинности высказывания B;
б) множества истинности A и B совпадают;
в) множество истинности A и B не пересекаются.
21. Если высказывания A и B несовместимы, существует ли между ними отношение
следствия?
а) из A следует B;
б) из B следует A;
в) ни одного из них не следует из другого.
22. Если при проверке правильности рассуждения получен результат PQ  0, где P конъюнкция посылок, Q - заключение. Означает ли это, что рассуждение правильно?
а) да;
б) нет;
в) может быть правильным в одних случаях и неправильным в других (в каких именно).
23. Каково максимальное число слагаемых СДНФ для формулы S(х1, ... хn)  1?
а) n;
б) n2;
в) 2n .
24. Каково максимальное число сомножителей СКНФ невыполнимой формулы S(х1, ... хn)
?
а) n;
б) n2;
в) 2n .
25. Если СДНФ формулы S(х1, х2, х3) содержит 3 слагаемых, сколько сомножителей
содержит ее СКНФ?
а) 3;
б) 4;
в) 5.
26. Соответствуют ли различные релейно-контактные схемы одному и тому же
высказыванию?
а) всегда;
б) никогда;
в) могут соответствовать, могут не соответствовать (когда могут, а когда нет).
27. Могут ли равносильные высказывания быть записаны в виде некоторой релейноконтактной схемы?
а) да;
б) нет;
в) могут, но не всегда (когда могут, а когда нет).
28. Если исчисление противоречиво, имеет ли оно некоторую содержательную
интерпретацию?
а) имеет;
б) не имеет;
в) имеет, но не всегда (когда имеет, а когда нет).
29. Если исчисление является полным, можно ли какую-либо, не выводимую в этом
исчислении формулу добавить к аксиомам так, чтобы исчисление осталось
непротиворечивым?
а) можно;
б) нельзя;
в) можно, но не всегда (когда можно, а когда нет).
30. Если система аксиом некоторого исчисления независима, можно ли какие-либо
аксиомы вывести из других?
а) можно;
б) нельзя;
в) можно, но не всегда (когда можно, а когда нет).
Тест №7
1. Сколько несобственных подмножеств имеет конечное множество, состоящее из n
элементов?
а) 1 (что это за множество?);
б) 2 (что это за множества?);
в) n.
2. Сколько собственных подмножеств имеет конечное множество Х={х1, х2, … хn}?
а) n-1;
б) nn=n2;
в) 2n-2.
3. В каком порядке нужно производить операции, преобразовывая формулу ?
а) ;
б) ;
в) .
4. Пусть n(A∪B) - мощность множества, являющегося объединением конечных множеств
А и В, m1= n(A∪B), если множества пересекаются, т.е. А∩В≠0 и m2=n(A∪B), если
A∩B=0. Равны ли мощности m1 и m2?
а) m1 = m2;
б) m1 > m2;
в) m1 < m2.
5. Мощность какого множества больше Х или Y, если Х - исходное конечное множество,
Y - множество подмножеств множества Х?
а) мощность Х больше мощности Y;
б) мощность Х меньше мощности Y;
в) мощность Х равно мощности Y.
6. Существует ли среди бесконечных множеств множества наименьшей и наибольшей
мощности?
а) существуют множества как наибольшей, так и наименьшей мощности;
б) существует множество наибольшей, а наименьшей мощности нет;
в) существует множество наименьшей, а наибольшей мощности нет.
7. Является ли сюръективное отображение инъективным?
а) сюръективное отображение всегда инъективно;
б) сюръективное отображение - неинъективно;
в) сюръективное отображение может быть инъективным, но может и не быть им
(приведите примеры).
8. Всегда ли биективное отображение сюръективно?
а) всегда;
б) никогда;
в) может быть сюръективным, но может и не быть им (приведите примеры).
9. Когда сумма конечного или счетного числа конечных или счетных множеств является
конечным множеством?
а) в случае конечного числа суммы счетных множеств;
б) в случае счетного числа суммы конечных множеств;
в) в случае конечного числа суммы конечных множеств.
10. Если к некоторому бесконечному множеству М прибавить счетное множество A, будет
ли отличаться мощность полученного множества М∪А от мощности множества М?
а) мощность множества М равна мощности множества М∪А;
б) мощность множества М меньше мощности множества М∪А;
в) мощность множества М больше мощности множества М∪А.
11. Может ли конечное множество A содержать собственное подмножество,
эквивалентное всему множеству A ?
а) всегда содержит;
б) никогда не содержит;
в) иногда содержит, иногда нет (приведите примеры).
12. Отсутствием какого из свойств отношений отличаются отношение толерантности от
отношения эквивалентности?
а) рефлексивности;
б) симметрии;
в) транзитивности.
13. Какие из высказываний S1, S2, S3, состоящих из двух элементарных A и B,
равносильны? S1:“Если A, то не B”. S2:“А или не B”. S3:”Неверно, что A и B”.
а) S1=S2;
б) S1=S3;
в) S2=S3.
14. Что означает высказывание “А только, если B”?
а) А достаточно для B;
б) А необходимо для B;
в) А необходимо и достаточно для В.
15. Чему равносильна конъюнкция импликации и её конверсии (ответ поясните)?
а) контроппозиции;
б) конверсии контроппозиции;
в) двойной импликации.
16. Какая формула соответствует функции f(х1, х2): f(1,1)=1?
а) x1→х2;
б) х1∨х2;
в) х1∧х2.
17. Какие из переменных функций f(х1, х2) являются существенными, если f(х1, х2):
f(1,i)=0
а) x1;
б) х2;
в) обе переменные фиктивны.
18. С помощью какой связки можно записать любую формулу алгебры высказываний?
а) с помощью дизъюнкции;
б) с помощью конъюнкции;
в) с помощью штриха Шеффера.
19. Если множество истинности высказывания A есть подмножество множества
истинности высказывания B, существует ли отношения следствия между A и B?
а) из A следует B;
б) из B следует A;
в) ни одного из них не следует из другого.
20. Если высказывания A и B несовместимы, что можно утверждать о множествах
истинности этих высказываний?
а) множество истинности A есть подмножество множества истинности высказывания B;
б) множества истинности A и B совпадают;
в) множество истинности A и B не пересекаются.
21. Если высказывания A и B несовместимы, существует ли между ними отношение
следствия?
а) из A следует B;
б) из B следует A;
в) ни одного из них не следует из другого.
22. Если при проверке правильности рассуждения получен результат PQ  0, где P конъюнкция посылок, Q - заключение. Означает ли это, что рассуждение правильно?
а) да;
б) нет;
в) может быть правильным в одних случаях и неправильным в других (в каких именно).
23. Каково максимальное число слагаемых СДНФ для формулы S(х1, ... хn)  1?
а) n;
б) n2;
в) 2n .
24. Каково максимальное число сомножителей СКНФ невыполнимой формулы S(х1, ... хn)
а) n;
б) n2;
в) 2n .
25. Если СДНФ формулы S(х1, х2, х3) содержит 3 слагаемых, сколько сомножителей
содержит ее СКНФ?
а) 3;
б) 4;
в) 5.
26. Соответствуют ли различные релейно-контактные схемы одному и тому же
высказыванию?
а) всегда;
б) никогда;
в) могут соответствовать, могут не соответствовать (когда могут, а когда нет).
27. Могут ли равносильные высказывания быть записаны в виде некоторой релейноконтактной схемы?
а) да;
б) нет;
в) могут, но не всегда (когда могут, а когда нет).
28. Если исчисление противоречиво, имеет ли оно некоторую содержательную
интерпретацию?
а) имеет;
б) не имеет;
в) имеет, но не всегда (когда имеет, а когда нет).
29. Если исчисление является полным, можно ли какую-либо, не выводимую в этом
исчислении формулу добавить к аксиомам так, чтобы исчисление осталось
непротиворечивым?
а) можно;
б) нельзя;
в) можно, но не всегда (когда можно, а когда нет).
30. Если система аксиом некоторого исчисления независима, можно ли какие-либо
аксиомы вывести из других?
а) можно;
б) нельзя;
в) можно, но не всегда (когда можно, а когда нет).
Тест №8
Тест №9
Тест №10
Тест №11
Тест №12
Тест №13
1.
Тип - простой вопрос.
Граф G задан следующей матрицей смежности:
0

1
0
0
0

1
0
1

1
0
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
1
0
0
0
1
0
1
0
0
0
1
0
0
1
0
1
1

0

0
1

1

0
1
0 
Найти радиус r(G) графа.
2.
Тип - простой вопрос.
Граф G задан следующей матрицей смежности:
0
1
0
0
0
1
 10



0
1
1
0

1

0
1 0 0 0 1 0 1
0 1 0 1 0 0 0
1 0 1 0 0 1
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0
0 0 1 1 0 1
Найти диаметр d(G) графа.
3.
Тип - простой вопрос.
Граф G задан следующей матрицей смежности:
0
1
1

0
0
0
0
0

1
0
1
1
0
0
1
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0

0

0

0
1
1

0
Найти радиус r(G) графа.
4.
Тип - простой вопрос.
Граф G задан следующей матрицей смежности:
0
1
1

0
0
0
0
0

1
0
1
1
0
0
1
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0

0

0

0
1
1

0
Найти диаметр d(G) графа.
5.
Тип - простой вопрос.
Сколько существует неизоморфных деревьев с 6 вершинами?
6.
Тип - простой вопрос.
Сколько существует неизоморфных связных графов с 5 вершинами и 4 ребрами?
7.
Тип - простой вопрос.
Сколько существует неизоморфных связных графов с 5 вершинами и 5 ребрами?
8.
Тип - дистрибутивный вопрос.
Выберите условия, каждое из которых является необходимым для того, чтобы связный
граф с n вершинами был планарным ( m – число ребер):
a. m  3n  6
b. m  3n  6
c. m = 8 при n = 6
d. m < 19 при n = 8
e. m  3n
9.
Тип - дистрибутивный вопрос.
Выберите условия, каждое из которых является достаточным для того, чтобы граф с n
вершинами был планарным ( m – число ребер):
a.
b.
m  3n  6
граф не содержит подграфа, гомеоморфного графу
K 33 , и подграфа,
гомеоморфного графу K 5
c. m = n – 1, и граф связный
d. граф не содержит подграфа, изоморфного графу K 33
e. m = 5 при n = 7
10.
Тип - дистрибутивный вопрос.
Выберите условия, каждое из которых является достаточным для того, чтобы граф с n
вершинами не был планарным ( m - число ребер):
a. граф содержит подграф, изоморфный графу K 5
b. m = 10 при n = 20
c. граф содержит подграф, гомеоморфный графу K 6
d. m  3n
e. m = 10 при n = 5
11.
Тип - дистрибутивный вопрос.
Пусть граф G с n вершинами является деревом. Тогда: (Выберите для G верные
утверждения)
a.
b.
c.
d.
e.
f.
g.
число ребер m = n - 1
граф связный
граф не содержит циклов
граф планарный
граф не эйлеров
есть вершина степени 1
есть вершина степени больше 1
12.
Тип - дистрибутивный вопрос.
Пусть граф G с n вершинами является несвязным. Тогда: (Выберите для G верные
утверждения.)
a.
b.
c.
d.
e.
f.
g.
число компонент связности всегда равно 2
число компонент связности может быть равно 2
степень каждой вершины не превосходит n - 2
число компонент связности больше 1
граф не может быть двудольным
граф планарный
граф не может быть деревом
13.
Тип - дистрибутивный вопрос.
Пусть граф G с n вершинами является двудольным. Тогда: (Выберите для G верные
утверждения.)
a.
b.
c.
d.
e.
f.
g.
в нем нет циклов четной длины
в нем могут быть циклы четной длины
в нем все циклы имеют четную длину
граф связный
степень каждой вершины не превосходит n - 2
граф содержит цикл, если каждая доля содержит не менее двух вершин
граф планарный
14.
Тип - альтернативный вопрос.
Является ли планарным следующий граф:
a. да
b. нет
15.
Тип - альтернативный вопрос.
Является ли планарным следующий граф:
a. да
b. нет
16.
Тип - альтернативный вопрос.
Является ли планарным следующий граф:
a. да
b. нет
17.
Тип - альтернативный вопрос.
Является ли планарным следующий граф:
a. да
b. нет
18.
Тип - альтернативный вопрос.
Является ли планарным следующий граф:
a. да
b. нет
19.
Тип - альтернативный вопрос.
Является ли планарным следующий граф:
a. да
b. нет
20.
Тип - простой вопрос.
Сколько граней у плоского графа:
21.
Тип - простой вопрос.
Сколько граней у плоского графа:
22.
Тип - простой вопрос.
Сколько граней у плоского графа:
23.
Тип - простой вопрос.
Сколько граней у плоского графа:
24.
Тип - простой вопрос.
Сколько граней у плоского графа:
25.
Тип - простой вопрос.
Сколько граней у плоского графа:
26.
Тип - альтернативный вопрос.
По дереву найти соответствующий ему код Прюфера P(t) (Указать его вариант).
a. P(t) = (2 2 1 1 4 4 3 3)
b. P(t) = (1 2 1 2 3 4 3 4)
c. P(t) = (1 1 4 2 2 4 3 3) (+10 баллов)
27.
Тип - альтернативный вопрос.
По дереву найти соответствующий ему код Прюфера P(t) (Указать его вариант).
a. P(t) = (1 2 3 4 5 6 6 7)
b. P(t) = (1 2 3 4 5 5 6 7)
c. P(t) = (1 2 3 4 5 6 7 7)
28.
Тип - альтернативный вопрос.
По дереву найти соответствующий ему код Прюфера P(t) (Указать его вариант).
a. P(t) = (1 1 1 2 2 2 3 3)
b. P(t) = (3 3 1 1 1 2 2 2)
c. P(t) = (1 2 3 1 2 3 1 2 )
29.
Тип - дистрибутивный вопрос.
Для функции f, заданной вектором  f  0111 , определить, является ли она:
a.
b.
c.
d.
линейной
монотонной
самодвойственной
функцией из класса T0
e. функцией из класса T1
30.
Тип - дистрибутивный вопрос.
Для функции f, заданной вектором  f  0110  , определить, является ли она:
a.
b.
c.
d.
линейной
монотонной
самодвойственной
функцией из класса T0
e. функцией из класса T1
31.
Тип - дистрибутивный вопрос.
Для функции f, заданной вектором  f  1011 , определить, является ли она:
a.
b.
c.
d.
нелинейной
монотонной
самодвойственной
функцией из класса T0
e. функцией из класса T1
32.
Тип - дистрибутивный вопрос.
Для функции f  x  y  z определить, является ли она:
a.
b.
c.
d.
линейной
монотонной
самодвойственной
функцией из класса T0
e. функцией из класса T1
33.
Тип - дистрибутивный вопрос.
Для функции f  xy  z  1 определить, является ли она:
a.
b.
c.
d.
линейной
немонотонной
самодвойственной
функцией из класса T0
e. функцией из класса T1
34.
Тип - дистрибутивный вопрос.
Для функции f  xy  xz определить, является ли она:
a.
b.
c.
d.
линейной
монотонной
несамодвойственной
функцией из класса T0
e. функцией из класса T1
35.
Тип - альтернативный вопрос.
Полна ли система функций {f, g, h} (принадлежность функций классам T0 , T1 , L, M , S
отображена в таблице).
a. да
b. нет
36.
Тип - альтернативный вопрос.
Полна ли система функций {F, G, H} (принадлежность функций классам T0 , T1 , L, M , S
отображена в таблице).
a. да
b. нет
37.
Тип - альтернативный вопрос.
Полна ли система функций {f, g, h} (принадлежность функций классам T0 , T1 , L, M , S
отображена в таблице).
a. да
b. нет
38.
Тип - альтернативный вопрос.
Верно ли, что:
T0 S  T1
a. да
b. нет
39.
Тип - альтернативный вопрос.
Верно ли, что:
T0T1 L  S
a. да
b. нет
40.
Тип - альтернативный вопрос.
Верно ли, что:
MS  T0
a. да
b. нет
УТВЕРЖДАЮ
Заведующий кафедрой математических и естественнонаучных дисциплин
_______________________Т.Ю.Ходаковская
(подпись, расшифровка подписи)
протокол №___от «_____» __________ 201_ г.
СИТУАЦИОННЫЕ ЗАДАЧИ
Задачи
ТЕМЫ УЧЕБНЫХ ПРОЕКТОВ ПО ДИСЦИПЛИНЕ «ДИСКРЕТНАЯ
МАТЕМАТИКА»
1. Упорядочивание множества: квадратичная выборка, метод Шелла
2. Представление множеств в программах: битовые шкалы, упорядоченные списки,
алгоритм построения бинарного кода Грея, генерация булеана
3. Вполне упорядоченные множества
4. Производящие функции: метод неопределенных коэффициентов, числа Фибоначчи,
числа Каталана
5. Аксиоматическое определение энтропии
6. Методы сортировки строковых типов данных
7. Алгоритм Прима поиска кратчайшего остова. Алгоритм Форда-Беллмана поиска
кратчайшего пути в графе
8. Основные равносильности алгебры логики. Тождественно-истинные формулы.
Проблема разрешимости алгебры логики
9. Простейшие эквивалентности формул. Релейно-контактные схемы
10. Критерий полноты системы БФ. Примеры полных систем
11. Метод Квайна-Маккласки поиска простых импликант
12. Элементарные функции k-значной логики
13. Самокорректирующиеся коды Хэмминга
14. Методы принятия решения. Коллективный выбор решения
15. Асимптотика
16. Эйлеровы графы.
17. Гамильтоновы графы.
18. Связность графа.
19. Циклы в графах.
20. Плоские графы.
21. Деревья.
22. Свойства эйлеровых графов.
23. Свойства гамильтоновых графов.
24. Раскраски графов.
25. Ориентированные графы.
26. Паросочетания.
27. Теория трансверсалей.
28. Потоки в сетях.
29. Производящие функции в теории графов.
30. Теорема Пойа и перечисление графов.
31. Графы на двумерных поверхностях.
32. Решетки.
33. Булевы алгебры.
34. Минимальные формы булевых многочленов.
35. Приложения булевых алгебр к переключательным схемам.
36. Конечные группы и их графы.
37. Модулярные и дистрибутивные решетки.
38. Полугруппы преобразований.
39. Полугруппы в биологии.
40. Циклы в графах.
Скачать