МИНИСТЕРСТВО ОБЩЕГО И СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ СЕВЕРО-ЗАПАДНЫЙ ЗАОЧНЫЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ Кафедра физики ФИЗИКА Раздел 2. Электростатика. Постоянный электрический ток. Основные законы и формулы. Методические указания к решению задач. Факультеты все Специальности все Санкт-Петербург 1997 Утверждено редакционно-издательским советом института. УДК 53(07) Физика. Раздел 2. "Электростатика. Постоянный электрический ток". Основные законы и формулы. Методические указания к решению задач. СПб.:СЗПИ, 1997, - 25 с., ил. 6. Данное учебно-методическое пособие содержит основные законы и формулы физики, рекомендации к решению задач, примеры решения задач и рекомендуемую литературу по разделу "Электростатика. Постоянный электрический ток", а также справочные таблицы. Пособие составлено в соответствии с программой по физике для инженерных специальностей высших учебных заведений. Рассмотрено на заседании кафедры физики. Одобрено методической комиссией факультета радиоэлектроники. Рецензенты: кафедра физики СЗПИ (и.о.зав.каф. физики В.А.Подхалюзин, канд. техн. наук, доц.); А.Г.Дмитриев, докт. физ-мат. наук, проф.каф. экспериментальной физики СПбГТУ. Составители: Н.А.Елисеева, канд. физ.-мат. наук, доц. К.Ф.Комаровских, докт. физ.-мат. наук, проф. И.А.Торчинский, канд. физ.-мат. наук, доц. В.Б.Харламова, доц. Научные редакторы: Ю.А.Карташов, канд. техн. наук, проф. И.В.Попов, канд. физ.-мат. наук, доц 2 Предисловие Цель настоящего учебно-методического пособия - оказание помощи студентам СЗПИ всех специальностей в изучении курса физики. Основной учебный материал пособия содержит шесть разделов физики, изданных отдельными брошюрами: 1. Физические основы механики. 2. Электростатика. Постоянный электрический ток. 3. Магнитостатика. Электромагнетизм. 4. Колебания и волны. Волновая оптика. 5. Молекулярная физика. Термодинамика. механики. 6. Квантовая оптика. Физика атома. Элементы квантовой Физика твердого тела. Физика атомного ядра. В каждом из разделов приведены основные формулы и примеры решения задач. Кроме того, в пособии даны общие методические указания, список рекомендуемой учебной литературы и справочные таблицы. Общие методические указания к решению задач, выполнению и оформлению контрольных работ 1. В зависимости от объема изучаемого курса физики студенты выполняют разное число контрольных работ: - односеместровый курс физики - две конрольные работы; - двухсеместровй курс физики - три контрольные работы; - трехсеместровый курс физики - пять контрольных работ. 2. Контрольные работы выполняются в школьной тетради, на обложке которой приводятся сведения о студенте (фамилия, имя, отчество, факультет, шифр, номер специальности), а также номер контрольной работы, номер варианта и номера всех задач контрольной работы. 3. Условие каждой задачи переписывается полностью, без сокращений. 4. Решения сопровождаются подробными пояснениями, с обязательным использованием рисунков, выполненных чертежными инструментами. При этом оставляются поля и промежутки не менее 10 мм между строками для замечаний преподавателя. 5. Последовательность решения задач: а) вводятся буквенные обозначения всех используемых физических величин; б) под рубрикой "Дано" кратко записывается условие задачи с переводом единиц в систему СИ; в) приводится рисунок, поясняющий условие; г) формулируются физические законы и обосновываются возможности их использования при решении данной задачи; 3 д) на основе сформулированных законов составляются уравнения для искомых величин в системе СИ; е) находятся решения этих уравнений и выводятся рабочие формулы в общем виде; ж)по рабочим формулам проверяется размерность искомых величин; и) проводятся вычисления (с точностью не более 2-3 значащих цифр) в системе СИ. Числовые значения величин записываются в виде десятичной дроби с одной значащей цифрой перед запятой, умноженной на соответствующую степень десяти. 6. В конце контрольной работы приводится список использованной литературы. Выполненная контрольная работа сдается на рецензию преподавателю по крайней мере за одну-две недели до экзамена (зачета) по физике. После рецензирования вносятся исправления в решения задач в соответствии с замечаниями преподавателя. Исправленные решения помещаются в конце тетради с контрольной работой, которая сдается на повторную рецензию. Зачет по контрольной работе принимается преподавателем в процессе собеседования по правильно решенной и отрецензированной контрольной работе. Литература Основная 1. Детлаф А.А., Яворский Б.М. Курс физики М.: Высшая школа, 1989. 2. Савельев И.В. Курс общей физики. Т.2. М.: Наука, 1982, 1988. Дополнительная 3. Комаровских К.Ф. и др. Электростатика. Постоянный ток. Текст лекций. Л.: СЗПИ. 1980. 4. Волькенштейн В.С. Сборник задач по общему курсу физики. М.: Наука. 1990. 5. Чертов А.Б., Воробьев А.А. Задачник по физике. М.: Высшая школа. 1988, 1991. 4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ И В ВЕЩЕСТВЕ. Основные законы и формулы Сила, действующая на пробный заряд q' в данной точке электростатического поля (ЭП) F' = q'E , где Е - напряженность в данной точке ЭП. Напряженность ЭП в газообразном или жидком изотропном диэлектрике: а) вне равномерно заряженной сферы произвольного радиуса r r 1 q r E= , 4 πε 0 εr 2 r r где r - радиус-вектор проведенный из центра сферы в точку наблюдения, ε0 - электрическая постоянная, 1 Ф εо = ≈ 8,85 ⋅ 10 −12 ; . . 9 м 4 π 9 10 ε - относительная диэлектрическая проницаемость среды; б) вне бесконечного равномерно заряженного цилиндра произвольного радиуса 1 τ Е = 2πε εr , 0 где τ - линейная плотность заряда на цилиндре (заряд на единице длины цилиндра вдоль образующей), r - расстояние от оси цилиндра до точки наблюдения; в) бесконечной равномерно заряженной плоскости σ Е = 2εε , 0 где σ - поверхностная плотность заряда (заряд на единицу площади). Потенциальная энергия пробного заряда в данной точке ЭП W = q'ϕ, где ϕ - потенциал в данной точке ЭП. Потенциал ЭП в газообразном или жидком изотропном диэлектрике: а) вне равномерно заряженной сферы произвольного радиуса 1 q ϕ= 4 πε 0 εr ; б) вне бесконечного равномерно заряженного цилиндра произвольного радиуса 5 τ 2πε 0 ε ln r + const ; в) вне бесконечной равномерно заряженной плоскости σ ϕ= x + const , 2εε 0 где x - расстояние от плоскости до точки наблюдения. Принцип суперпозиции полей ϕ= r E= N ∑ N r Ei , ϕ= ∑ϕ i=1 i=1 i, r - номер заряда, E i и ϕi r напряженность и потенциал ЭП i-того точечного заряда, E и ϕ напряженность и потенциал результирующего ЭП. Работа сил ЭП по перемещению пробного заряда q' из точки с , потенциалом в точку ЭП с потенциалом А' = q'( ϕ1- ϕ2 ). Связь между напряженностью и потенциалом в однородном ЭП ϕ1 - ϕ2 = Ed, где d - расстояние между эквипотенциальными поверхностями с потенциалами ϕ1 и ϕ2, ϕ1 - ϕ2 = U - разность потенциалов (напряжение). Поток вектора напряженности ЭП ∆NE или поток вектора электрической индукции ∆ND через: ЭП а) плоскую площадку ∆S в однородном r r ∆NE = E∆Sr = E∆S cos r D ∆S = D∆S cos ∆ N = D r r ∆S = n∆S - вектор, длина которого равна ∆S, а направление где r - угол между совпадает с направлением нормали n к площадке; α r r r вектором E или D и нормалью n ; б) через замкнутую поверхность S в произвольном ЭП (теорема Гаусса) N M r r 1 1 qi + q 'k , EdS = ε ε где N - число точечных зарядов, ∫ S 0 ∑ i= 1 6 i 0 ∑ i= 1 где N и М - число свободных и связанных зарядов, заключенных внутри N поверхности S, соответственно; ∑q i - алгебраическая сумма свободных i=1 M зарядов, ∑q k =1 l k - алгебраическая сумма связанных зарядов. r Соотношение r между вектором электрической индукции D и напряженностью E ЭП в случае изотропных r диэлектриков r D = εε 0E . r ЭП в диэлектрике Связь вектора поляризации Prи напряженности r P = ( ε − 1)ε 0E . Поверхностная плотность ' связанных зарядов на границе диэлектрика равна σ' = P cos , r где α - угол между вектором поляризации P и нормалью к границе. Электроемкость конденсатора С = q / U, где q - заряд на обкладке, U - напряжение на конденсаторе. Электроемкость плоского конденсатора εε 0S , С= d где ε - диэлектрическая проницаемость среды между обкладками, Sплощадь обкладок, d - расстояние между ними. При последовательном соединении конденсаторов одноименные заряды на обкладках всех конденсаторов одинаковы, при параллельном соединении конденсаторов напряжения на всех конденсаторах одинаковы. Энергия заряженного конденсатора qU cu2 q2 W= = = . 2 2 2C Объемная плотность энергии ЭП (энергия, приходящаяся на единицу объема ЭП) ED εε 0E2 w= = . 2 2 7 Примеры решения задач Пример 1. В вершинах квадрата находятся одинаковые точечные заряды 30 нКл. Какой отрицательный заряд надо поместить в центре квадрата, чтобы указанная система зарядов находилась в равновесии? Дано: Квадрат q1 = q2 = q3 = q4 = 30 нКл = 30.10-9 Кл. _______________________________ q5 = ? Решение. Все заряды, расположенные в вершинах квадрата, находятся в одинаковых условиях. Поэтому достаточно выяснить, какой заряд следует поместить в центр квадрата, чтобы какой-нибудь из четырех зарядов, например q1, находился в равновесии. Заряд q1 , будет находиться в равновесии, если векторнаяr сумма r действующих r r r на r него r сил равна 0 (рис.1 ) F2 + F3 + F4 + F5 = F + F3 + F5 = 0 , (1) r r r r F2 , F3 , F4 , F5 - силы, с которыми соответственно действуют на где r r r r заряд q1 заряды q2 , q3 , q4, q5 ; F = F2 + F4 - равнодействующая сил F2 r и F4 . По закону Кулона, имея в виду, что q1 = q2 = q3 = q4 = q , получим 1 q2 F2 = F4 = 4 πε 2 , 0 εr F3 = 1 q2 4 πε0 εr2 , (2) (3) q q5 1 F5 = 4 πε 2 , 0 ε(r / 2) (4) где a - сторона квадрата; r =r a 2 r - диагональ квадрата. Равнодействующая сил F2 и F4 , как следует из рис.1, по напра-влению 2 2 совпадает с силой F3 и по модулю равна F = F2 + F4 = F2 2 . С учетом этого векторное равенство (1) можно заменить скалярным F + F3 - F5 = F2 2 +F3 -F5 . Равенство (5) с учетом (2) - (4) примет вид (5) q q5 q2 1 1 q2 2 1 − + 4 πε 0 ε2a 2 4 πε 0 εa 2 / 2 = 0 . 4 πε 0 εa 2 8 ⎛ 2 1⎞ ⎜⎜ q = + ⎟⎟ q . 5 Откуда 4⎠ ⎝ 2 Произведя вычисления, получим ⎛ 2 1⎞ q 5 = ⎜⎜ + ⎟⎟ 3 . 10-8 Кл = 2,87 . 10-8 Кл. 4⎠ ⎝ 2 Следует отметить, что равновесие системы зарядов будет неустойчивым. Пример 2. Два точечных заряда 2 нКл и -1 нКл находятся в воздухе на расстоянии 5 см друг от друга. Определить напряженность и потенциал поля в точке, удаленной от первого заряда на расстояние 6 см и от второго заряда на 4 см. Дано: q1 = 2 нКл q2 = - 1 нКл d = 5 см r1 = 6 см r2 = 4 см ____________ Е-? ϕ-? Решение. Согласно принципу суперпозиции электрических полей каждый заряд создает поле независимо от присутствия в пространстве r r r других зарядов. Напряженность результирующего поля E = E1 + E 2 . Напряженности полей, создаваемых в воздухе (ε = 1) зарядами q1 и q2 : 1 q1 E1 = 4 πε (1) 2 , 0 εr1 1 q2 (2) E2 = 4 πε 2 . 0 εr2 r r Направления векторов E1 и E 2 указаны на рис.2. Модуль вектора r Е найдем по теореме косинусов 2 2 E = ( E1 + E2 + 2E1E2 cos )1/2 , (3) r r где α - угол между векторами E1 и E 2 . Из рис.2 видно, что β = π - α. Тогда cos β = - cos α. Следовательно, 2 2 E = ( E1 + E2 + 2E1E2 cos )1/2 . (4) Из треугольника со сторонами r1, r2 и d по теореме косинусов находим cos β = ( r12 + r22 - d2) / (2r1r2). 9 Вычислим cosβ отдельно 62 + 4 2 − 52 = 0,565 . cosβ = 2⋅6⋅4 Выразим все величины в единицах СИ: q1 = 2.10-9 Кл, q2 = -10-9 Кл, r1 = 6.10-2 м, r2 = 4.10-2 м, 1/4πε0 = 9.109 м/Ф, ε = 1. Произведя вычисления по формулам (1), (2), (4), (5), получим: −9 3 9 2 ⋅ 10 9 ⋅ 10 = 5 ⋅ 10 2 B/м, E1 = 6 ⋅ 10 −2 ( ) 9 10 −9 9 ⋅ 10 E2 = (4 ⋅ 10 ) −2 2 = 5,62 ⋅ 103 B/м . q2 опущен, так как знак минус При вычислении Е2 знак заряда r r определяет направление вектора E 2 , а направление E 2 было учтено при его графическом изображении (рис. 2). E= ( 5 ⋅ 103 ) ( 2 + 5,62 ⋅ 103 ) 2 − 2 ⋅ 5 ⋅ 103 ⋅ 5,62 ⋅ 103 ⋅ 0,565 = 4,97.103 B / м . По принципу суперпозиции потенциал результирующего поля, создаваемого зарядами q1 и q2, равен алгебраической сумме потенциалов ϕ1 и ϕ2, т.е. ϕ = ϕ1 + ϕ2 или 1 q1 1 q2 1 ⎛ q1 q 2 ⎞ ϕ= + = ⎜ + ⎟ (5) 4 πε 0 εr1 4 πε 0 εr2 4 πε 0 ε ⎝ r1 r2 ⎠ . Произведя вычисления, получим ⎛ 2 ⋅ 10 −9 −10 −9 ⎞ ϕ = 9 ⋅ 10 9 ⎜ + ⎟ = 75 В. ⎝ 6 ⋅ 10 −2 4 ⋅ 10 −2 ⎠ Пример3. На тонкой нити, изогнутой по дуге окружности радиусом 6 см, равномерно распределен заряд с линейной плотностью 20нКл/м. Определить напряженность и потенциал электрического поля, создаваемого распределенным зарядом в точке, совпадающей с центром кривизны дуги, если длина нити составляет 1/3 длины окружности. Дано: R = 6 см τ = 20 нКл/м l = 2/3 πR 10 ___________ Е-?ϕ-? Решение. Выберем оси координат так, чтобы начало координат совпадало с центром кривизны дуги, а ось ОY была бы расположена симметрично относительно концов дуги (рис.3). Разобьем нить на элементарные участки и выделим элемент длиной dl с зарядом dq = τdl. Этот заряд можно рассматривать как точечный. Определим напряженность электрического поля в точке 0. Для этой точки напряженность поля, создаваемого зарядом dq, равна r r 1 τdl r dE = 4 πε 0 εr 2 r , r где r - радиус-вектор, направленный от элемента 0. r dl в точку r r Разобьем вектор d Е на составляющие dE X и dEY . Из симметрии r dE задачи следует, что сумма составляющих X от всех элементарных r участков нити равна нулю и результирующий вектор E направлен вдоль оси OY. Поэтому напряженность поля определится как E = ЕY = ∫ dE Y , (1) l где dEY = dE sin α. Так как r = R и dl =R. d dEy= , то τR . dα 2 sin 4 πεε 0R Подставив выражение (2) в (1), получим τ E= 4 πεε R 0 5 π /6 ∫ sin π /6 d τ = 4 πεε R sin d 0 . (2) τ τ 3 π 5π = 4 πεε R (cos - cos )= 4 πεε oR . ( 3 ) 6 6 0 Найдем потенциал электрического поля в точке 0. В этой точке потенциал поля, созданного точечным зарядом dq, равен τdl dϕ = (4) 4 πεε 0R . Потенциал результирующего поля получим интегрированием выражения (4) τ ϕ= 4 πεε 0R l ∫ 0 Так как l = 2π R / 3, то 11 dl = τl 4 πεε 0R . τ (5) 6εε0 . Выразим все величины в единицах СИ: τ = 2.10-8 Кл/м, R = 6.10-2 м, 1/4πε0 = 9.109 м/Ф, ε = 1, ε0 = 8,85.10-12 Ф/м. Произведя вычисления по формулам (3) и (5), получим: −8 ⋅ 3 9 2 ⋅ 10 = 5,2 ⋅ 103 В/м, E = 9 ⋅ 10 −2 1⋅ 6 ⋅ 10 2 ⋅ 10 −8 ϕ= = 3,77 ⋅ 102 В. −12 6 ⋅ 1⋅ 8.85 ⋅ 10 ϕ= Пример 4. Электрическое поле создано длинным цилиндром радиусом 1 см, равномерно заряженным с линейной плотностью заряда 20 нКл/м. Определить работу сил поля по перемещению точечного заряда 25 нКл из точки, находящейся на расстоянии 1 см, в точку, находящуюся на расстоянии 3 см от поверхности цилиндра в средней его части. Дано: цилиндр R = 1 см = 1.10-2 м τ = 20 нКл/м = 2.10-8 Кл/м q = 25 нКл = 2,5. 10-8 Кл a1 = 1 см = 1.10-2 м a2 = 3 см = 3.10-2 м _____________________ А-? Решение. Работа сил поля по перемещению заряда равна А = q(ϕ1 - ϕr2). Для нахождения разности потенциалов воспользуемся соотношением E = − grad ϕ. Для поля с осевой симметрией, каким является поле цилиндра, можно записать dϕ Е= − или dϕ = −Edr . dr Интегрируя это выражение, найдем разность потенциалов между двумя точками, отстоящими на расстояниях r1 и r2 от оси цилиндра, r 2 ∫ ϕ 2 − ϕ 1 = − Edr , r 1 где r1 = a1 + R, r2 = a2 + R. 12 (1) Так как цилиндр длинный и точки взяты вблизи его средней части, то можно воспользоваться формулой напряженности поля, создаваемого бесконечно длинным цилиндром, 1 τ E= (2) 2πε 0 εr . Подставив (2) в (1), получим ϕ2 − ϕ1 = − τ 2 πε о ε r2 ∫ r1 dr τ r2 =− r 2 πε o ε ln r1 или ϕ1 − ϕ 2 = τ r2 ln . 2πε 0 ε r1 (3) Таким образом, qτ R + a2 ln 2πε 0 ε R + a 1 . Проверим, дает ли расчетная формула единицу работы. Для этого в правую часть вместо символов величин подставим их единицы A = q(ϕ 1 − ϕ 2 ) = [q][t] = 1Kл ⋅ 1Kл / м = 1Кл ⋅ 1Кл = 1Кл ⋅ 1Кл = 1Кл ⋅ 1В = 1 Д ж . 1Ф / м 1Ф 1Кл / В [e 0 ] Выразим все величины в единицах СИ: ε = 1; τ = 2.10-8 Кл/м; q=2,5.10-8 Кл; 1/2πε0 = 2.9.109 м/Ф. Учитывая, что величины r2 и r1 входят в формулу (3) в виде отношения, их можно выразить в сантиметрах. Произведя вычисления, получим А = 2,5.10-8.2.9.109.2.10-8 ln 1+ 3 = 6,2.10-6 Дж. 1+ 1 Пример 5. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью заряда 30 нКл/м. На расстоянии 20 см от нити находится плоская круглая площадка радиусом 1 см. Определить поток вектора напряженности через площадку, если её плоскость составляет угол 30о с линией напряженности, проходящей через середину площадки. Дано: нить τ = 30 нКл/м a = 20 см R = 1 см β = 30о 13 _____________ ∆NЕ - ? Решение. Поле, создаваемое нитью (очень тонким цилиндром), является неоднородным, так как оно изменяется в пространстве, 1 τ E= (1) 2πε 0 εr . r Поэтому поток вектора E равен NE = ∫E n dS = S ∫ E cosα dS, S r r где α - угол между векторами E и n (рис.4). Так как линейные размеры площадки малы по сравнению с расстоянием до нити (а>>R), то Е в пределах площадки меняется незначительно. Поэтому значения Е и cosα под знаком интеграла можно заменить их средними значениями < E > и < cosα > и вынести за знак интеграла NE = <E> <cosα> d S = <E> <cosα> S, ∫ где S = S 2 a . Заменяя <E> и <cos > их приближенными значениями ЕА и cos A, вычисленными для средней точки площадки, получим NE = EA S cos A =EA a2 cos A . (2) Из рис.4 следует, что cos A = cos( ) = sin . С учетом этого формула (2) примет вид 1 τ πa2 sin NE = EA πa2 sin = 2πε 0 εR Выразим все величины в единицах СИ: τ = 3.10-8 Кл/м; ε = 1; R = 0,2 м; a = 10-2 м; 1/2πεо = 2.9.109 м/Ф. Произведя вычисления, получим NE 3 ⋅ 1 0 −8 = 2 ⋅ 9 ⋅ 10 0 ,5 ⋅ 3 ,1 4 ⋅ ( 1 0 − 2 ) 2 = 0 ,4 2 B.м. 1 ⋅ 0 ,2 9 Пример 6. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом 100 В электрон имел скорость 4 Мм/с. Определить потенциал точки поля, дойдя до которой, электрон потеряет половину своей скорости. Дано: ϕ1 = 100 В 14 v1 = 4 Мм/с = 4.106 м/c v2 = 2 Мм/с = 2.106 м/c ___________________ ϕ2 - ? Решение. Из-за отсутствия сил трения полная механическая энергия электрона не изменяется, то есть W = mv2/2 + (- еϕ)=const, где mv2/2 кинетическая и (- еϕ) - потенциальная энергия электрона. Полная энергия в начале движения 2 mv 1 + ( − eϕ 1 ) , W1 = (1) 2 в конце движения с учетом того, что v2 = v1/2, mv 22 mv 12 W2 = + ( − eϕ 2 ) = + ( − eϕ 2 ) . (2) 2 8 Приравнивая выражения (1) и (2), получим для потенциала 2 3mv 1 ϕ 2 = ϕ1 − 8e . Выразим все величины в единицах СИ: v1 = 4.106 м/с; m = 9,1.10-31 кг; е = 1,6.10-19 Кл. Произведя вычисления, получим ϕ 2 = 100 − ( 3 ⋅ 9 ,1⋅ 10 −31 ⋅ 4 .106 ) 2 = 66 В . 8 ⋅ 1,6 ⋅ 10 −19 Возможен и другой подход к решению. Изменение кинетической энергии частицы равно работе результирующей силы, т.е. 2 2 mv 2 mv 1 − =A . 2 2 Так как электрон тормозится силами поля, то А = -е(ϕ1-ϕ2). Пример7. Сила взаимного притяжения пластин плоского воздушного конденсатора 50 мН. Площадь каждой пластины 200 см2. Определить объемную плотность энергии поля конденсатора. Дано: F = 50 мН = 5.10-2 Н S = 200 см2 = 2.10-2 м2 __________________ W-? Решение. Объемная плотность энергии поля конденсатора εε 0E2 w= , 2 15 (1) где Е = σ/εε0 - напряженность электрического поля между пластинами конденсатора; σ - поверхностная плотность заряда на пластинах. Подставив выражение для Е в (1), получим σ2 w= (2) 2εε 0 . Найдем силу взаимного притяжения пластин. Заряд q = σS одной пластины находится в поле напряженностью Е1 = σ / 2εε0, созданном зарядом другой пластины конденсатора. Следовательно, на заряд первой пластины действует сила σ 2S F = qE1 = . (3) 2εε 0 Выразив σ2 из выражения (3) и подставив в (2), получим w = F / S. Проверим, дает ли расчетная формула единицу объемной плотности энергии. Для этого в правую часть формулы вместо величин подставим их единицы измерений: [F ] = 1H [S ] 1м 2 = 1H ⋅ 1м = 1 Дж/м3 . 1м 2 ⋅ 1м Выразим все величины в единицах СИ: F = 5.102 Н, S = 2.10-2 м2. Произведя вычисления, получим w = 5 ⋅ 10 − 2 = 2 ,5 Дж/м3. −2 2 ⋅ 10 Пример 8. Между пластинами плоского конденсатора, заряженного до разности потенциалов 600 В, находятся два слоя диэлектриков: стекла толщиной 5 мм и эбонита толщиной 3 мм. Площадь каждой пластины 200 см2. Определить: а) напряженность поля, индукцию и падение потенциала в каждом слое; б) электрическую емкость конденсатора. Дано: U = 600 В стекло, d1 = 5 мм = 5.10-3 м эбонит d2 = 3 мм = 3.10-3 м S = 200 см2 = 2.10-2 м2 ________________ Е-?D-? U 1- ? U2 - ? С-? 16 Решение. При переходе r через границу раздела диэлектриков нормальная составляющая вектора D в обоих слоях диэлектриков имеет одинаковые значения D1n = D2n. r В конденсаторе силовые линии вектора D перпендикулярны к границе раздела диэлектриков, следовательно, D1n = D1 и D2n = D2. Поэтому (1) D1 = D2 = D. Учитывая, что D = εε0Е, и сокращая на ε0, из равенства (1) получим ε1E1 = ε2Е2 , (2) где Е1 и E2 - напряженности поля в первом и во втором слоях диэлектриков; ε1 и ε2 - диэлектрические проницаемости слоев. Разность потенциалов между пластинами конденсатора очевидно равна сумме напряжений на слоях диэлектриков (3) U = U1 + U2 . В пределах каждого слоя поле однородно, поэтому U1 = E1d1 и U2 = Е2d2. С учетом этого равенство (3) примет вид (4) U = Е1d1 + E2d2. Решая совместно уравнения (2) и (4), получим ε 1U ε 2U E1 = E2 = , ε 2 d1 + ε 1d2 . ε 2 d1 + ε 1d2 Выразим все величины в единицах СИ: d1 = 5.10-3 м; d2 = 3.10-3 м; ε1= 7; ε2 = 3; ε 0 = 8,85.10-12 Ф/м. Произведя вычисления, получим 3 ⋅ 600 = 5 ⋅ 10 4 B/м; E1 = −3 −3 3 ⋅ 5 ⋅ 10 + 7 ⋅ 3 ⋅ 10 7 ⋅ 600 = 11,7 ⋅ 10 4 B/м; E2 = −3 −3 3 ⋅ 5 ⋅ 10 + 7 ⋅ 3 ⋅ 10 U1 = E1d1 = 5 ⋅ 104 ⋅ 5 ⋅ 10−3 = 250 B; U2 = E2 d2 = 11,7 ⋅ 10 4 ⋅ 3 ⋅ 10 −3 = 350 B; D = D1 = ε 0 ε 1E1 = 8 ,85 ⋅ 10 −12 ⋅ 7 ⋅ 5 ⋅ 101 = 3 ,1⋅ 10 −6 Кл/м2. Определим емкость конденсатора С = q / U, (5) где q = σ S - заряд каждой пластины конденсатора. Учитывая, что поверхностная плотность зарядов σ на пластинах конденсатора численно равна модулю электрического смещения, т.е. σ = D, получим q σS DS C= = = . U U U Проверим, дает ли расчетная формула единицу электроемкости. Для этого в правую часть формулы вместо символов величин подставим их единицы измерений 17 [D][S] = 1Кл / м2 ⋅ 1 м2 1В [U] = 1Ф . Произведя вычисления, получим 3 ,1⋅ 10 −6 ⋅ 2 ⋅ 10 −2 С= = 103 ⋅ 10 −12 Ф = 103 пФ. 600 ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК Основные законы и формулы Закон Ома для участка цепи (не содержащего ЭДС) U , I= R где I - сила тока, U - напряжение на концах участка цепи, R - сопротивление участка цепи. Закон Ома для замкнутой (полной ) цепи I= ε R + R0 , - ЭДС источника тока, R - сопротивление внешней цепи, R0 где внутреннее сопротивление источника тока. Сопротивление цилиндрического проводника постоянного диаметра l R=ρ , S где ρ - удельное сопротивление проводника, l - длина проводника, S площадь поперечного сечения проводника. Закон Ома в дифференциальной форме r 1r j= E , ρ r где j - плотность тока в проводнике, j = I/S, E - напряженность ЭП в проводнике. Закон Джоуля-Ленца P = IU = I2R, где Р - тепловая мощность, развиваемая (выделяющаяся) в проводнике сопротивлением R, когда по проводнику течет ток силой I. Закон Джоуля-Ленца в дифференциальной форме 1 P = E2 , ρ 18 где P - тепловая мощность, развиваемая (выделяющаяся) в единице объема проводника. Правила (законы) Кирхгофа для произвольного замкнутого контура разветвленной цепи: N а) ∑ Iк = 0 (первое правило); к =1 N б) L ∑I R = ∑ε к к к =1 i (второе правило), i=1 N где ∑I к - алгебраическая сумма сил токов, сходящихся в каждом узле; к =1 N ∑I R к к - алгебраическая сумма произведений сил токов на к =1 сопротивления участков контура, L ∑ε i - алгебраическая сумма ЭДС, встречающихся при обходе i =1 контура. Для расчета разветвленных цепей необходимо учитывать следующее. - Перед составлением уравнений необходимо произвольно выбрать: а) направления токов на всех участках цепи и указать их стрелками на чертеже; б) направление обхода контуров. - При составлении уравнений по первому закону Кирхгофа надо считать токи, подходящие к узлу, положительными, отходящие от узла, отрицательными. Число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов, содержащихся в цепи. - При составлении уравнений по второму закону Кирхгофа необходимо соблюдать правило знаков: а) если ток по направлению совпадает с выбранным направлением обхода контура, то соответствующее падение напряжения IR входит в уравнение со знаком плюс. В противном случае произведение IR берется со знаком минус; б) ЭДС входит в уравнение со знаком плюс, если она повышает потенциал в направлении обхода конутра, т.е. двигаясь по контуру, сначала встречаем отрицательный полюс источника тока, затем положительный, в противном случае - ЭДС берется со знаком минус. - Чтобы все уравнения, составленные на основании второго закона Кирхгофа, были независимыми, необходимо каждый раз рассматривать 19 контуры, содержащие хотя бы одну новую ветвь, не входящую в уже использованные контуры. - Общее число независимых уравнений, составленных по первому закону и второму закону Кирхгофа, должно быть равно числу токов, текущих в контуре. - Для упрощения выкладок, связанных с решением системы уравнений, необходимо предварительно подставить числовые значения всех известных величин. Если при решении уравнений получены отрицательные значения силы тока или сопротивления, то это означает, что, в действительности, ток через данное сопротивление течет в направлении, противоположном произвольно выбранному. Примеры решения задач Пример 1. Сопротивление величиной 5 Ом, вольтметр и источник тока соединены параллельно. Вольтметр показывает напряжение 10 В. Если увеличить сопротивление до 12 Ом, то вольтметр покажет напряжение 12 В. Определить ЭДС и внутреннее сопротивление источника тока. Током через вольтметр пренебречь. Дано: R1 = 5 Ом U1 = 10 В R2 = 12 Ом U2 = 12 В __________ - ? R0 - ? Решение. Прежде всего необходимо изобразить электрическую схему . Поскольку током через вольтметр можно пренебречь, то ток через резистор такой же, как и через источник. Обозначим этот ток через I. Он определяется по закону Ома для полной цепи ε I= R + R0 , где R0 - внутреннее сопротивление источника, а R - сопротивление нагрузки. Вольтметр измеряет падение напряжения на нагрузке. При нагрузке R1 = 5 Ом ток равен I1, при нагрузке R2 ток равен I2: I1 = 20 ε R1 + R 0 , (1) I2 = ε R2 + R0 . При этом падения напряжения соответственно равны U1 и U2: U1 = I1R1 , U2 =I 2R2 . Найдем отношение левых и правых частей уравнений (1) и (2) I1 R 2 + R 0 = I2 R1 + R 0 . Освобождаясь от знаменателей, получаем из уравнения (5) I1R1 + I1R0 = I2R2 + I2R0 . Объединяя слагаемые с R0, находим I R − I 1R 1 R0 = 2 2 . I1 − I 2 Или, учитывая формулы (3) и (4), получаем ⎛U U ⎞ R 0 = (U2 − U1 )⎜ 1 − 2 ⎟ ⎝ R1 R2 ⎠ (2) (3) (4) (5) −1 . Подставляя в эту формулу данные из условия, получим R0 ⎛ 10 12 ⎞ = (12 − 10 )⎜ − ⎟ ⎝ 5 12 ⎠ −1 = 2 Ом. Значение ЭДС можно найти из соотношения (1) либо (2). Получаем из (1) ε = I (R 1 1 + R0 ) = U1 10 (R 1 + R 0 ) = ( 5 + 2 ) = 14 В . R1 5 Пример 2. Электрическая цепь состоит из трех источников тока с ЭДС ε ε ε = 6 В, 2 = 2 В, 3 = 4 В и реостатов с сопротивлениями R1 = 2 Ом и R2 = R3 = 4 Ом (рис.6). Найти силу тока в реостате R2 и напряжение на его концах. Дано: 1 ε =6В ε =2В ε =4В 1 2 3 R1 = 2 Ом R2 = R3 = 4 Ом ___________ I2 - ? U2 - ? 21 Решение. Выберем направления токов, и условимся обходить контур АВСD по часовой, а контур CDFG против часовой стрелки. По первому закону Кирхгофа для узла С имеем I1 - I2 - I3 = 0. По второму закону Кирхгофа для контура АВСD имеем ε +ε . I1R1 + I2R2 = Соответственно, для контура CDFG - 1 2 ε ε I2R2 - I3R3 = 2 + 3 . После подстановки числовых значений получим I1 - I2- I3 = 0; 2I1 + 4I2 = 8; 4I2 - 4I3 = 6. Эту систему 3х уравнений с тремя неизвестными можно решить, пользуясь методом определителей. Составим и вычислим определитель ∆ системы 1 0 -1 1 -1 -1 ∆= 2 4 0 4 0 = -32 4 и определитель ∆I2 ∆ 12 = 2 8 0 6 0 = -44. 4 Отсюда получаем силу тока , A. I2 = ∆ 12 / ∆ = −44 / −32 = 1375 Напряжение на концах реостата равно U2 = I2R2 = 1,375 . 4 = 5,5 В. Пример 3. Сила тока в проводнике сопротивлением 20 Ом равномерно нарастает от 0 до 4 А в течение 2 с. Определить количество теплоты, выделившейся в проводнике за первые полторы секунды. Дано: R = 20 Ом I1 = 0 А I2 = 4 А t1 = 2 с t2 = 2 c t3 = 1,5 c _________ ∆Q - ? Решение. Согласно закону Джоуля-Ленца, выделяющаяся на сопротивлении R, равна Р = I2R . 22 тепловая мощность, Количество тепла dQ, выделяющегося за время dt в данный момент t, равно (1) dQ = Pdt = I2Rdt . По условию задачи сила тока равномерно нарастает, т.е. является линейной функцией времени I = at + b . (2) В начальный момент t1 = 0 ток I1 равен нулю, поэтому в уравнении (2) имеем b = 0. Таким образом, I = at . (3) Коэффициент "а" найдем из условия, что I2 = 4 А при t2 = 2 с I2 = at2 . Откуда получаем I 4 a = 2 = = 2 A/c. t2 2 Подставляя в формулу (1) выражение (3) и интегрируя по времени от 0 до t3, найдем количество выделившегося тепла t3 ∆Q = ∫ t1 t3 ∫ ( ) a 2R 3 3 I Rdt = a R t dt = t3 − t1 . 3 2 2 2 (4) t1 Подставляя в формулу (4) значения входящих в нее параметров, получим 2 2 ⋅ 20 ∆Q = 1,5 3 − 0 = 90 Дж. 3 ( ) 23 СПРАВОЧНЫЕ ТАБЛИЦЫ Диэлектрическая проницаемость Вещество Проницае мость 2,0 7,0 7,0 Парафиновая бумага Стекло Слюда Вещество Вода Масло трансформато-рное Эбонит Проницаем ость 81 2,2 3,0 Удельное сопротивление металлов Металл Алюминий Железо Нихром Удельное сопротивление (Ом.м) 2,8.10-8 9,8.10-8 1,1.10-6 Металл Медь Серебро Удельное сопротивление(Ом.м) 1,7.10-8 1,6.10-8 Основные физические постоянные (округленные значения) Физическая постоянная Заряд электрона Масса электрона Заряд протона Масса протона Заряд -частицы Масса -частицы Обозначение e me p mp q m 24 Значение - 1,6. 10-19 Кл 9,11.10-31 кг 1,6. 10-19 Кл 1,67.10-27 кг 3,2.10-19 Кл 6,64.10-27 кг