Олимпиада по математике 5 класс. 2014-2015 1.Решить уравнение:

реклама
Олимпиада по математике 5 класс. 2014-2015 учебный год.
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1 час)
1.Решить уравнение:
(2014+ x )×5 -2015= 8085
2.В квартирах №1,№2,№3 жили три котенка: белый, чёрный, рыжий. В квартирах №1 и
№2 жил не чёрный котёнок. Белый котёнок жил не в квартире №1. В какой квартире жил
каждый котёнок?
3.Стали вороны садиться по одному на берёзу - не хватило одной берёзы; стали садиться
по двое - одна берёза оказалась лишней. Сколько было воронов и сколько было берёз?
4.Некая фирма купила компьютер, факс, сейф и телефон за 42700 рублей. Факс, сейф и
телефон стоят 19700 рублей. Компьютер, сейф и телефон стоят 40700 рублей, факс и
сейф стоят вместе 17200 рублей. Сколько стоят в отдельности компьютер, факс ,сейф и
телефон?
5.Кубический метр разрезали на кубические сантиметры и поставили друг на друга. Какой
высоты получилась башня?
Олимпиада по математике 6 класс.2014-2015 учебный год
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1 час)
1. Решить уравнение 100-((9,6+х):0,2+0,3)=19,2
2. После того, как на борт были подняты 30 потерпевших кораблекрушение, оказалось,
что запасов питьевой воды, имеющейся на корабле, хватит только на 50 дней, а не на
60,как планировалось. Сколько людей было на корабле первоначально?
3.Поезд проходит мимо светофора за 5 секунд, а мимо платформы длиной 200 м за 15
секунд. Найдите длину поезда и его скорость.
4.Алёша и Боря весят вместе 82 кг, Алёша и Вова весят вместе 85 кг. Вова и Боря вместе
весят 83 кг. Сколько весят вместе Алёша, Боря и Вова?
5. Используя признаки делимости, определите, какую цифру надо подставить вместо
*,чтобы число 12340678*5 делилось на 15 без остатка.
Олимпиада по математике 7 класс.2014-2015 учебный год
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1 час)
1. За один час станок разрезает 300 шестиметровых досок на одинаковые куски, по 2
метра в каждом. Сколько времени потребуется, чтобы на этом же станке разрезать 200
восьмиметровых досок такой же ширины и толщины на такие же куски?
2. В очереди в школьный буфет стоят Юра, Миша, Володя, Олег и Саша. Юра стоит
впереди Миши, но после Олега. Володя и Олег не стоят рядом, а Саша не находится рядом
ни с Олегом, ни с Юрой, ни с Володей. В каком порядке стоят ребята?
3. Две вершины квадрата имеют координаты (0;0) и (5;5). Найдите координаты двух
других его вершин.
4. Найдите значение выражения
𝑎−2𝑏
𝑏
, если
5. Делится ли число 10017+1027+1 на 3? На 9?
𝑏
𝑎
=
1
5
Олимпиада по математике 8 класс.2014-2015 учебный год
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1 час)
1. На ферме - только куры и кролики. Всего22 головы и 68 ног. Сколько кур и сколько
кроликов на ферме?
2. Прямоугольник со сторонами 4 см и 9 см требуется разрезать на две части, из которых
можно сложить квадрат. Покажите, как это можно сделать.
3. Построить график y=│x+1│-3.
4. Четырёх кошек взвесили попарно во всех возможных комбинациях. Получились массы
7 кг, 8 кг, 9 кг, 10 кг, 11 кг, 12 кг. Какова общая масса всех кошек?
5. Длины сторон треугольника равны 6,82 м и 0,31 м, а длина третьей стороны выражена
целым числом метров. Найти длину третьей стороны.
Олимпиада по математике 9 класс. 2014-2015 учебный год
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1,5 часа)
1. Построить график y=│(х-2)2-4│.
2. Решите уравнение: | x -2014 |+ |2014-x| = 2016
3. Доказать, что произведение трёх последовательных целых чисел, сложенных со вторым
из них, равно кубу этого числа.
4. Свежие грибы содержат 90% воды, а сухие грибы – 12% воды. Сколько получится
сухих грибов из 11 кг свежих?
5. Найдите сумму пяти внутренних углов произвольной пятиконечной звезды.
Олимпиада по математике 10 класс.2014-2015 учебный год
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1,5 часа)
1. Как можно разменять 50 рублей монетами достоинством 1 рубль. 2 рубля, 10 рублей,
если количество монет равно 10?
2. Ваня дернул Маню за косичку. Маня стукнула Ваню по голове учебником, из которого
выпал книжный блок. На первой странице его стоял номер 143, а номер последней
страницы записан теми же цифрами, но в ином порядке, сколько страниц выпало из
книги?
3. Построить график y = х2 -4│x│.
4. При каких значениях с уравнение х2-18х+100=с имеет корни?
5. В равнобедренный треугольник АВС с основанием АС вписана окружность с центром О.
Луч АО пересекает сторону ВС в точке К, причем СК =6, ВК = 12. Найдите периметр
треугольника АВС.
Олимпиада по математике 11 класс.2014-2015 учебный год
(Максимально 50 баллов, 10 баллов за каждое задание, время выполнения 1,5 часа)
1. Докажите рациональность числа:
√3 + 2√2 – √3 − 2√2
2. Упростите выражение:
π
2cos²2α − √3 sin (4 (α + 4)) − 1
π
sin(4 (α + 24))
+
=
π
π
2cos2 (2α + 2) + √3 sin 4α − 1
sin(4 (24 − α))
3.Велосипедист едет сначала 8 минут с горы, а затем 12 минут в гору. Обратный путь он
проделывает за 35 минут. При этом в гору велосипедист едет всегда с одной и той же
скоростью. Во сколько раз скорость движения велосипедиста с горы больше, чем его же
скорость в гору?
4.Диагонали ромба равны 16 см и 12 см. Найти радиус вписанной в ромб окружности.
5. Построить график y=│х2 - 4│x││.
Скачать