ЗАЧЕТ ЦИТОЛОГИЯ 1. Клеточная теория (П.Ф. Горянинов, М. Шлейдэн, Т. Шванн). Теория клеточного единства Р. Вирхова, ее критика. Значение клеточной теории для развития биологии и медицины. Основные положения клеточной теории. Русский ученый П.Ф. Горянинов в 1834 г. отметил в своих исследованиях, что все животные и растения состоят из соединенных между собой клеток, которые он назвал пузырьками, то есть высказал мнение об общем плане строения растений и животных. Спустя 5 лет, в 1839 г. немецкий физиолог Теодор Шванн издал в Берлине книгу “Микроскопические исследования о соответствии в структуре и росте животных и растений.”, в которой он сформулировал клеточную теорию. При создании клеточной теории Т. Шванн исходил из открытия немецкого ботаника Маттиаса Шлейдена в 1838 г. клеточного строения растений и гомологичности происхождения клеток. Подобное представление, известное как клеточная теория получило название теории Шванна-Шлейдена. Клетки возникают только путем размножения (деления) старых. В 1860 году с критикой представления Вирхова о клетке выступил Н. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьезные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).В 1950-е советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В ее основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Клетка – основная единица строения и функционирования живого организма. Клетки всех организмов в принципе сходны по химическому составу, строению и функциям Все новые клетки образуются при делении исходных клеток. Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток; 2. Физико-химические свойства и структура цитоплазмы. Цитопла́зма — внутренняя среда живой клетки, кроме ядра, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода.Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом. В ней протекают все процессы обмена веществ.Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может, так же как и ядро без цитоплазмы.Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия. 3. Мембраны клетки, их строение и значение в жизни клетки. Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм. Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов Функции: барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой транспортная — через мембрану происходит транспорт веществ в клетку и из клетки(При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии, Активный транспорт требует затрат энергии, так как происходит против градиента концентрации) 4. Органоиды общего значения (мембранного строения), их строение и функции Хлоропласт – фотосинтез / ЭПС – гранулярная(на канальцах есть рибосомы) – трансляция и свертывание новых белков; агранулярная(на канальцах нет рибосом) – синтез липидов / Аппарат Гольджи – сортировка и преобразование белков / Митохондрии – производство энергии / Вакуоль – запас, поддержание гомеостаза, в растениях – поддержание формы клетки / Ядро – Хранение ДНК транскрипция РНК / Лизосомы – мелкие лабильные образования, содержат ферменты чаще гидролазы участвуют в процессах переваривания фагоцитированой пищи и процессах автолиза / Меланосома – хранение пигмента / Миофибрилла - сокращение Органоиды специального значения, их строение, функции и образование. Клеточные включения. Органоиды специального значения. Присутствуют только в специализированных клетках отдельных типов. К ним отнесены реснички, жгутики, микроворсинки, микрофибриллы и др. Реснички и жгутики представляют собой выросты цитоплазмы, в которьрс находится осевая нить, или аксонема. Последняя представляет собой каркас из микротрубочек Микроворсинки - это выросты цитоплазмы клетки диаметром О,1 мкм и длиной 1 мкм. Они многократно увеличивают поверхность клетки Каждая микроворсинка имеет внутренний каркас, образованный пучком из примерно 40 микрофиламентов. 7. Клеточный цикл. Митоз. Фазы митоза. Биологическое значение митоза. Амитоз. Клеточный цикл — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или смерти. Мито́ з — непрямое деление клетки, кариокинез, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении реплицированных хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений. Фазы : профаза(стадия рыхлого клубка – конденсация хроматина, выделение хроматид, исчезновение ядрышка, обр. аппарата деления) метафаза (стадия материнской звезды – формировка экватора, полное разделение хроматид) анафаза(растяжка хроматид к полюсам клетки, формирование на полюсах дочерних звезд) телофаза(формирование ядра,цитокинез,разрушение аппарата деления ) Амитоз (от греч. а — отрицательная частица и митоз) — прямое деление интерфазного ядра путем перетяжки. Все хромосомы во время такого деления распределяются между двумя дочерними ядрами случайным образом без предварительной конденсации. Амитоз не обязательно сопровождается делением клетки, что ведет к образованию дву- и многоядерных клеток. Клетки, претерпевшие амитоз, теряют возможность вступить в нормальный митотический цикл. 8 Мейоз, его генетическое значение. Мейоз – деление с образованием половых клеток Генетическое значение мейоза можно суммировать следующим образом: 1. Мейоз обеспечивает постоянство числа хромосом у разных поколений организмов, размножающихся половым путем. Половое размножение включает стадию оплодотворения слияния двух половых клеток или гамет. Если бы число хромосом в половых клетках было бы таким же, как и в соматических, то число хромосом удваивалось бы в каждом поколении. 2. В метафазе I каждая отцовская и материнская хромосома имеет равную вероятность оказаться по ту или другую сторону метафазной пластинки. Соответственно в каждой гамете могут оказаться как отцовские, так и материнские хромосомы. Если число хромосом значительно, то число возможных комбинаций сочетания отцовских и материнских хромосом в гамете очень велико, а вероятность того, что в определенную гамету попадут хромосомы только одного из родителей, очень мала. 3. Кроссинговер между несестринскими хроматидами еще больше перемешивает материнские и отцовские наследственные признаки в гаметах. В результате обмена участками между несестринскими хроматидами число различных типов гамет становится практически бесконечно большим. Напомним, что у человека в среднем на каждую хромосому приходится две-три хиазмы, а следовательно, два-три обмена участками хроматид. Границы этих участков от мейоза к мейозу варьируют, так что обмен генетическим материалом происходит каждый раз по-новому. 11 Размножение бесполое и половое. Бесполое размножение — форма размножения, не связанная с обменом генетической информацией между особями — половым процессом. Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов. Наиболее распространённый способ размножения одноклеточных организмов — деление на две части, с образованием двух отдельных особей. Среди многоклеточных организмов способностью к бесполому размножению обладают практически все растения и грибы — исключением является, например, вельвичия. Бесполое размножение этих организмов происходит вегетативным способом или спорами. Среди животных способность к бесполому размножению чаще встречается у низших форм, но отсутствует у более развитых. Единственный способ бесполого размножения у животных — вегетативный. Половое размножение сопряжено с половым процессом (слиянием клеток). При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладают гаплоидным (одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессе мейоза. У многих водорослей и всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением. При слиянии двух гамет образуется зигота, обладающая теперь диплоидным (двойным) набором хромосом. Из зиготы развивается дочерний организм, клетки которого содержат генетическую информацию от обеих родительских особей. Животное, имеющее и мужские, и женские гонады, называется гермафродитом. Гермафродитизм широко распространён среди низших животных и в меньшей степени у высших. Партеногенез — это особый вид полового размножения, при котором новый организм развивается из неоплодотворенной яйцеклетки, таким образом обмена генетической информацией не происходит, как и при бесполом размножении. Аналогичный процесс у растений называется апомиксис. 10. Гаметогенез. Сперматогенез. Гаметогенез — процесс созревания половых клеток, или гамет. Сперматогенез - развитие сперматозоида в мужской гонаде. Происходит в извитых канальцах яичек. . Процесс образования спермиев длится около 65 дней. На 1 кг массы яичка обр. 107 спермиев в сутки. Под оболочкой извитого канальца находиться слой сперматогенного эпителия, клетки которого могут делиться в течении всей жизни мужчины до глубокой старости. Из этих клеток в итоге и образуются зрелые сперматозоиды. Сперматогенез протекает в 4 стадии – размножение (сперматогонии образуются за счет деления клеток сперматогенного эпителия), рост (сперматоциты 1го порядка получаются при накоплении сперматогониями гликогена, РНК, увеличения цитоплазмыв 4 раза), созревание (сперматоциты 2 порядка, сперматиды образуются в результате мейоза проходящего на этой стадии), формирование (зрелые сперматозоиды получаются из сперматид у которых появляется хвостовая нить и подвижность) Сложный процесс сперматогенеза регулируется гормонами. После полового созревания гипофиз секретирует фолликулостимулирующий гормон ФСГ и лютеинизирующий гормон ЛГ. Выделяется большое количество тестостерона. Сперматозоид состоит из головки, шейки и хвостика. Размер – 60 мкм. Головка содержит крупное ядро. Цитоплазма вязкая, защищает ядро от облучения. Впереди акросома – компл. Гольджи. В шейке 2 центриоли, одна лежит проксимально, вторая дистально. От центриолей отходят микротрубочки, которые обвивают митохондрии Особенности сперматогенеза и овогенеза. Овогенез — процесс образования, развития и созревания женских половых клеток (яйца, яйцеклетки) в яичниках. Овогенез протекает весьма длительно, начинается он в корковом слое из первичных фолликулов яичника и заканчивается после овуляции в яйцепроводе. Особенностью овогенеза является то, что из каждого первичного овоцита образуется одна полноценная яйцеклетка и три полярных тельца. Также особенностями овогенеза является наличие специальной стадии – диктионемы, с наступлением половой зрелости раз в месяц под влиянием гипофиза возобновляется мейоз, завершится мейоз только после оплодотворения Сперматогенез (от греч. sperma, spermatos — семя, genesis — происхождение, возникновение) представляет собой превращение первичных половых клеток в зрелые сперматозоиды. Важная особенность сперматогенеза заключается в том, что в ходе последовательных делений цитокинез (расхождение клеток) не доходит до конца. Клетки остаются связанными между собой посредством цитоплазматических мостиков диаметром 1—2 мкм, образуя синцитий. Поскольку молекулы и ионы легко проникают через межклеточные мостики, клетки такого клона развиваются синхронно. Такая связь нарушается только при достижении ими стадии сперматид. 5 Строение интерфазного клеточного ядра: оболочка, ядерный остов, ядрышко, хроматин, кариоплазма. Функции ядра клетки. Оболочка – 2 мембраны: наружная (с прикрепленными рибосомами) внутренняя(контактирует с кариолеммой) а между ними перенуклеарное пространство. Ядерные поры – образованы 8ю парами гранулярных белков, есть вводный канал количество пор в 1 ядре 3000-4000 Функции: защитная, транспортная, ограничительная Ядерная пластинка – имеет связь с хроматином примыкает к внутренней мембране. Функции: каркасная, организация хроматина, реорганизация оболочки в митозе Ядрышко – ультраструктура: нитчатая, фибриллярная, гранулярная (субьединицы рибосом + сами рибосомы), аморфная субстанция, ядрышковый хроматин. РНК – 10% / ДНК – 15% ост. Белки. Функции: Источник РНК, образование хромосом Кариоплазма – содержит белки, НК, ферменты. Функции: место синтеза гормонов, РНК,ДНК , обьединяет все структуры ядра. Хроматин – состоит из ДНК + гистоновые и негистоновые белки. Является генетическим материалом ядра. Бывает диффузный (эухроматин) и конденсированный (гетерохроматин). Функции: хранение и передча наследственной информации, регуляция синтетических процессов, образование ядрышка 5. Понятие о геноме и кариотипе человека. Значение изучения кариотипа. Форма и классификация хромосом, их строение (хроматин, хроматиды, хромонемы). Геном человека — это совокупность всей генетической информации организма. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две — Xхромосома и Y-хромосома — определяют пол. Кариоти́ п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии клеток. Анализ кариотипа имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизмом). Хроматин — это вещество хромосом — комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК. Хромати́ да — структурный элемент хромосомы, формирующийся в интерфазе ядра клетки в результате удвоения (репликации) хромосомы. Хромонема нитевидная структура, лежащая в основе хромосомы на всех стадиях клеточного цикла. Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Различают четыре типа строения хромосом: телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце); акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом); субметацентрические (с плечами неравной длины, напоминающие по форме букву L); метацентрические (V-образные хромосомы, обладающие плечами равной длины).