View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 5 (2014) 1846 – 1852 ,QWHUQDWLRQDO&RQIHUHQFHRQ$GYDQFHVLQ0DQXIDFWXULQJDQG0DWHULDOV(QJLQHHULQJ $00( *HDUIDXOWGHWHFWLRQ XVLQJ YLEUDWLRQDQDO\VLV DQG FRQWLQXRXVZDYHOHW WUDQVIRUP .LUDQ9HUQHNDUD+HPDQWKD.XPDUD *DQJDGKDUDQ.9D D 'HSDUWPHQWRI0HFKQDLFDO(QJLQHHULQJ1DWLRQDO,QVWLWXWHRI7HFKQRORJ\.DUDQDWDND6XUDWKNDO0DQJDORUH,QGLD $EVWUDFW *HDUV DUH WKH RQH RI WKH PRVW LPSRUWDQW PDFKLQH FRPSRQHQWV DQG ZLGHO\ XVHG LQ WUDQVPLVVLRQ GHVLJQ RI DXWRPRELOHV DQG RWKHU URWDWLQJPDFKLQHU\,QLQGXVWU\EUHDNGRZQRIVXFKFUXFLDOFRPSRQHQWVFDXVHVKHDY\ORVVHV 7KLVSDSHUSUHVHQWWZRVLJQDO SURFHVVLQJWHFKQLTXHV XVHGIRU WKHIDXOWGHWHFWLRQRIDJHDUXVHGLQDQ LQWHUQDOFRPEXVWLRQHQJLQHWKH\DUH FRQYHQWLRQDOYLEUDWLRQ VSHFWUXP DQDO\VLV DQG FRQWLQXRXV ZDYHOHW WUDQVIRUP $ IDXOW GLDJQRVLV HQJLQH WHVW VHWXS LV EXLOW IRU H[SHULPHQWDO VWXGLHV WR DFTXLUH YLEUDWLRQ VLJQDO IURP D KHDOWK\ DV ZHOO DV VLPXODWHG IDXOW\ JHDU 7KH YLEUDWLRQ VLJQDOV DUH DFTXLUHG IURP LQWHUQDO FRPEXVWLRQHQJLQHXVLQJDFFHOHURPHWHUXQGHUKHDOWK\DQGVLPXODWHGIDXOW\JHDUFRQGLWLRQV7KLVSDSHUUHSUHVHQWVDSSOLFDWLRQRI WKH FRQYHQWLRQDOYLEUDWLRQVSHFWUXPDQDO\VLV DQG 0RUOHW ZDYHOHW DVD FRQWLQXRXVZDYHOHWWUDQVIRUP XVHG IRUWKHIDXOWGLDJQRVLV RIWKHJHDU © 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 7KH$XWKRUV3XEOLVKHGE\(OVHYLHU /WG (http://creativecommons.org/licenses/by-nc-nd/3.0/). 6HOHFWLRQDQGSHHUUHYLHZXQGHUUHVSRQVLELOLW\RI 2UJDQL]LQJ&RPPLWWHHRI$00( Selection and peer-review under responsibility of Organizing Committee of AMME 2014 .H\ZRUGV )DXOWGLDJQRVLV)RXULHUWUDQVIRUPDWLRQ&RQWLQXRXVZDYHOHWWUDQVIRUP 0RUOHW ZDYHOHW ,QWURGXFWLRQ 7KH JHDUV DUH RQH RI WKH PDMRU FRPSRQHQWV LQ WUDQVPLVVLRQ V\VWHPV RI DQ DXWRPRELOH HQJLQH DQG SURSHU PDLQWHQDQFHRIJHDUV\VWHPLVYHU\HVVHQWLDOWRHQVXUH SHUIRUPDQFHRIWKHHQJLQH9LEUDWLRQDQDO\VLV LVXVHIXOWRRO IRU PDFKLQH KHDOWK PRQLWRULQJ :DYHOHW DQDO\VLV LV FDSDEOH RI GHWHFWLQJ QRQVWDWLRQDU\ QRQSHULRGLF WUDQVLHQW IHDWXUHVRI YLEUDWLRQVLJQDO HIILFLHQWO\ ,QWKLVVWXG\YLEUDWLRQDQG FRQWLQXRXVZDYHOHWWUDQVIRUP &:7 DQDO\VLVLV DSSOLHG IRU JHDU GLDJQRVLV 0RVW RI WKH GHIHFWV LQ JHDU WUDQVPLVVLRQ DVVHPEO\ DUH EHLQJ JHQHUDWHG GXH WR IDWLJXH ZHDUH[FHVVLYHORDGVLPSURSHUOXEULFDWLRQEDFNODVKHFFHQWULFWHHWKDQGRFFDVLRQDOO\PDQXIDFWXULQJIDXOWV 7KHVH IDXOWV LQ JHDU PD\ FDXVH H[FHVVLYH YLEUDWLRQ QRLVH DQG HYHQ IDLOXUH RI WUDQVPLVVLRQ V\VWHP &RUUHVSRQGLQJDXWKRU7HO (PDLODGGUHVVKHPDQWKD#JPDLOFRP 2211-8128 © 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Selection and peer-review under responsibility of Organizing Committee of AMME 2014 doi:10.1016/j.mspro.2014.07.492 1847 Kiran Vemekar et al. / Procedia Materials Science 5 (2014) 1846 - 1852 In an engine manufacturing industry, defects in gears may be arises during the assembly process in production line. Therefore, it is necessary to identity and eliminate the defective engines going into the market. Each component of engine equipment has a different signature in time and frequency spectrum.Time domain represents the dynamic responses depend on the interaction of many components of the system. In time versus frequency domain, wavelet transform (WT) facilitates multi-resolution analysis and hence, becomes popular to extract characteristics features of non-stationary vibrations signals. Wavelet analysis are informative in scale (frequency)-time domain, compared with conventional vibration spectrum analysis which gives frequency domain information. (Peng et al. 2003). Tse et al. (2004) used exact wavelet analysis for machine fault diagnosis. Saravanan et al. (2010) examined the spur gear box fault detection using discrete wavelet for feature extraction and artificial neural network used as a classifier. Chandran et al. (2012) application of Laplace wavelet kurtosis used for fault diagnosis of gears. Al-Badour et al. (2011) time, frequency and wavelet analysis used study blade and shaft vibrations of turbo-machinery. Amamath (2008) made an attempt experimentally with help of vibration and acoustic signalsfor fault detection of helical gear using Daubechie wavelet. Srikanth (2008) used conventional vibration analysis for the fault detection of two stroke internal combustion (IC) engines. The purpose of this paper is to extend the application of Fourier transform and continuous wavelets for fault diagnosis of gear used in internal combustion engine. 1.1 Fourier transform Fourier transform (FT) is most widely used in vibration signal analysis. It simply converts given signal from time domain to frequency domain by integrating the given function over the entire time period. The integral Fourier transform for a non-periodic function x(t) is given by, x(f) = XCM)eiwC du (1) X(w) = x(t) e~lu>t dt (2) Where, tuis fundamental frequency.Using these equations, a signal can be transformed into the frequency domain and back again. The FT is well suited to analyze stationary periodic functions-which will exactly repeat themselves once over period, without modification.Fourier transform is particularly used to convert a function from the continuous time to the continuous frequency domain, where as fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform and it’s inverse. FT technique earned much of the importance in processing stationary signal. FFT is the one of the extension of it. 1.2 Wavelet Transform The FT is not very useful for analyzing non-stationary signals since it fail to describe the frequency content of a signal at particular time. In signal processing, the limitation of FT led to the introduction of new Time-frequency analysis called Wavelet transform (WT). It is improved version of Fourier transform, can be used for analysing the components of a stationary signal. Generally conventional data processing is computed in time or frequency domain. Wavelet processing combines both time and frequency. In simple language, we use term called ‘time-frequency’ analysis. A wavelet is a basis function characterized by, two aspects, one is its shape and amplitude, which is chosen by user. Second one is its scale (frequency) and time (location) relative to the signal. The continuous wavelet transform can be used to generate spectrograms which show the frequency content of signals as a function of time. A continuous-time wavelet transform of x(t) is defined as: CWT Xv(a,b) =^fZ,xCt)W*(^ dt, {a,bcR,a*0 (3) In above equation \|/ (t) is a continuous function in time domain as well as the frequency domain called the mother wavelet and y* (t) indicates complex conjugate of the analysing wavelet y (t). The parameter ‘a’ is termed as scaling 1848 Kiran Vernekar et al. /Procedia Materials Science 5 (2014) 1846 - 1852 parameter and ‘b’ is the translation parameter. The transformed signal Xv(a,b)is a function of the translation parameter ‘b’ and the scale parameter ‘a’. In WT, signal energy is normalized by dividing the wavelet coefficients by -r= at each scale. Vial 1.2.1 Morlet Wavelet The Morlet wavelet transform is belongs to CWT family. It is one of the most popular wavelet used in practice and its mother wavelet is given by, lit wo \ •P(t) — 7F eJWot — e 2 / 6 2 V7T \ (4) In above equation, w0 refers to central frequency of the mother wavelet. The term e 2 involved in above equation is specifically used for correcting the non-zero mean of the complex sinusoid, and in most of cases, it can be negligible when w0>5. Therefore when the central frequency w0>5, the mother wavelet redefined as follows; «P(t) = 4^ e>°£e~T (5) V7T 2. Experimental studies The test rig setup was constructed to study fault detection of gear used in IC engine. The details about the experimental setup and experimental procedure are discussed in the following subsections. 2.1 Experimental setup description The below figures shows the Line sketch and experimental engine test setup used for fault detection of gear used in internal combustion engine. The experiments were conducted on the Kawasaki Bajaj KB-100 two stroke spark ignition engine. In practice, the engine conditions are monitored at idle speed, which is nearer to 1000 rpm. Therefore the experiment has been carried out at constant rotational engine speed of 1080 rpm at 4th gear position. Here the engine speed refers to the rotational speed of the crank. The engine was driven by using 3 Hp DC motor. The data has been acquired by using NI 9234 data acquisition (DAQ) card and analysed using Lab View 10.0 software from National Instruments (NI). Piezoelectric accelerometer with an operating frequency range between 1 to 5000 Hz was used to pick up vibration signals from the gear box casing. D.C. Motor Gear wheel Fig. 1. Line sketch experimental setup. 1849 Kiran Vernekar et al. / Procedia Materials Science 5 (2014) 1846 – 1852 'DWD DFTXLVLWLRQ V\VWHP $FFHOHURPHWHU %DMDM.% 0RWRU )LJ([SHULPHQWDOVHWXSRIJHDU ER[ IDXOWGHWHFWLRQRI DQ ,& HQJLQH ([SHULPHQWDOSURFHGXUH ,Q WKLVH[SHULPHQWWKHYLEUDWLRQVLJQDOZDVDFTXLUHGIURPDKHDOWK\JHDU FRQGLWLRQ DWFRQVWDQW FUDQNVKDIWVSHHG RI USP WKHDFTXLUHGVLJQDOLVFRQVLGHUHGDVWKHEDVHOLQH,QVHFRQGWHVWIDXOWLVLQGXFHGLQWKHJHDUDVVKRZQLQ ILJXUH DQG WKH FRUUHVSRQGLQJ YLEUDWLRQ UHDGLQJV ZHUH H[WUDFWHG7KH VDPSOLQJ IUHTXHQF\ RI .+] ZDV XVHG WR FROOHFWWKHGDWDIRUVHFRQG 7KHEHORZ ILJXUHVKRZ WKHFRQGLWLRQDQG ILJXUH VKRZ SRVLWLRQRIJHDULQWKHJHDU ER[ )RUDQDO\VLVSXUSRVH WKH &:7 VFDOHD[LVLVFKDQJHG WRDQDSSUR[LPDWHIUHTXHQF\D[LV ([SHULPHQWDOJHDU )LJ*HDUGHIHFWV D +HDOWK\JHDU E *HDUVZLWKLQGXFHGIDXOW )LJ6HFWLRQHGYLHZRIHQJLQH ,Q FDVH RI JHDU YLEUDWLRQ JHDU PHVK IUHTXHQF\ *0) LV LPSRUWDQW ZKLFK LV JHQHUDWHG GXH WR PRGXODWLRQ SKHQRPHQD ,Q IDXOW\ FRQGLWLRQ WKHUH H[LVWV LQFUHDVH LQ PDJQLWXGH LQ *0) ZKLFK LV WKH LQGLFDWLRQ RI GHIHFWLYH FRQGLWLRQ RIJHDU /RNHVKHWDO 7KH FKDUDFWHULVWLF YLEUDWLRQ IUHTXHQFLHV RIWKHHQJLQH DUH OLVWHGLQ7DEOH 1850 Kiran Vernekar et al. / Procedia Materials Science 5 (2014) 1846 – 1852 7DEOH &KDUDFWHULVWLFYLEUDWLRQIUHTXHQF\DW USPHQJLQHVSHHG 3DUDPHWHUV *HDUURWDWLRQDOIUHTXHQF\ 3LQLRQURWDWLRQDOIUHTXHQF\ *HDUPHVKIUHTXHQF\ *0) &UDQNVKDIWURWDWLQJIUHTXHQF\ IV 9DOXH +] ([SHULPHQWDOYHULILFDWLRQRIIDXOWGLDJQRVLVV\VWHP ,QWKLVVHFWLRQ H[SHULPHQWDOGLVFXVVLRQ LVPDGH IRUIDXOWGLDJQRVLVWHFKQLTXH EDVHGRQWKH ))7 DQG &:7 IRUJHDU ER[RIDQ,& HQJLQH ([SHULPHQW+HDOWK\JHDU $FFHOHUDWLRQ J $FFHOHUDWLRQ J 7KH H[SHULPHQWDO UHVXOWV ZLWKKHDOWK\ FRQGLWLRQRIJHDUDUH VKRZQLQIROORZLQJILJXUHV )LJXUH E LOOXVWUDWHV SHDN IUHTXHQF\ FRPSRQHQW DW +] ZKLFK LV WKH UXQQLQJ IUHTXHQF\ RI WKH FUDQN VKDIW URWDWLRQ IV $QRWKHU IUHTXHQF\ LVDW+] [IV DQGPRVWRIWKHUHVWRIWKHSHDNVDUHPXOWLSOHVRIFUDQNVKDIWURWDWLQJIUHTXHQFLHV,WFDQ EH QRWLFHG IURPIUHTXHQF\VSHFWUXPWKDWWKHYLEUDWLRQRIWKHFUDQNVKDIWKDVKLJKHVWLQIOXHQFHRQWKHVSHFWUXPRIWKH JHDUER[ZKLFKLVGRPLQDQWDPRQJDOOWKHIUHTXHQFLHV [IV *0) [IV [IV IV 7LPH V D )UHTXHQF\ +] E )LJ9LEUDWLRQUHVSRQVHRIDKHDOWK\JHDU D 9LEUDWLRQUHVSRQVHLQ7LPHGRPDLQ E )UHTXHQF\VSHFWUXP )LJ7LPHIUHTXHQF\SORWRIWKH&:7RIWKHKHDOWK\JHDUYLEUDWLRQVLJQDO )URPWKHWLPHIUHTXHQF\SORWRIWKH&:7VKRZQLQILJXUH LQGLFDWHVWKHSUHVHQFHRIKLJKIUHTXHQF\FRPSRQHQW DW+]ZKLFKLV [IV 1851 Kiran Vernekar et al. / Procedia Materials Science 5 (2014) 1846 – 1852 ([SHULPHQW*HDUZLWKLQGXFHGIDXOW )LJXUHVKRZVYLEUDWLRQUHVSRQVHRIIDXOW\JHDULQWLPHDQGIUHTXHQF\GRPDLQ 7KH LQFUHDVHLQWKHDPSOLWXGHRI *0) FDQEH YLVXDOL]HG LQ IUHTXHQF\ GRPDLQ 0DJQLWXGH RI*0)LVLQFUHDVHG IURP WR PV [IV $FFHOHUDWLRQ J $FFHOHUDWLRQ J *0) [IV [IV IV 7LPH V D )UHTXHQF\ +] E )LJ9LEUDWLRQUHVSRQVHRIDIDXOWLQGXFHGJHDU D 9LEUDWLRQUHVSRQVHLQ7LPHGRPDLQ E )UHTXHQF\VSHFWUXP ] )LJ7LPHIUHTXHQF\SORWRIWKH&:7RIWKHIDXOWLQGXFHGJHDUYLEUDWLRQVLJQDO )LJXUH GHSLFWV &:7 SORW RI IDXOW\ JHDU ZKLFK VKRZV WKHUH LV KLJKIUHTXHQF\ DW +] [IV 2WKHU WKDQ IUHTXHQF\ +] WKHUHLVRQHPRUHGRPLQDQW IUHTXHQF\FRPSRQHQW LVREVHUYHGDW +]ZKLFKPDWFKHVZLWKWKH FKDUDFWHULVWLFJHDUPHVKIUHTXHQF\7KLVKLJKIUHTXHQF\EDQGLQ&:7SORWLQGLFDWHVWKH H[LVWHQFH RIWKHJHDUIDXOW &RQFOXVLRQ 7KHYLEUDWLRQVLJQDOSURFHVVLQJWHFKQLTXHVXVLQJ)7 &:7 WHFKQLTXHDUH XVHGIRUIDXOWGLDJQRVLVVWXGLHV RI JHDU GDPDJH GHWHFWLRQ 9LEUDWLRQ VWXGLHV FDUULHG RXW IRU KHDOWK\ DQG VLPXODWHG IDXOW\ JHDU XVHG LQ JHDU ER[ RI DQ ,& HQJLQH 9LEUDWLRQ DFFHOHUDWLRQ OHYHOV KDV EHHQ VWXGLHG IRU KHDOWK\ DQG GHIHFWLYH JHDU LQ ERWK WLPH DQG IUHTXHQF\ GRPDLQ $OVRUHVXOWVKDYHEHHQFRPSDUHG &:7LV XVHGIRUGDPDJHGHWHFWLRQDQG IRXQGWKDW&:7LVHIIHFWLYHWRRO IRUIDXOWGLDJQRVLV 7KHH[SHULPHQWDOUHVXOWLQGLFDWHVWKDWSURSRVHGPHWKRGLVHIIHFWLYHLQJHDUIDXOWGLDJQRVLV7KLV UHVHDUFKVWXG\FDQEHH[WHQGHGWR PDFKLQHVZLWKD YDULRXVW\SHV RIIDXOWV $FNQRZOHGJHPHQWV 7KHDXWKRUVJUHDWO\DFNQRZOHGJHWKHVXSSRUW RI 'U 36ULKDUL $VVLVWDQW 3URIHVVRU DQG 0U *QDQHVZDU 6DWDSDWL 5HVHDUFK 6FKRODU (OHFWURQLFDQG &RPPXQLFDWLRQ 'HSDUWPHQW1DWLRQDO,QVWLWXWHRI 7HFKQRORJ\.DUQDWDND IRU WKHLU KHOSLQDSSO\LQJ ZDYHOHWWKHRU\IRUIDXOWGHWHFWLRQDSSOLFDWLRQ 1852 Kiran Vernekar et al. / Procedia Materials Science 5 (2014) 1846 – 1852 5HIHUHQFHV $O%DGRXU)6XQDU0DQG&KHGHG/9LEUDWLRQDQDO\VLVRIURWDWLQJPDFKLQHU\XVLQJWLPH±IUHTXHQF\DQDO\VLVDQGZDYHOHWWHFKQLTXHV 0HFKDQLFDO6\VWHPVDQG6LJQDO3URFHVVLQJ $PDUQDWK03K'7KHVLV,QGLDQ,QVWLWXWH7HFKQRORJ\0DGUDV,QGLD &KDQGUDQ3/RNHVKD00DMXPGHU0&DQG5DKHHP .)$ $SSOLFDWLRQRI/DSODFH:DYHOHW.XUWRVLV DQG :DYHOHW6WDWLVWLFDO 3DUDPHWHUV IRU*HDU)DXOW'LDJQRVLV,QWHUQDWLRQDO-RXUQDORI0XOWLGLVFLSOLQDU\6FLHQFHVDQG(QJLQHHULQJ .DWKLND6ULNDQWK07HFK7KHVLV1DWLRQDO,QVWLWXWHRI7HFKQRORJ\.DUQDWDND,QGLD /RNHVKD00DMXPGHU0& 5DPDFKDQGUDQ .3 DQG 5DKHHP .)$ )DXOW GLDJQRVLVLQ JHDU XVLQJ ZDYHOHW HQYHORSH SRZHU VSHFWUXP,QWHUQDWLRQDO-RXUQDORI(QJLQHHULQJ6FLHQFHDQG7HFKQRORJ\ 3HQJ=.DQG&KX)/$SSOLFDWLRQRIWKHZDYHOHWWUDQVIRUPLQ PDFKLQHFRQGLWLRQPRQLWRULQJDQGIDXOW GLDJQRVWLFV DUHYLHZ ZLWK ELEOLRJUDSK\0HFKDQLFDOV\VWHPVDQGVLJQDOSURFHVVLQJ 6DUDYDQDQ1DQG5DPDFKDQGUDQ.,,QFLSLHQWJHDUER[IDXOWGLDJQRVLVXVLQJGLVFUHWHZDYHOHWWUDQVIRUP ':7 IRUIHDWXUH H[WUDFWLRQ DQGFODVVLILFDWLRQXVLQJDUWLILFLDOQHXUDOQHWZRUN $11 ([SHUW6\VWHPVZLWK DSSOLFDWLRQV 7VH3:<DQJ :;DQG 7DP+< 0DFKLQH IDXOWGLDJQRVLV WKURXJKDQHIIHFWLYHH[DFWZDYHOHW DQDO\VLV-RXUQDORI6RXQGDQG 9LEUDWLRQ