ПРЕЗЕНТАЦИЯ НА ТЕМУ: УЗИДИАГНОСТИКА Подготовила студентка 2 курса группы 30-ф Максимова Валерия Принцип работы с УЗИ Если речь идет о техническом обслуживании, ремонте или работе на ультразвуковом оборудовании, в первую очередь необходимо понимать физические основы процессов, с которыми придется иметь дело. Конечно, как и в каждом деле, здесь есть очень много нюансов и тонкостей, но мы предлагаем Вам в первую очередь рассмотреть самую суть процесса. Наша основная задача - разобраться в том, что такое ультразвук, и какие его свойства помогают нам в современных медицинских исследованиях. (доп.инф-я) Что такое ультразвук, каковы его характеристики и параметры Основы формирования изображения на дисплее УЗИаппарата. Рассмотрим вопросы: Принципы работы УЗИ: цепь преобразований электрической энергии в энергию ультразвука и обратно. Формирование ультразвука в современной технике на основе пьезокерамики Способы получить ультразвук Существует несколько способов получить ультразвук, но чаще всего в технике используются кристаллы пьезоэлектрических элементов и основанный на их применении пьезоэлектрический эффект: природа пьезоэлектриков позволяет генерировать звук высокой частоты под воздействием электрического напряжения, чем выше частота напряжения, тем быстрее (чаще) начинает вибрировать кристалл, возбуждая высокочастотные колебания в окружающей среде. Оказавшись в поле высокочастотных звуковых колебаний, пьезокристалл напротив начинает генерировать электроэнергию. Включив такой кристалл в электрическую цепь и определенным образом обрабатываю получаемые с него сигналы мы можем формировать изображение на дисплее УЗИаппарата. Несмотря на десятки и даже сотни взаимосвязанных компонентов УЗИ сканер можно условно разделить на несколько основных блоков, участвующих в преобразовании и передаче различных видов энергии. (доп. инф-я) Рассмотрим как именно полученная информация помогает нам в построении изображения на УЗИ сканере. В основе этого принципа лежит различный акустический импеданс или сопротивление газообразных, жидких и твердых сред. Другими словами, кости, мягкие ткани и жидкости нашего тела пропускают и отражают ультразвук в различной степени, частично поглощая и рассеивая его. На самом деле весь процесс исследования можно разбить на микропериоды, и лишь малую часть каждого периода датчик испускает звук. Остальное время уходит на ожидание ответа. При этом время межу передачей и получением сигнала напрямую переводится в расстояние от датчика до “увиденного” объекта. Информация о расстоянии до каждой точки помогает нам построить модель изучаемого объекта, а также используется для измерений, необходимых при ультразвуковой диагностике. Данные кодируются цветом - в результате мы получаем на экране УЗИ необходимое нам изображение. Чаще всего это Черно-белый формат, поскольку считается, что к оттенкам серого наш глаз более восприимчив и с большей точностью. увидит разницу в показаниях, хотя в современных аппаратах используется и цветное представление, например, для исследования скорости кровотока, и даже звуковое представление данных. Последнее вместе с видеорядом в допплеровских режимах помогает поставить диагноз более точно и служит дополнительным источником информации. Вернемся обратно к построению простейшего изображения и рассмотрим подробнее три случая: Примеры простейших изображений будем изучать на основе B-режима. Визуализация костной ткани и других твердых образований представляет из себя светлые участки (в основном - именно белого цвета), поскольку от твердых поверхностей звук отражается лучше всего и почти в полном объеме возвращается к датчику. Рис.1 В качестве примера мы можем отчетливо видеть белые области - камни в почках пациента.(рис. 1) Визуализация жидкости представлена черными поскольку не встречая дальше в тело пациента и ответа.(рис.2) или пустот напротив участками на снимке, преград звук проходит мы не получаем никакого Мягкие ткани, как например, структура самой почки будут представлены областями с различной градацией серого цвета. Именно от качества визуализации таких объектов и будет во многом зависеть точность диагноза и здоровье пациента.(рис.3) Рис. 2 Рис.3 Итак сегодня мы с Вами узнали о том, что такое ультразвук и как он используется в УЗИ-сканерах для исследования органов человеческого тела. СПАСИБО ЗА ВНИМАНИЕ! Основные блоки Все начинается с источника питания, способного поддерживать высокое напряжение заранее заданных значений. Затем, через множество вспомогательных блоков и под постоянным контролем специального программного обеспечения сигнал передается на датчик, основным элементов которого является пьезокристаллическая головка. Она преобразует электрическую энергию в энергию ультразвуковых колебаний. Как и любая волна, ультразвук имеет свойство отражаться от встречающейся на его пути поверхности. Далее волна проходит обратных путь через различные ткани человеческого тела, акустический гель и линзу она попадает на пьезокристаллическую решетку датчика, которая преобразует энергию акустической волны в электрическую энергию Принимая и правильным образом интерпретируя сигналы с датчика мы можем моделировать объекты, находящиеся на различной глубине и недоступные человеческому глазу. Принцип построения изображения на основе данных ультразвукового сканирования О звуке Мы знаем, что частоты от 16 Гц до 18 000 Гц, которые способен воспринимать слуховой аппарат человека, принято называть звуковыми. Но в мире также много звуков, которые мы услышать не можем, поскольку они ниже или выше диапазона доступных нам частот: это инфра- и ультра звук соответственно. Звук имеет волновую природу, то есть все существующие в нашей вселенной звуки - волны, как, в прочем, и многие другие природные явления. С физической точки зрения волна (доп. инф-я) это возбуждение среды, которое распространяется с переносом энергии, но без переноса массы. Другими словами, волны - это пространственное чередование максимумов и минимумов любой физической величины, например - плотности вещества или его температуры. Параметры волны Максимумы и минимумы физической величины можно условно представить в виде гребней и впадин волны. Длиной волны называют расстояние между этими гребнями или между впадинами. Поэтому, чем ближе находятся друг к другу гребни - тем меньше длина волны и тем выше ее частота, чем гребни дальше друг от друга - тем длина волны выше и наоборот - тем ниже ее частота. Еще один важный параметр - амплитуда колебания, или степень отклонения физической величины от ее среднего значения.