ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ Государственное бюджетное профессиональное образовательное учреждение города Москвы «Политехнический колледж им. Н.Н. Годовикова» Доклад Тема: Применение средств машинного обучения для обработки данных На базе предприятия (организации) ГБПОУ ПК им. Н. Н. Годовикова Специальность (код, наименование): 09.02.07 «Информационные системы и программирование» Выполнила: Руководитель работы: Студентка 3 курса, Преподаватель Группы 3 ИC - 15 Ученая степень, должность Чигир Ясна Вячеславовна Иванова Татьяна Михайловна (Ф.И.О.) (Ф.И.О.) ________ __________________ (Оценка / подпись) Москва, 2022 2 Введение Учитывая сложность и разнообразность данных, генерируемых разнородными устройствами и датчиками, остро встает вопрос автоматизации их управления и анализа. Автоматизированное выявление зависимостей и построение взаимосвязей между устройствами – это новый вызов для дальнейшего развития IoT. Именно поэтому IoT становится технологией, которую сложно представить без инструментов машинного обучения (Machine Learning). Благодаря им появляется возможность построения профилей поведения устройств в сети и выявления скрытых взаимосвязей между ними, что, в свою очередь, несет новые возможности автоматизации управления устройствами и предиктивной аналитики. Концепция IoT зарождалась и развивалась как вполне самостоятельная идея, заключающаяся в объединении большого числа физических устройств, поддерживающих интерфейсы взаимодействия друг с другом и внешней средой в единой вычислительной сети. Однако, учитывая стремительные темпы роста популярности и востребованности данной концепции на рынке, число устройств в подобных сетях растет настолько быстро, что традиционная архитектура становится малоэффективной и сложно реализуемой. Концепция IoT на текущий момент находится на том этапе, когда интеграция со вспомогательными технологиями и инструментами является необходимым логическим шагом к дальнейшему развитию. 3 Применение средств машинного обучения для обработки данных Чтобы понять, как Machine Learning и Big Data могут повысить эффективность работы IoT, стоит взглянуть на принципиальные различия архитектур IoT-систем, которые следуют традиционной концепции, и систем, использующих инструменты для работы с большими данными и машинное обучение. Типовая архитектура IoT без машинного обучения включает в себя четыре основных блока (см. схему 1): интернет-вещи – умные устройства, датчики и сенсоры; шлюзы, использующие промышленные протоколы связи и располагающиеся относительно близко к конечным устройствам; централизованное хранилище данных – ЦХОД и облачные хранилища; конечные устройства, с которыми взаимодействуют пользователи – исследуют данные и получают уведомления. 4 В архитектуре IoT, применяющей инструменты для работы с большими данными и алгоритмы машинного обучения, присутствует дополнительный, но очень важный блок (см. схему 2). В ней повышается качество данных, а следовательно и качество принимаемых решений и уведомлений, генерируемых системой. Кроме того, за счет адаптивной приоритизации и фильтрации данных существенно снижаются затраты на хранение данных в ЦХОД и облачных хранилищах. Machine Learning & IoT: реализация Лучше всего преимущества и эффективность применения инструментов машинного обучения и технологий Big Data при построении IoT-систем демонстрируют практические сценарии использования. Ниже приведены несколько Use Cases, в которых благодаря современным инструментам для работы с данными IoT-система сделала значительный шаг вперед. Tesla Motors. Автомобили Tesla – это "вещи", использующие множество других интернет-вещей, которые благодаря Machine Learning позволяют из "вещи" сделать мощный искусственный интеллект. Помимо Tesla, другие крупные автомобильные компании также используют концепцию IoT, однако без современных инструментов для работы с данными. Для того чтобы понять, чем же Tesla так сильно отличается от всех остальных, достаточно цитаты Илона Маска из недавнего интервью: "Все автомобили в Tesla работают как единая сеть. 5 Когда одна машина учится чему-то, этому учатся и все остальные. Это выходит за рамки того, что делают другие автомобильные компании". Таким образом, каждая ситуация на дороге – это новый опыт для автомобиля, который он обязательно учтет в следующей поездке и передаст своим "коллегам" (см. схему 3). Nest. Термин "умный дом", наверное, слышал каждый. Однако у компании Nest, которую недавно приобрела корпорация Google за $3,2 млрд, получилось сделать дом действительно умным. Искусственный интеллект Nest анализирует график работы пользователей, их температурные и прочие предпочтения. Благодаря этому системе удается сократить затраты на потребление энергии и повысить комфорт за счет адаптации системы под конкретного пользователя (см. схему 4). 6 IoT-платформы. Стоит упомянуть не только конкретные сценарии использования IoT с Machine Learning, но и взглянуть на то, как развиваются передовые IoT-платформы, такие как Google Cloud IoT и AWS IoT. Они позволяют интегрировать IoT-устройства с моделями машинного обучения и решать сложные комплексные задачи. Сервис AWS IoT Greengrass ML Inference может локально формировать на устройствах логические выводы с использованием машинного обучения, применяя модели, созданные, обученные и оптимизированные в облаке. Так, в SageMaker можно создать прогнозирующую модель для анализа видеозаписей, оптимизировать ее для работы на камерах, которые смогут самостоятельно выявлять подозрительную активность и отправлять уведомления об этом. Например, при обнаружении нелегитимной активности около банковского терминала умная камера сама определит, что злоумышленник планирует взлом, и предиктивно вызовет наряд полиции. Данные, полученные с помощью логических выводов на IoT Greengrass, можно отправить обратно в SageMaker, где они обогащаются индикаторами и используются для непрерывного повышения качества моделей машинного обучения. 7 Заключение В современном мире в силу постоянно растущего количества умных устройств и объема данных, генерируемых ими, индустрия IoT уже не может существовать без инструментов для работы с большими данными и машинного обучения. Яркие примеры компаний, использующих Machine Learning в IoTархитектурах, и векторы развития актуальных IoT-платформ демонстрируют нам очевидные преимущества данного подхода. Для эффективной работы современных IoT-систем жизненно необходима интеграция с сторонними продуктами, реализующими соответствующий функционал. 8 Список использованной литературы 1. https://www.bigdataschool.ru/blog/iot-architecture-big-data.html – (Интернет ресурс) 2. Архитектура Интернет - Вещей / Эшли Роттей. – Германия: ЭКОМ Паблишерз, 2017. – 397 с. – (Учебное пособие) 3. https://habr.com/ru/company/toshibarus/blog/473024/ – Конечные устройства – (Интернет - ресурс) 4. https://nag.ru/material/38920 – Функции архитектуры IoT – (Интернет ресурс) 5. https://www.bigdataschool.ru/blog/iot-architecture-big-data.html – Как работает Интернет - вещей – (Интернет - ресурс) 6. https://controlengrussia.com/internet-veshhej/eurotech-iot/ – Интернет вещей – (Интернет - ресурс)