Загрузил Кафедра математического анализа и прикладной математики КГУ

cifrovaya obrabotka signalov zac

реклама
!" #$% &'( )*%!" %+
« »
.. , .. , .. !
"" - !"
,-( )!%.%#-( %%
2008
621.372.037(075.8)
32.811.173
45
. .
45
: / .. ,
.. , .. . – ! : "#- ! $ , 2008. – 307 .
ISBN 5-98298-326-6
" %& & '
* , #& " '
&$ + , # " ; +, #&
' < * '
&$ , * "' '
* ' " '
.
= " $ "' ' * " + * & != > «? " <>@ * +» #" # , >@ $ «
' " + $ $ " <>@ ».
621.372.037(075.8)
32.811.173
$ $ , , " . # *
' - " + * $ !AC
.. ISBN 5-98298-326-6
© .., .., .., 2008
© ! * $ * , 2008
©D
. "#+ ! $ , 2008
2
#
@ <
+" # '
* (DA) # < " &$ "# ( " + &<&$ $, , # ' # ' , # " % *
. #.). D#
C @ # ' % , &$ +" + & '
* .
D# * " % * # # , " " # # ' +&$ # ' , # # +> . = + "
" & >@* &. ,
+< '
* " % + + # * +" % * @ * . D# + "
# ' & E % &" + # .
" + +> # #
* «
' " + $ $ " <>@ » # ' «
». " %& &
'
&$ , #
"
'
&$ F- F- + , & # " ; + + '
+ ",
% & * "' '
*
' "
&$ '
DA.
#& & "
'
&$ , +& &, " >@ '
+ %&$ $. % #& # " & > &$ , " " +
& "
'
&$ .
3
1. $ $ $
=
# "# +" & #>@ : [1, 4, 6, 16].
1.1. %&&'( )(*&' +*(-((&/
– * , @ &$
E $ * , >@ # %+ * $ *
. + * , ' % + .
( ) – E * , @ <
% G
#
#+ < %# " $. H « » > « », # " * '.
– $ %# " " * & && @+> ' +&$ $ $ # (
).
! ' 1.1
=
"
#& ;
@ &
J =
#
*
'
&
= = & ;
A ,
A * @
!A, # E $ ' +
J $- ? % , ,
@ +, E '
HF, ;HF, ' A * , %>' , &,
@ # " , $ +& # '
' +&
" 4
. 1.1.
=
"
#& ;
= = &
K$ = J &
#% " &
! &
" $ - '
A &
"
*
>@ $ "-
= & ;
, +,
A , # ,
" +, # +
? % , , T, E , E
' # E
' "$ ,
A , @ +
= @ # ", # #
! ' 1.1
( )
=
"
= * " # $
# *
&
= > " #& ;
D &
( " &)
=
" #&
( " &)
C" &
( >&)
" " &
( +&)
= ;, $ #@ & " &$ # $ ;
;, #&
" & ;
&
= & ;
# , ,
, ,
, , @ A
d2x ,
dt 2
A – ,
x – # ,
t – .
;, " &$ $ & #
" &$ ; "# +, > >
D < # *
E
' ; # *, , * + +
*
# 5
– +&* + ' .
A & &+ # $ # :
x # " ' ( ' ">
" );
x # &* # &* ( ' E ,
$ %
).
' " %# G $ # # " #* ,
"+ " # ' $ $ # . ; * % "#* + #
" .
!"# – $ # * # " X(t), $ ">@ * # ">@ $ ($ ).
&$ '
" $ # $, # * . 1.1, # &$ – . 1.2.
!$ #
"#* DG
C' . 1.1. !$ #
"#*
( )
. 1.2. DG
! ' 1.2
= "
= >
# + " = >
" = &
#& " *
? # &
A # +&
" >&
D +&
D# &
= ? , *
*
>@ K &
6
. 1.2
=
"
#& " *
XN=C˜NX
A – ' # NX – # * <
YN=f(X1N, X2N)
A * #
$ %# # &$
$ A * #
$ %# " %#
" & = &
= $ " &
A
&
A &
= < >
%# " &$
*
" = @ "& = "&"& &
"& &
K &
K +&
A /
= $ " " &
/ A*&
% $" (&) – ' " $ # &$ # * , #>@ * $ , &$ " % #>@ " , ' + " & $ # .
x
x
x
x
x
#& =:
" " # (E * E *);
' + " ( & "' <&);
&$ # $ # # " ( +&$ % * " );
> (< " );
* # ( &* # " , , # + + " ).
7
%'* – , #>@ * # %@ * ' > $ " .
A &
= #% " & " $ '
&
K$ J &
= " " ! &
A &
= &
" >@ $
" *
= &
?'
&
A*&
A'
&
&
?E # J &
A %&
=
J # # ?
A #+&*
# = " # # &*
+
? +&*
C &*
C *
=
# " # ?
# ( $ #&)
J ' +&
= +&
J ' +&*
" &
= = +&
. 1.3. ! X (t)
X(t)
t
t
)
)
. 1.4. ! : – " ;
– " 8
x
x
x
x
C" > & & :
& & " X(t) ( . 1.4);
& & & " X (t) ( . 1.4);
# & & & " X#(t)
( . 1.5);
# & & " X#. (t) ( . 1.5).
X#. (t)
X#(t)
t
t
)
)
. 1.5. ! :
– " ;
– " 1.2. #()(*&*&&'( %0&'
& & # "#> E &
%&. E & &* , #+&* # &* +, #+&* .
&'* .
X(t)=X0=const, t>t0
%'* '* $+%.
#+&* # &* + & #+- ' *, #>@ * :
­0 , t z t0;
G(t t0) ®
(1.1)
¯ f , t t0.
f
³ G (t t0) dt
1(t–t0)=1 ttt0,
(1.2)
0
# 1(t–t0)# ' .
d 1(t t0)
dt
G(t t0) .
9
(1.3)
X(t)
X0
t
t0
. 1.6. # !
X(t)
t
t0
G-" . 1.7. !
=
+" #+ #
" % " " .
X
X
³
t0
' X
d
dt
t0
t0
. 1.8. $ G-" " # G- '
X(t) " > X(t0)
f
³ X(t) ˜ G(t t0) dt
X( t 0) .
(1.4)
0
= E , G- ' # + >@ >@ * . *
+" # # # # # "' T#
N
X # (t)
¦ X(i ˜ T# ) ˜ G(t i ˜ T# ) .
i 1
10
(1.5)
+%'* (*) .
X(t)=Xm˜sin(Z0˜t+M),
# Xm – #; M – "; Z0 – ; ! – (1.6)
# ( Z0
2˜ S ).
T
T
X(t)
Xm
S(Z)
t
Z0
M
)
Z
)
. 1.9. " % !
( ) ! ()
&* .
X(t)=X(t+k˜T),
(1.7)
# k – ' , ! – # .
# $ ($,) $, . . &$ $ >@ $,
& % " % + . A & % &* ( +&*) , . . # #&
"& .
= * % &+ # '
+% (' $):
X(t)=
# Z0
2˜ S , a
0
T
f
a0
¦ a k ˜ cos( 2˜S ˜ k ˜ t ) b k ˜ sin( 2˜ S ˜ k ˜ t ) ,
T
T
2
k 1
T
2 ˜ X(t) dt , a
k
T ³
0
bk
(1.8)
T
2 ˜ X(t) ˜ cos( 2˜ S ˜ k ˜ t) dt ,
T ³
T
0
T
2 ˜ X(t) ˜ sin( 2˜ S ˜ k ˜ t) dt .
T ³
T
0
X(t)= c 0 f
¦ c k ˜ cos( 2T˜S ˜ k ˜ t Mk ) ,
k 1
11
(1.9)
a0
– # " , c k
2
a 2k b 2k , M k
' $' .
Xmax – + " ;
# c 0
1˜
T
X
X . &
bk
).
ak
t T
³ X(t) dt
– # " ( >@);
t
1˜
T
1˜
T
X "
arctg(
t T
³ X(t) dt
– # & " ;
t
t T
³
X 2 (t) dt =
t
f
a 02
˜ 1 ˜ ¦ a 2k b 2k – #* >@ "4
2
k 1
(AU);
X "
Xm
,K
X "
Ka
X . &
– E
' & #&
&.
&+%'* $+%.
a
2 ˜ Xm ˜ W ˜ S( k ˜W ) , bk=0, 0
ak
T
T
sin( S˜ x )
.
S˜ x
– AU, S( x )
2
2
Xm ˜ W – #, X "
T
Xm 2 ˜ W
T
S(Z)
X(t)
Xm
Z
t
W
T
Z0
)
2˜Z0
4˜Z0
6˜Z0
8˜Z0
)
. 1.10. #"! % " % ( ) ! ()
A + # %&$ * :
> & % x
Q= T ( . 1.10, Q=4, . . > 4, 8, . #.);
W
' + # + x <
+ ( , 4 $).
12
;+%'* $+% ('*).
ak
W
k ˜W
Xm ˜ T ˜ S 2 ( 2 ˜ T ) , bk=0,
2
Xm ˜ W – #, X "
2˜T
a0
2
Xm 2 ˜ W –
3˜T
AU.
S(Z)
X(t)
Xm
Z
t
W
T
Z0
2˜Z0
4˜Z0
)
)
. 1.11. &"! % " % () ( ) ! ()
;$%'* $+% ('*).
ak
k ˜( W0 W1)
k ˜( W0 W1)
) ˜ S(
),
T
2˜ T
2˜T
Xm 2 ˜ 2˜W0 W1 – AU.
3˜T
Xm ˜ W0 W1 ˜ S(
2
#, X "
a0
2
bk=0,
Xm ˜ W0 W1 –
2˜T
S(Z)
X(t)
Xm
Z
t
W1/2
W0
W1/2
Z0
T
2˜Z0
)
4˜Z0
)
. 1.12. & % " % () ( )
! ()
;+%'* $+% ($"'*).
bk
a
Xm ˜ 1 , k=0, 0
S˜ k
2
2
Xm ˜ 1 – #, X "
2
13
Xm 2 ˜ 1 – AU.
3
S(Z)
X(t)
Xm
Z
t
T
Z0
2˜Z0
4˜Z0
)
)
. 1.13. &"! % " % ( ) ( ) ! ()
&++.
ak
>
@
a
Xm ˜ W ˜ S( 1 ˜ ( 2˜k ˜W 1)) S( 1 ˜ ( 2˜k ˜W 1)) , bk=0, 0
T
2
#, X "
2
2
T
2
T
2
Xm ˜ W ˜ 2 –
T S
Xm ˜ W – AU.
2˜ T
S(Z)
X(t)
Xm
t
W
T
Z
Z0
2˜Z0
)
4˜Z0
)
. 1.14. # "" ( ) ()
1.3. (*(4-&'( &(+(*-(%( %0&'
D $ #&$ # $
, $
+" # + * , +
# # . D# & % # +
# $'
$, " ; +:
S(j ˜ Z)
f
³ X(t) ˜ e
j˜Z˜t
dt S(Z) ˜ e j˜M(Z) .
0
& S(j ˜ Z) A(Z) j ˜ B(Z)
e j˜Zt
& %
#
14
cos(Z ˜ t ) j ˜ sin(Z ˜ t ) ,
(1.10)
S(j ˜ Z)
f
f
0
0
³ X(t) ˜ cos(Z ˜ t ) dt -j ˜ ³ X(t) ˜ sin(Z ˜ t ) dt .
D " ; + " X(t)
1 ˜
2˜ S
f
³ S(j ˜ Z) ˜ e
j˜Z˜ t
+ dZ .
(1.11)
-f
<$%'* $+%.
­°Xm ˜ e - a ˜ t , t t 0;
X(t) ®
°̄0
, t 0.
(1.12)
S(Z)
X(t)
Xm
Z
t
)
)
. 1.15. ' % " % ( ) ! ()
>+,?@ ".
­°Xm ˜ e - a ˜ t ˜ cos(Z ˜ t)
X(t) ®
°̄
0
, t t 0;
, t 0.
(1.13)
S(Z)
X(t)
Xm
t
Z
)
)
. 1.16. * " + ( ) ()
15
&+%'* $+%.
­Xm
X(t) ®
¯0
, 0 d t d W;
(1.14)
, t 0; t ! W.
S(Z)
X(t)
Xm
W
t
Z
)
)
. 1.17. #"! % " % ( ) ! ()
sin(t)/t.
X(t) Xm ˜
Xm
sin( S ˜ t )
T
S˜ t
T
(1.15)
X(t)
S(Z)
Xm˜T
t
T
Z
2˜S/T
)
. 1.18. !
)
sin(t)/t ( ) ! ()
! " , # , +&* +&* .
# sin(t)/t #-
1.4. &0'( &(6&'( %%)('
A "+ %# $ #& X(t)
&$ #& Y(t) * & & & % *
Y(t)=F>X(t)@.
(1.16)
\ *& "& > &, # &$ & $$
+$$: ' *> ' > 16
* * '
#+ .
' * E &, #& $ # -
F>X1(t)+X2(t)@=F>X1(t)@+F>X2(t)@;
(1.17)
F>C˜X(t)@=C˜F>X(t)@,
(1.18)
# A=const.
C' G-$+% "& $+%* ,*
' – h(t). ; " "& & # > :
f
h(t)=0 ³ h(t) dt f .
t<0
0
C' & # "#* "& $,* ,* h1(t). = $ # $ " + * $ * " +> h1 ( t ) ³ h(t) dt .
+ $ # $ & " > # + ' > & " +&* $ # * ( ?) # * " & $
:
t
Y( t ) X(0) ˜ h1 ( t ) ³ Xc(W) ˜ h1 (t - W) dW ;
(1.19)
0
t
Y( t ) X(0) ˜ h1 ( t ) ³ Xc(t - W) ˜ h1 (W) dW ;
(1.20)
0
t
Y( t ) X( t ) ˜ h1 (0) ³ X(W) ˜ h(t - W) dW ;
(1.21)
0
t
Y( t ) X( t ) ˜ h1 (0) ³ X(t - W) ˜ h(W) dW .
(1.22)
0
" ' & $ #& "#* > % $" C$ $" +%:
*
Y (s)
f
³ Y(t) ˜ e
0
s˜t
f
dt
³e
0
s˜ t
t
dt ˜ ³ X(W) ˜ h(t - W) dW ;
0
Y* (s) H(s) ˜ X* (s) ;
17
(1.23)
(1.24)
f
H(s)
³ h(W) ˜ e
s˜W
dW ,
(1.25)
0
*
*
# Y (s), X (s) – " % H(s) – $ + &.
*
Y ( j ˜ Z)
f
³ Y(t) ˜ e
($" C$),
j˜Z˜ t
dt ;
(1.26)
dW ;
(1.27)
Y* ( j ˜ Z) H( j ˜ Z) ˜ X* ( j ˜ Z) ,
(1.28)
-f
H( j ˜ Z)
f
³ h(W) ˜ e
j˜Z˜W
-f
($" +%),
# Y*(j˜Z), X*(j˜Z) – & H(j˜Z) – , &.
H( j ˜ Z) H(Z) ˜ e j˜M(Z) ,
(1.29)
# H(Z), M(Z) – # - " - $ .
* * & & ' " ' :
(1.30)
Y*(s)=H(s)˜X1*(s)+H(s)˜X2*(s)= H(s)˜>X1*(s)+X2*(s) @;
Y*(s)=C˜H(s)˜X*(s)=H(s)˜C˜X*(s). (1.31)
= # + # *&$ @ * E
' # " # > E
' # E $ :
*
(1.32)
H (s)=H1(s)˜H2(s),
= + # *&$ @ * E
' # E
' # E $ :
*
H (s)=H1(s)+H2(s),
(1.33)
$ $ E
' # & H(s) %
&+ # # - ' + *
H(s)
B( s )
A (s )
b 0 b1 ˜s b 2 ˜s 2 ... b m ˜s m
a 0 a 1 ˜s a 2 ˜s 2 ... a n ˜s n
,
(1.34)
m<n E
' & ai, bi – #* +& .
& " A(s), . . $? spi, % #+ E
' #
#:
H(s)
B( s )
A (s )
b 0 b1 ˜s b 2 ˜s 2 ... b m ˜s m
a n ˜(s sp 0 ) k 0 ˜(s sp1 ) k1 ...˜(s sp n 1 ) k n 1
# ki – + *.
18
,
(1.35)
, > & (ki=1), + $ & # & % :
n 1
¦ A / (spi ) ˜ e t ˜sp i , t > 0.
h(t)
B(sp )
-
(1.36)
i
i 0
= $ # $ # E & % :
h1 ( t )
B( 0 )
A ( 0)
n 1
¦ sp ˜A / (isp ) ˜ e t ˜sp i , t > 0.
i 0
B(sp )
i
(1.37)
i
&.
H(s)
B( s )
A (s )
1 2˜s
s 5˜s 4
2
1 2˜s
,
(s ( 4))˜(s ( 1))
! # + $ ( h(t)
1 2˜sp1 t ˜sp1 1 2˜sp 2
˜e
˜ e t ˜sp 2
2˜sp 2 5
2˜sp1 5
sp1=–4, sp2=–1.
& % > (1.36)) 1 2˜( 4) 4˜ t 1 2˜( 1) 1˜ t
˜e
˜e
2˜( 4) 5
2˜( 1) 5
7 ˜ e 4˜ t 1 ˜ e t .
3
3
= $ # $ h(t)
1 2˜sp 2
1 1 2˜sp1
˜ e t ˜sp1 ˜ e t ˜sp 2
( 2˜sp 2 5)˜sp 2
4 ( 2˜sp1 5)˜sp1
1 7 ˜ e 4˜ t 1 ˜ e t .
4 12
3
1.5. &)*8&'( +*%'
1.
2.
3.
4.
5.
6.
7.
8.
9.
D # * , , " , " + " , ' .
' . D # # &$, &$
& &$ .
#& # &$ $ & &.
D # # , # # , # & " *, E
' #&
& .
D # « » & *< $
# &$ .
?
# &
$ .
= " ; +
# ; + # " .
+ $ &, "+ * $ *. D # * $ .
A & %&$ " +&$ " *, $ & $ .
19
2. !$ $ $
=
# [2, 3, 4, 5, 6, 7].
"#
+"
& #>@ :
2.1. C)*)* %%)(' 9:*6 *) %0&
A & DA # > # + '
&$ # , & "& > ' .
! & & > '
DA, # >@ ' & + #
&. &$ '
& # # $ # + " '
>
, $
& &$ # –
"'
*
& >. D@*
* $ & '
* &$ ( . 2.1) ' ' +&$ " * #: /././././ (« / », « /'
»,
«'
/'
», «'
/ », « / »), "&$ &
+ % $ (;?H1), '
& " (=), '
& '
(=DA), '
- & " (=)
& + % $ (;?H2).
x $(t)
x(t)
;?H1
x'(n˜T#)
=
y'(n˜T#)
=DA
y(t)
=
y &$(t)
;?H2
f#
. 2.1. " " ,
,* & DA x $(t) = "
&*
+ % $ ;?H1 * " Zc.
; +
$ # ( >
>@ <& $ ) + * * Zm|Zc,
# >@* >: Zm<Z#/2, # Z#=2˜S˜f# – # 20
"' . D % % # "' & "& $'.
-'
" > # "' > , > '
#
( . 2.2).
x(t)
x(n˜T#)
"' x (n˜T#)
>
#
x'(n˜T#)
f#
. 2.2. # %% !- !
!
"+ "> '* $(n˜!#), >@ * & x(t) # & @ & n˜!#, (!#=1/f# – # # "' ),
'* '* $ (n˜!#), >@ * &
% &$ " * * $'(n˜!#)
# # + '
&$ #
&$ # " # ,
>@ " # =. = ' =DA "#& * "" ( )
&$ # * '
*
$ # * '
* $'(n˜!#) "
& y'(n˜!#)=;[$'(n˜!#)].
D'* ',* & y &$(t) ( ) " '
y'(n˜!#) @+> =,
'* $ +? '* ">@ l(t) *
& ;?H2, & &* # > & & & &$ # . J + * " Z < Z#/2 "& > %
?@.
A + E ;?H1, =, = ;?H2 & ' * &$ , & >@ $ " # /, / /, "> $+ -' -* *.
A " '
* "&
$4, & " >@ $ " *. D'
&
$ & > , , $, DA.
21
2.2. )()(%( -( -%*()&'4 %0&
= # ' > & ' , @ >@ # &$, , @ $ " $ .
K & " # "& > , '". K # &* #>:
x
' * # n˜T#: x(n˜T#)=x(t)|t=n˜T#, n=0,1,2,…,
>@* & # & # >@ & ;
' * & n: x(n)=x(n˜T#)|T#=1,
@ x
" * ;
' * & t:
x
x # ( t ) x ( t ) ˜ f G ( t n ˜ T# ) x ( t ) ˜
f
¦ G( t n ˜ T# )
n f
(2.1)
f
¦ x (n ˜ T# ) ˜ G( t n ˜ T# ),
n f
* % @+? +? f G ( t )
+ +
x(t) +?-
f
¦ G( t n ˜ T# )
# # * # -
n f
# , & T#:
­f, t n ˜ T#
.
G( t n ˜ T# ) ®
z
˜
0
,
t
n
T
#
¯
# & & # > ' * # > & n # n˜T# ( . 2.3). =
$ ' > & %# > & x(t), >@ # $(n˜T#),
* * >@* # * # + x(n), # %>@* ' +> " +.
$(n˜!#) "& *& < A & $#(t)
x (n ˜ T# )
( n 0.5) / T#
³ x # ( t ) dt
> # & * (
"& "-
( n 0.5) / T#
). = E &< #& # # > ': x(n˜T#), x(n), x#(t). = &
" $ (x(n˜T#) x(n)) # +"> " # &$ '
&$ . A &, # & ' *
22
& n, "& > % ', ' $%. D # # ' * & (2.1) E "* + " < > @# # #>@ $ G- + fG(t) # " & $(t) & $(n˜!#) ( . 2.4). J # " @+> " &$ #
&$
+ + * >@ $ # &$ .
x(t)
x(n˜T#)
t
n˜T#
0 1
2
3
n
T#
. 2.3. < ! (t) ! (n˜T) !
x(t)
x#(t)
³
fG(t)
x(n˜T#)
n˜T#
-1 0
. 2.4. ' 1 2 3
!
# & & "& &$ 4', +* ', .
2.3. +()* -%*()&0 %0&
$%+? $% # X(j˜Z), # @ "& > #+*< $, % * , # "
" ; + >@ X a ( j ˜ Z)
f
³ x(t) ˜ e
f
23
j˜Z˜ t
dt .
U
t n˜!#, X( j ˜ Z) T# ˜
dt !#, f
¦ x (n ˜ T# ) ˜ e
j˜Z˜ n ˜T#
n f
(2.2)
A # * &, % &+ *# & " ; + # , # ' * & (2.1):
X # ( j ˜ Z)
f
³ x # (t) ˜ e
j˜Z˜ t
f
¦ x (n ˜ T# ) ˜ e
dt
j˜Z˜n ˜T#
n f
f
f f
¦ ³ x ( t ) ˜ G(t n ˜ T# ) ˜ e j˜Z˜t dt
(2.3)
n f f
& # +" + >@ * G- ' .
& % (2.2) (2.3) > + <& ( "# * &) % !#, &* &
>
# * E &
j˜Z˜n ˜T#
j˜(Z k ˜Z # )˜n ˜T# . $ e
e
# Z#:
$ $ F(j˜Z)=X[j˜(Z+k˜Z#)], k = 0, ±1, ±2,…( . 2.5). & $
"+ * $ . A #
%# # # & ( *&) . D E * > #+ % > $ * * ". D #> # * $ (0 ± Z#/2).
2.3.1. , A "+ %# # # # (2.1), # " >@ ' fG(t) # " >@ # ; + f G ( t )
x # (t ) x(t) ˜
E
f
¦ Ck ˜ e
j˜ k ˜Z # ˜ t
.
k f
f
¦ Ck ˜ e
k f
' & #
24
j˜ k ˜Z # ˜ t
(2.4)
Ck
1 ˜
T#
n ˜T# T# / 2
³
G( t n ˜ T# ) ˜ e
1 ˜ e j˜k ˜Z # ˜n ˜T#
T#
j˜k ˜Z # ˜ t
n ˜T# T# / 2
1
T#
# % #+, > # ( * ) E * # * ' . ! * % &+ % & & " ; + @+> * # " >@* '
FG ( j ˜ Z)
1 ˜
T#
f
¦ G(Z k ˜ Z # ) .
k f
= " ; + (2.4) 1 ˜
T#
X # ( j ˜ Z)
f
Ak =1/!# f
¦ ³ x(t) ˜ e
j˜k ˜Z # ˜ t
˜ e j˜Z˜ t dt
k f f
1 ˜
T#
# & % >
f
¦ X [ j ˜ (Z k ˜ Z# )]
k f
(2.5)
J % "+ # * # " >@* ' , >@ " # >
(2.1)
* :
X ( j ˜Z)
f
1
2˜S
˜ ³ X a ( j ˜ - ) ˜ FG ( j ˜ (Z - )) df
1
T
˜
f
¦
f
³ X a ( j ˜- ) ˜ G (Z k ˜ Z - ) d-
k f f
1
T
˜
f
¦X
[ j ˜ (Z k ˜ Z )]
k f
" (2.5) #, # +> #
% F(j˜Z), @&$ k˜Z#. = F(j˜Z) & k˜Z# &" % % j˜k ˜Z ˜ t
# , >@ $ # " &$ E e
>@* '
fG(t) (. (2.4)
. 2.4). D
" G
# "' # "' .
& % (2.5) % &+ >
# " &$
# "'
&$ & ( &)
& , &
* > > > # + .
= &* * &
, & + * * Zm, >@* -
25
>: Zm<Z#/2. = E ( . 2.5) # * ±Z#/2 ( |Z|dZ#/2) # (# % !#) : !#˜F#(j˜Z)=F(j˜Z).
"' %# "#+ % . Zm<Z#/2
+ . E $ ' '"
@+> #+ ;?H + * * $ *
=(j Z), * !# |Z|dZ#/2 * > |Z|>Z#/2 ( . 2.5).
T#˜|X#(j˜Z)|
|=(j˜Z)|
|X(j˜Z)|
Z
–Z#
–Zm
Zm
0
Z#
D Z#/2
–Z#/2
. 2.5. % ! ! !
" ˶ ุ 2˜˶ m
A &$ # ;?H " >
; + # # "
# =(j˜Z)˜F#(j˜Z)
x(t )
T#
˜
2S
Z# / 2
³
3 ( j ˜ Z) ˜ X # ( j ˜ Z) ˜ e j˜Z˜ t dZ
Z# / 2
f
¦
n f
(2.6)
x (n ˜ T# ) ˜
sin[Z # ( t n ˜T# ) / 2]
Z # ( t n ˜T# ) / 2
& % (2.6) " % x(t)
# " & >@ ' sinx/x & E ' x(n˜T#) ( %), &
@ .
% &+ # % * # $#(t) + * $ 26
* #+ ;?H h(t), " * & " ; +
* $ *:
h(t)
T#
˜
2S
Z# / 2
³
sin[Z # ˜ t / 2]
Z# ˜ t / 2
3 ( j ˜ Z) ˜ e j˜Z˜ t dZ
Z# / 2
(2.7)
f
= # (2.7)
x(t)
³ x # (W) ˜ h ( t W) dW
f
& # ' # (2.6).
H , # q#=2˜qm, " " % *
" ' E*.
+, # & # " * q#<2˜qm ( . 2.6) # * |q|uq#/2 # "' F(j˜q) "#+ # : T#˜F#(j˜q) v F(j˜q). =
& > > # @& F[j˜(q–k˜q#)] ( . 2.6 k=±1). < '? $ $ . A "& < # "' % "& > < . = % # & & .
T#˜|X#(j˜Z)|
|=(j˜Z)|
|X(j˜Z)|
Z
–Z#
–Zm -Z1
-Zc1
Zc1
0
Z1
Zm
Z#
D –Z#/2
Z#/2
. 2.6. % ! ! !
" ˶ <2˜˶ m
;* +* x(t) * # + T & , "$>@ .
27
! * % # + " # >@ * # + xw(t) + * * ' =!(t) * # & T: x(t)=xw(t)˜=!(t) ( "& &*
*
+ ). * E Xaw(j˜q) xw(t) * $ *
Xa(j˜q)=Xaw(j˜q)˜=!(j˜q),
=!(j˜q)=sin(q˜T/2)/(q˜T/2) * '
# "& > * # + . J , , >, * # &. ? % # ( . 2.7) > " & # "' , @&$ , & >@ * , +<> & # "' .
T#˜|X#(j˜Z)|
|=(j˜Z)|
|X(j˜Z)|
Z
–Z#
–Zm
Zm
0
Z#
D Z#/2
–Z#/2
. 2.7. % ! ! !
%
&* @+> #+ ;?H # + x * ( t )
N 1
¦
n 0
x (n ˜ T# ) ˜
' sin[Z( t n ˜T# ) / 2]
Z( t n ˜T# ) / 2
x(t)
> # + +.
H # "' * # + f#=2˜fm & N=f#˜Tc=2˜fm˜Tc, "& " * x(t), "& > # * * fm, * " +>. D * * >@
x*(t), #>@
# $(n˜T#) * ±f#/2.
28
A % # "'
+&$ " % #& ,
"+ &* # * ±f#/2 % + * %
. J , & & >@ , % < <& $ q > q#/2
# "' > ">
>
# , "# $ % $ Zc Z k ˜ Z# d Z# / 2 .
@ & >@ >
$ # , #& > @ >@ , %
$ #&* . ? , F1 . 2.6 " Fc1=FGF1. , # Fc1 *
$ # &+.
# Fc1, " fA # fA " . 2.8.
fA
f#/2
fc1
fA
0
f#/2
f#
f1
3˜f#/2
2˜f#
. 2.8. < !
D + + $ % % , + # " , # *
# "' . E "> + ;?H1 $ # & DA, " – $'*.
2.4. +*(-((&( %%:9/ -%*()&'4 %%)(
* # > "& , @ >@
# &$ . & > E & # "' , +"> # ' * & '
* " # +>
+> .
, , +> #
$, >@ "+ %# &$ #&
$ #& # + :
29
y(n)=;[x(n)].
(2.8)
D &, "&* & &
# , "& > &.
=
# # & & ' > *&
*&, &
& .
\ *& # & & & ( E ' ) # > ' " ' :
(2.9)
y(n)=;[a1x1(n)+a2x2(n)]=a1;[x1(n)]+a2;[x2(n)]
( & "#* * %# "#* )
# , . . " % "#* :
y(nzm)=;[x(nzm)],
(2.10)
# x(nzm), y(nzm) z # + , "# %& ( # &
) + x(n) y(n) m # # "' !#.
2.5. ()-' )()(%0 +%&/ &(6&'4 -%*()&'4 %%)(
*((&&6 %) 0*)' 9:*6 :8)*9
& 4 %&(
& *& &
* & > #
' +& :
M
ª d k y( t ) º
˜
a
¦ k « dt k »
¬
¼
k 0
y (t )
N
ª d l x(t) º
˜
b
¦ l « dt l »
¬
¼
l 0
f
f
f
f
³ h(W ) ˜ x(t W ) dW
³ h(t W ) ˜ x(W ) dW , ,
(2.11)
(2.12)
# h(t) – + $ , >@ ' * *
& #+- +: h(t)=;[~(t)].
# &$ $ #
' + (2.11) +:
M
¦ a k ˜ y( n k )
k 0
N
¦ b i ˜ x (n i)
(2.13)
i 0
, #
' + (2.11), M "
# (M  N), ak, bi – & E
' &; x(n z i),
y(n z k) z $ # *
&$ # * & &, "# %& i k
# # "' .
30
C" % &+ , , # "' * #
' + @+>
" #:
dx€x(n)zx(nz1) – " + . #.
# #:
= a0 = 1 " (2.13) N
y( n )
M
¦ b i ˜ x ( n i ) ¦ a k ˜ y( n k )
i 0
(2.14)
k 1
*
, ">@ " (2.14) (. . & >@ " &
), "& > # & ' % (;).
A &$ # '
+ @ $ # x(n) #&#@ $ (N M) $ # &$ # x(nzi), y(nzk), " <&$ ( "&$) &"+ ' E
' ak, bi z ( . 2.9). " &, , # + , @* * % .
=
" $ E
' akv0 ; "& +' (C;). C " + "* ,
. . " &$ # y(n) #&#@ $ y(nzk) ( . 2.9).
x(n)
bN …
0 1
n-N
b2 b1 b0
n
n-2 n-1 n
y(n)
a2 a1 a0
aM …
0 1
n-M
n
n-2 n-1 n
. 2.9. < + !
" C" > (2.14) E
' ak=0 +'* * % (?C;):
31
N
¦ b i ˜ x (n i)
y( n )
(2.15)
i 0
J
+ " * " , &$ # * #
N #&#@ $ " < * bi * @
$ # ( . 2.9, $ * ). (2.15) "& >
% %@ + ( >@ " >@ % # " &).
(2.2) # &$ $ (A). & % > @+> ": t € n˜!#,  € m˜!#, d € 1, ‚ € „, . . # "' * (2.12):
f
¦ h (m) ˜ x ( n m)
y( n )
m f
f
¦ h ( n m) ˜ x ( m)
(2.16)
m f
$ #@ (2.16) # ' h(m) ( h(n)) "& $+%* ,* * '. D # # * & '* $+%
u0(m)=1, m=0 u0(m)=0 m>0: h(m)=;[u0(m)]. " " * & h(m)=0 m<0 ( % %+ "#*); E A & # >
#:
y( n )
f
¦ h ( m) ˜ x ( n m )
(2.17)
m 0
" %& # # +&$ $ * % ( . 2.10).
u0(m)
h(m)
;: "*
h(m)
1
m
0 1 2
)
m
m
0 1 2 …
0 1 2 …
)
)
N-1
. 2.10. > " % ( ) " % % ?@A- () @A- ( )
> +> $ > +'
%', E $ "& > % H-%. = + * $ % # + *
C;. * 32
C; "$>@ + $ & % ,
f
¦ h ( m) f .
m 0
E+' ' %' H%, . . +
* + * $ *. &% A (2.17) # ?; & #& ,
#& # * + * $ N:
y( n )
N 1
N 1
m 0
m 0
¦ h ( m) ˜ x ( n m)
¦ h ( n m) ˜ x ( m)
(2.18)
J ", BC % # +" + "' ?; , " % #
C; # $ + * $ " E +< G & *.
" (2.15) (2.18) #, " + *
$ & % A (2.18) %# & E
' bl
" ?C; (2.15): h(m)=bl|m=l >, " , E
' ?C;. = E , & +< " + # &$ , +, ?C; "> *
% BC (2.18), C; – " @*
(2.14).
2.6. ()-' )()(%0 +%&/ %0& -%*()&'4
%%)( & +(%&6 +%%) ( %))&6 %))
? @ # &$ $'*
$ * :
f
X a (s)
³ x(t) ˜ e
s˜t
dt ,
(2.19)
0
# s = ‡+j˜q z &* \ .
= " > \ * j˜q ( ) " ; + , #>@ :
X a ( j ˜ Z) X a (s) s j˜Z
f
³ x(t) ˜ e
j˜Z˜ t
dt .
(2.20)
0
# &$ " \ "
(2.19) @+> ": t€ n˜T#, ‚ € „, dt€ 1, . . # "' *
(2.19) :
33
X(s)
f
¦ x (n ) ˜ e
s ˜n ˜T#
.
(2.21)
n 0
D#
&$ " (2.19) # ' +& ' # &$ * S- .
J %*< > Z-$" ',
, # < f
¦ x (n ) ˜ z n .
Z{x (n )} X(z)
(2.22)
n 0
Z
(2.22) " * S ( -
s ˜T
V ˜T
j˜Z˜T
#
\): z e # a j ˜ b e # ˜ e
.
J "+ > % " * S > Z- + ( . 2.11). D + E $
% * ">
$ ' * q, -
* # +> * E & e
z
e
V˜T#
˜e
j˜[Z k ˜Z# ]˜T#
j˜Z˜T#
k=0; r1; r2
S- +
# q#:
. #.
Z- +
j˜Z
j˜b
3˜Z#/2
Z#/2
-V1
Z1
0
e
V
Z#/2
Z1T#
-1
-Z#/2
-Z#/2
+Z
Z1
V T
1 #
1
a
0
–Z
-3˜Z#/2
. 2.11. S- Z- %
34
!, * j˜F S- (‡=0) ' % + # # Z- ; %# * <
* q# E # $ # E * % .
D# " % * ±q#/2. \ S- + (‡ < 0) & + # # Z- , S- + (‡ > 0) % " #&.
Z- " , & # * % , # $"? +% (2.2), #>@ :
X(z) z e j˜Z˜T#
f
¦ x (n ) ˜ e
X( j ˜ Z)
j˜Z˜ n ˜T#
.
(2.23)
n 0
A# +, Z- " , " \, % &+ – # # + * x(n) = 0
n < 0, +, x(n) v 0 n < 0; E #& n zf # +f.
A * Z- " :
*%:
(2.24)
Z{a1 ˜ x1 (n ) a 2 ˜ x 2 (n )} a1 ˜ X1 (z) a 2 ˜ X 2 (z)
(Z- " & Z- " *);
:
Z{x (n m)}
f
¦ x ( n m) ˜ z ( n m ) ˜ z m
X(z) ˜ z m
(2.25)
n 0
(Z- " "# % m # x (n m) " # > Z- " X(z) "# % $(n) % + "# % z m . J G +" z m
# " E "# % &$ $$ DA:
, E "# % # x(n)
x(n-m)
–m
, . . # # "' , "z
-m
1
X(z)
z ˜X(z)
z : Z{x (n 1)} X(z) ˜ z 1
c:
y( n )
f
¦ x1 ( m ) ˜ x 2 ( n m ) .
x1 (n ) * x 2 (n )
m 0
Y(z)
f
f
¦ ¦ x1 ( m ) ˜ x 2 ( n m ) ˜ z ( n m ) ˜ z m )
n 0m 0
35
X1 (z) ˜ X 2 (z) (2.26)
(Z- " # $ # + * > Z- " * E $ # + *);
$:
1 ˜ X (-) ˜ X (-) dy(n ) x1 (n ) ˜ x 2 (n ); Y(z)
2
³ 1
2 S˜ j
-
C
" #-
(2.27)
(Z- " " # # $ # + * * Z- " E $ # + *, # - – , A – , $ & >@ * & #& + * ' ).
? * (2.27) Z- " " # # &$ # + * # "& % # &, >@ % &, # &$ :
f
¦ x (n ˜ T# )
2
n 0
1 ˜ X ( z) ˜ X (z 1 ) ˜ z 1 dz
2 S˜ j ³
C
T#
˜
S
Z# / 2
³
2
X( j ˜ Z) dZ . (2.28)
0
D " % * * K .
& * # " ; + # .
D & Z ; + " #> & % :
x(n)
T#
˜
2S
x (n )
Z# / 2
³
X( j ˜ Z) ˜ e
j˜Z˜ n ˜T#
dZ
Z# / 2
1 ˜ X ( z) ˜ z n 1 dz
2 S˜ j ³
C
1 ˜
2S
S
³ X( j ˜ O) ˜ e
j˜O ˜n
dO (2.29)
.
(2.30)
S
¦ resi [X(z) ˜ z n 1 ] z
i
z pi
U#+ "&: Œ=q˜#=2˜Ž˜f/f# – + , "& % '
* *; res – && #& + * n–1
' F(z)=X(z)˜z
&$ $, $ & &$ A, # . # - ' +&$ ' *
X(z)=P(z)/Q(z) & > Q(z),
"& & > zpi '
X(z). = >& &+ @& , - %& , &
& . &&
>$ $ # @+> & % *:
# >
resi >F(z)@z z
lim z o z pi (z z pi ) ˜ F(z) ,
(2.31)
>
pi
# > +> r
resi >F(z)@z z
pi
@
>
@
d r 1 ( z z ) r ˜ F( z) .
1 ˜ lim
z o z pi r 1
pi
( r 1)!
dz
36
(2.32)
=
n=0
res 0 >X(z) / z @z 0
+ 1 / z z n 1
(2.30) # # +&*
&
lim z o 0 >X(z)@ > zp0=0, &* # % -
n 0
.
A@ > ' +& '& &$ Z- " *
# <
# &$ ' *.
P(z) # - ' + * ' , & >@*
X(z) (P(z)=0), "& > . D % # * > * Z- +" * ' Z- " # &$ .
2.7. (%)'( +%(-)(8&%) -%*()&'4 %%)(
=
# & # & # + +">
$ DA, $ &+&$ .
­1, n 0
1. '* $+%: u 0 (n ) ®
¯0, n z 0
&* &* U0(j˜q)=1. Z- " U0(z)=1
# &$ % " , #+- +
# &$. D $+% , # * &.
2. '* $+%, '* m :
­1, n m;
u 0 ( n m) ®
¯0, n z m.
A * "# % Z
F (; +)- "&
- j˜Z˜ m ˜T
#
Z{u 0 (n m)} z m ; F{u 0 (n m)} e
.
A @+> u0(n – m) > # # + + %
&+ # # # * :
f
x (n )
¦ x ( m) ˜ u 0 ( n m) .
m f
­1, n t 0;
3. '* : u1 (n ) ®
( ' > ).
¯0, n 0,
Z- " U1 (z)
f
¦ zn
n 0
1
1 z 1
-
* . A # > zp=1 + z0=1 # ( . 2.12, ).
37
& % # # $ # #>@ " :
1
U1 ( j ˜ Z) U1 (z) z e j˜Z˜T#
1 e
j˜Z˜T#
e
j˜Z˜T# / 2
1
˜[e
j˜Z˜T# / 2
e
j˜Z˜T# / 2
]
j˜( Z˜T S ) / 2
#
e
2˜sin(Z˜T# / 2)
(
J* : e r j˜D
& # +" 1
2˜ sin(Z˜T# / 2)
U1 ( j ˜ Z)
# cos(D) r j ˜ sin(D)
" . 2.13,. D u1(n) $, , # * &.
4. &+%'* $+% * %:
­1, 0 d n d N 1;
u N (n ) ®
¯0, n 0, n t N.
Z- " U N (z)
N 1
¦
1 z N
1 z 1
zn
n 0
* * , #
uN(n)
Z- ":
. E % "+ %
# uN(n)=u1(n) – u1(n – N), N
U N (z) U1 (z) z N ˜ U1 (z) 1 z 1 .
1 z
A # >
zp=1
, i=0, 1,…N–1, (1 z ) 0, z 0i n 1 e
# * % ( . 2.12,).
A + # & % N
U N ( jZ)
1 e
j˜ Z˜ N ˜ T#
1 e
e
N
*:
"@&$ j˜2˜S˜i / N
e
j˜ Z˜ N ˜ T# / 2
j˜ Z˜ T#
e
˜[e
j˜ Z˜ T# / 2
j˜ Z˜ N ˜ T# / 2
˜[e
j˜ Z˜ T# / 2
e
e
j˜ Z˜ N ˜ T# / 2
j˜ Z˜ T# / 2
]
]
jZ( N 1)T# / 2 sin(ZNT# / 2)
sin(ZT# / 2)
# U N ( j ˜ Z)
sin(Z˜ N ˜T# / 2)
sin(Z˜T# / 2)
. 2.13,. D # * '
#>@ " $ &$ $:
­ N, Z 0;
U N ( j ˜ Z) ®
¯0, Z 2 ˜ S ˜ i / N ˜ T# i ˜ Z# / N,
38
sinc
" -
i 1,2,...N - 1
j˜b
j˜b
Z02
Z01
Z0
-1
Zp
1
0
2˜S/N
Z00
a
0
-1
a
Zp 1
Z0(N-1)
)
)
j˜b
j˜b
Zp
Zp1
Z
a
Z0
-1
Z
Z˜T#
a
Z01
1
0
Z˜T#
-1
Z02 1
0
Zp2
)
!)
. 2.12. " + ! ( ), " % % (),
( ) (!) 4 # " $ #&$ '
# $ # &$ $.
-
5. $'* * " qc:
x (n ) e
j˜Zc ˜ n ˜T#
Z- " , X(z)
cos(Zc ˜ n ˜ T# ) j ˜ sin(Zc ˜ n ˜ T# ), n t 0 .
@ , # * * :
f
¦e
j˜Zc ˜n ˜T#
˜ zn
n 0
A zp
e
j˜Zc ˜T#
# + z0=0
qc (
1
j˜Z ˜T
1 e c #
˜z 1
.
# &* >
. 2.12, ). A & & % X( j ˜ Z) X(z) z e
j˜Z˜T#
1
1 e
j˜Zc ˜T#
39
˜e
j˜Z˜T#
e
j˜[( ZZc )˜T# S ] / 2
2˜sin(
( ZZc )˜T#
)
2
.
|UN(j˜Z)|
|U1(j˜Z)|
1/2
Z
Z
Z#
Z#/2
0
-Z#/2
-Z#/2
)
|X(j˜Z)|
1/2
Z
Z
1/2
Z#/2 Z#-Zc Z#
Zc
0
Z#/2
)
|X(j˜Z)|
-Z#/2 -Zc
0 Z#/N 2˜Z#/N
-2˜Z#/N -Z#/N
-Z#/2 -Zc
0
)
Zc
Z#/2
Z#
!)
. 2.13. < " ! ( ), " % % (),
( ) (!) K #+ 1
X( j ˜ Z)
( ZZc )˜T#
2˜ sin(
)
2
# qc= q#/4 " . 2.13, .
6. @'* * " qc:
e
x (n ) cos(Zc ˜ n ˜ T# )
j˜Zc ˜n˜T#
e
2
j˜Zc ˜n˜T#
, nt0
Z- " X(z)
1/ 2
1 cos(Zc ˜T# )˜ z 1
1/ 2
1 2˜cos(Zc ˜T# )˜ z 1 z 2
r j˜Zc ˜T#
- %&$ > z p1,2 e
1 e
* z 01 0
j˜Zc ˜T#
z 02
˜ z 1
1 e
˜ z 1
cos(Zc ˜ T# ) (
A X( j ˜ Z)
j˜Zc ˜T#
. 2.12, ).
X(z) z e j˜Z˜T# , "&* #>, "
. 2.13, # qc= q#/4.
40
' 5,6 +"> # " $ #&$ " + &$ # &$ .
'
7. $'* $+% * # + N˜T#:
x (n ) e
j˜Z0 ˜ n ˜T#
Z- "
cos(Z0 ˜ n ˜ T# ) j ˜ sin(Z0 ˜ n ˜ T# ), 0 d n d N - 1.
f
¦e
X(z)
j˜Z0 ˜n ˜T#
j˜Z ˜N˜T
1 e 0 # ˜z N
j˜Z ˜T
1 e 0 # ˜z 1
˜ zn
n 0
; +- " X ( j ˜Z)
1 e
j ˜ (@ @0 ) ˜ N ˜ T #
1 e
j ˜ (@ @0 ) ˜ T #
e
j˜
0
2
˜(N 1 )˜T
˜
sin (
0
˜ N ˜T )
2
0
sin (
2
˜T )
.
A #
+ # + 4, @ q0 ( " " & q0).
>
8. @'* $+% * # + N˜T#:
x (n ) cos(Z0 ˜ n ˜ T# ), 0 d n d N - 1 .
Z- " ; +- " &+ # & -
* Z- "
N 1
X(z)
¦
n 0
X( j ˜ Z)
e
#
jZ 0 nT#
jZ nT
[e 0 # e
] n
z
2
j˜
Z Z0
˜ ( N 1) ˜ T#
2
2
˜
+
e
j˜Z0 ˜n ˜T#
e
j˜Z0 ˜n ˜T#
ª 1 e jZ 0 NT# z N 1 e j˜Z0 NT# z N º
«
jZ T 1
jZ T 1 »
¬ 2˜[1 e 0 # z ] 2˜[1 e 0 # z ] ¼
Z Z0
NT# )
2
Z Z0
sin(
T# )
2
sin(
Z Z0
˜ ( N 1) ˜ T#
2
e
j˜
2
˜
Z Z0
NT# )
2
Z Z0
sin(
T# )
2
sin(
.
# % + @ @&$
# + + q0 – q0 .
2.8. (*(-)&/ :&9/
%))&/ 4*)(*%) -%*()&6 %%)('
= # ' * & # < " * \ &$ # $ # : H(s)=Y(s)/X(s).
D # & >@ & #
' + (2.11)
(2.12) # @ & % # # &$ ' * &$ # # - ' + * ' * * S
41
N
H(s)
B( s )
A (s )
¦ b i ˜s
i
¦ a k ˜s
k
i 0
M
(2.33)
k 0
# " \ + * $ & h(t)
f
H(s)
³ h(t ) ˜ e
s˜ t
dt .
(2.34)
0
(s)=0 " (s)=0 # * ' (2.34) > s0i > spi &, " & # ' # "& *
+- > *
:
M
H(s) C ˜ –
i 1
s s 0i
,
s s pi
# C – >@ .
= # * '
$ # $ H( j ˜ Z)
(2.35)
* & # Y ( j˜Z)
X ( j˜Z)
H(s) s j˜Z ,
(2.35) & % ; +- " + * $ H( j ˜ Z) H(s) s j˜Z
f
³ h(t) ˜ e
j˜Z˜ t
dt .
0
= # * ' * # * & "& < Z- "
&$ # $ # &
Y(z)
.
X(z)
H(z)
& & % , & Z- " " &$ * (2.13), (2.14) (2.15), > #
# # - ' + * ' * ' + * ' *. "+ < " # * & "
& < $ *, & >@ $ # > ' > ( # < #
' +&$ * # &$ ).
" Z- " &$ &$ * A (2.16)
f
Y(z)
f
¦ ¦ h ( m) x ( n m) z n
n 0m 0
42
H(z)X(z)
#, # ' # * & Z- " + * $ f
H(z)
¦ h ( m) ˜ z m .
m 0
+ $ & ,
#+, Z- " > # * '
h (n )
>
-
1 H ( z) z n 1dz .
2Sj
C
³
H $ # * &, # < ; +- "
&$ # $ # , " %# Z ; +- " (2.12) $ # # * '
& H(z) * " * z e
H( j ˜ Z) H(z) z e j˜Z˜T#
j˜Z˜T#
:
Y ( j˜Z)
.
X ( j˜Z)
\ " +, ; +- "& # &$ , & $ # * & # > *
'
+ * * & Œ=q˜T#=2˜Ž˜f/f#, "& * % '
* *. U * & q
* #$ (0..q#) (zq#/2..q#/2) > " '
& Œ #$ (0..2 Ž) (zŽ..Ž). H $ # *
& ' '
* & Œ # & % :
H( j ˜ O) H(z) z e j˜O
H( j ˜ O)
Y ( j˜O )
,
X ( j˜O )
f
¦ h (n ) ˜ e j˜O˜n .
n 0
U# " $ " " & # "' q#, >@ * +
$ # # "' !#=1.
= "
@ #
" % # * $ # < &$ " * &$ # $ # &$ $ & < % :
H( j ˜ Z)
Y(n )
X(n )
X(n) e
j˜Z˜ n ˜T#
.
K #+ * $ # * &
#> * * * 43
"& > # - * (HF)
" * (;HF) $ &.
J % + * * * * $ , " &$ * ' *
&, – *.
" # * $ # * & " ; + + * $ # % *# q# 2˜Ž ( . 2.14). D
# @ ; +- " >&$ # &$ # + *, # &$ .
K E
G # +> *
E & e
j˜Z˜n ˜T#
H( j ˜ Z)
e
j˜(Z k ˜Z # )˜n ˜T#
f
¦ h (n ) ˜ e
e j˜(O 2˜S˜k )˜n
j˜(Z k ˜Z # )˜n ˜T#
H[ j ˜ (Z k ˜ Z# )]
n 0
H( j ˜ O) H[ j ˜ (O 2 ˜ S ˜ k )] , # k= 0, ±1, ±2,… .
|H(j˜Z)|
1
0.5
Z
Z0
Z#/2
Z#-Z0
Z#
Z#+Z0
. 2.14. # CA ! ! %
= " " '
&$ +
& # # $ * $ * 0 # ±q#/2.
! '
&
+ $ $ $ #, # &$ + , + # +&$ % +&$ , # # " 0..q#/2.
U + * $ '
+ & # "' , %# * * # "'
+ * $ + , @ # * % * #
+> &$ * $ + . " & # "' q# q'# " < * $ 44
H(j q) “ = q'#/ q# ", ' + % > $ '
+ (E # " * " ; +). H * $ H(j q')=“H(j “˜q) > & " &$ ' +&$ '
+ q'i, "& $ $ #&
" qi ( , q0 . 2.14) < q'i= “ qi.
A# + , " & # "' $ '
+ " > & # "' .
! " , $%, % ' '* ,* $ * ', '* F/2, ' + > & $ '
&$ +
# &$ &$.
2.9. (*(-)&'( :&9 *(*%&'4 9:*'4 :8)*.
%( :A(%6 *(A(%)
C &* + (C;) " , &&* " & (2.14). & Z- " &$ &$ * (2.14), & * * "# % Z- " (2.24), (2.25):
Y(z)
N
¦ bi ˜ z
i
i 0
M
˜ X(z) ¦ a k ˜ z k ˜ Y(z) .
k 1
= $ # < > Y(z)/X(z), @ & % #
# * '
+ :
N
H(z)
Y(z)
X(z)
1
B( z )
1
A(z )
¦ b i ˜z
i 0
M
i
1 ¦ a k ˜ z
k
.
(2.36)
k 1
D # < # $ + % " * * z–1. % –1
# # $ # &$ ' *: H?(z)=B(z ) – * + , . .
+ HP(z)=1/A(z–1) – * H(z)=HH(z)˜HP(z).
& % # * '
(2.36) + –1
#
* z , , &< " , % "# % # # "' , # , %
+ +
+ >@ # * '
', #>@ .
45
? , # * ' H(z)=b0/(1+a1z–1+a2z–2) " y(n)=b0x(n)Ga1y(nG1)Ga2y(nG2).
D # , + %
+& , " (2.14)
# * '
(2.36), % # " + & % # # *
' & " " >, , &<, Z- " >.
& %
(2.36) # * ' , " (2.14), # , # N B(z–1) &< # M A(z–1), #>@ # '
+ K, . . & + N P M. N > M # ' (2.36), " >
(2.14), # "+ # # $ # &$ ' *, " &$ ( ) # * ' + (N z M)- #, ( # ) # * '
+ ,
# * # +< K.
" '
&$
+
# > ' > (2.36)
=
& %> %
# < B(z) A(z) % +& * Z. E # +
"+ (2.36) % + zM
N
H(z)
B( z )
A(z)
zM N ˜
¦ b i ˜z
i 0
M
N i
1 ¦ a k ˜ z
M k
.
(2.37)
k 1
K % + zM–N N < M " (M z N) &$ * ( N < M (N z M) &$ * "), &, , > *
" (. . * > ).
D# # ' + % &+
+ " Z- " " , # < # $ # "# "
% +& * Z:
N
H(z)
¦ b i ˜z
N i
¦ a k ˜z
M k
i 0
M
.
(2.38)
k 0
# & N u M "+&. H & # +
E , # +
"+
M
(2.38) z
46
H(z)
b 0 ˜z N M b1 ˜z N M 1 ... b N M ˜z 0 b N M 1 ˜ z 1 ... b N ˜z M
1 a 1 ˜ z 1 ... a M ˜z M
. (2.39)
& % > (2.39) #>@ " :
y(n ) b 0 ˜ x (n ( N M )) b1 ˜ x (n ( N M 1)) ... b N M ˜ x (n ) b N M 1 ˜ x (n 1) ... b N ˜ x (n M )
>a1 ˜ y(n 1) a 2 ˜ y(n 2) ... a M ˜ y(n M )@ .
= E > @ * &$ # y(n) & + @ x(n) #&#@ x(nzi) $ # , (NzM) #@ , . . ' x(n+NzM), x(n+NzMz1), … x(n+1), " % . ! + # *
" , + NPM, ' , "# *
(2.38), &< + ",
# " + * + # * & ( &$ # * # % %+ $ # *).
& % (2.38) N < M, >@ " # + #:
y(n ) b 0 ˜ x (n (M N)) b1 ˜ x (n (M N 1)) ... b M N ˜ x (n ) b M N 1 ˜ x (n 1) ... b N ˜ x (n M )
>a1 ˜ y(n 1) a 2 ˜ y(n 2) ... a M ˜ y(n M )@ .
U#+ & $ # x(n), x(n z 1), … x(n z M+N+1) +"> & y(n), " ""#& > + (M z N) .
! " , # & '
+ (2.37), (2.38) &+ @ # & < # $ B(z) A(z) # # N=M:
N
H(z)
¦ b i ˜z
N i
¦ a k ˜z
N k
i 0
N
B( z )
A(z)
(2.40)
k 0
= # & ' (2.37), (2.38) N < M # (2.40)
> E
' bi N < i uM.
#&$ &< $ + *
& # * ' E
' & b0 a0 ( i=k=0) >
< >@> + " @ &+ %&
& # '.
= # * '
(2.40) $ # >,
>@ > + " " &$ + .
47
E+ # * ' > (2.40),
. . " * Z, @>@ + B(z):
B(z)=0 z=z0i.
&? > " # * ' :
A(z)= 0 z=zPi.
& + & @ & E
' ak, bi >
@ & (
&)
/ %& >.
?
> &+ &
& .
# # * ' N +< #
" K, *
+ (M z N) *, &$ >,
. . "@&$ # * Z- .
U >& # * ' , % # +
"& * +- > *
, +" " % " E & % :
N
H(z)
–
i 1
N
( z z 0i )
( z z pi )
(1 z 0i ˜z 1 )
– (1 z
i 1
1
pi ˜ z )
.
(2.41)
& % (2.41) % + >@ * % ' & b0 a0 # * ' + C=b0/a0, E
& # '.
& % # # * '
(2.41) +"
"'
&$
+ . , @ $ & % * +&$ $ &$
+
$ # & ' .
# ' "#
# & E &$
# * (2.42)
H(z)
r
D( z )
r
( z z pr ) ˜( z z p ( r 1) )˜...˜( z z pM )
Bu
¦ (z z
u 1
pr )
u
M
¦
i r 1
Bi
B0 ,
( z z pi )
$', $? & % # + * $ E #
(2.42)
M
h (n )
¦ Bi ˜ z npi i , n>0; h(0)=B0.
(2.43)
i 1
$? r
& % # + *
= $ E # > E
' &
h r (n )
Br
˜ (n 1) ˜ (n 2) ˜ ... ˜ (n (r 1)) ˜ z npr r , hr(0)=0.
( r 1)!
48
(2.44)
! " , & % (2.43), (2.44) # E &$ # *
&
& > " > # # + +> $ + # * ' , "# *
(2.42).
2.10. %))&'( 4*)(*%) *(*%&'4 :8)*.
%( %)6%)
H > $ C; % + > "
& % * # *
'
H(z) – # + (2.40), (2.36), +- > (2.41) " % j˜Z˜T
#.
E & # (2.42), +" " z e
= # * ' (2.36) $ C; #
N
¦ b i ˜e
H( j ˜ Z)
i 0
M
-
j˜Z˜T# ˜i
1 ¦ a k ˜e
j˜Z˜T# ˜k
.
(2.45)
k 1
= # * ' C; +- > *
(2.41) & % # HF, "& >@ & :
H( j ˜ Z)
M e j˜ Z˜ T# z ˜e j˜ Z 0i ˜ T#
0i
–
i 1e
j˜ Z˜ T#
z pi ˜e
M R ( j˜Z)
– R 0pii ( j˜Z) .
i 1
j˜ Z pi ˜ T#
(2.46)
H + "+ (2.46) # > & R0i, Rpi # * % * # *
q˜T# # * z0i > zpi C;. = $ # #>
(2.46) # & % # HF ;HF C;
#
H( j ˜ Z)
M R ( j˜Z)
0i
–R
i 1
M(Z)
pi ( j˜ Z)
,
(2.47)
M
¦ \ 0i \ pi ,
(2.48)
i 1
R0i(j q), Rpi(j q), –0i, –pi – &, # |R0i|, |Rpi| z # & "& +> ' .
C % > * Z- ( . 2.15)
"
#
& , # >@ $ $ * # * % , >@* "# * q˜T# Œ (49
, * + HF
;HF
# " (0..q#/2).
. 2.15), @+> (2.47), (2.48) % &+ # >&$ " * & j˜b
Rp1
Zp1
Z02
-1
A(Z1)
R01
R02
Z01
1
0
a
Rp2
Zp2
. 2.15. " + ,D
! * * + # # * '
# * $ &$ * C; " * > . (2.47)
. 2.15 q=qpi
+ # > Rpi.min > +&
" HF E
' # C;, q=q0i + # * R0i.min – +& " E
' #
+ .
! " , $ +* $ $+ $$+ * $ + , $ $? – $+ .
. 2.1 #& " HF C; 2-
#, & & * > ( . 2.15) # #
&$ '
&$ Œ. D %& #
> > " z01=1, z02=z1, zp1=0.4+j˜0.6, zp2=0.4–j˜0.6. =
HF * + % - >@ + .
! ' 2.1
* CA ,D 2-! ,
" +
Œ=qT#
(Œ)
0
0
Œ
1.5
Œp1
4.82
Ž/2
2.24
—
0
C # %& " > *
Z- " $ " , % "
+ C; "# * * $ *, " + #.
50
A @+> *, "@&$ # * % , E > & "$ HF.
?, &<>@ #> # ', > C; + - " , +"& #&$
" &$ .
= * > * # % *
C;.
* +*.
= > *
C;, &<>@ #> # '
(|zpi|<1), $ # # # . *
+ > $ # * S- , ( . 2.11) Z- " % + # # .
2.11. !*' *(A9 *(*%&'4 :8)*
C &
+ & @ > " & . D &
$ "' >
x ;
x ;
x #;
x +.
C" & >> & +& ' % , "# % .
? &$ $$ * "' ; > E& '
* "# % (Zz1), % (F) & (˜).
C; # &< ( >
# K @ " (2.14)) ">, , # + + # " &$ " + #, # * ( # + *) + *
$ "' .
" & # & " + C; & > * *
"' C;.
H # +&$ +&$ " + L #
+ M $ # L=K/2, – L=(M+1)/2, E # " + " # (" # @ & > ).
51
++.
= # ' # " C; ( . 2.16) # " # # &$ ' * " + :
L
H(z) C 0 ˜ – H J (z) .
(2.49)
J 1
1 b1J ˜ z 1 b 2 J ˜ z 2
H J (z)
1 a 1J ˜ z
1
a 2J ˜z
2
z 2 b1J ˜ z b 2 J
2
z a 1J ˜ z a 2 J
( z z 01J ) ˜( z z 02 J )
,
( z z p1J ) ˜( z z p 2 J )
# HJ(z) z # ' J- # " "
E
' b0J= 1; A0 – >@ * < >@ *
% +.
x(n)
H1(z)
H2(z)
HL(z)
…
y(n)
. 2.16. " " ,D
" # E
' & b2J a2J (2.49) &
>. $ #& J- " xJ(n) * &$ # * yJ–1(n) #&#@ (J z 1)- " : xJ(n)=yJ–1(n).
E
' & " +
$ >, "& < :
z 01,2J
b1J
b1J r b12J 4˜ b 2 J
, z p1,2J
2
(z 01J z 02J ) , a1J
b 2J
z 01J ˜ z 02J , a 2J
E
(z p1J z p 2J ) ,
z p1J ˜ z p 2J .
# a1 z p1 , b1
, " * >
" ?
a 1J r a 12J 4˜ a 2 J
,
2
z 01 .
z01=1, z02=z1, zp1=0.4+j˜0.6, zp2=0.4zj˜0.6,
%& . 2.15, > #>@ "' " 2- #:
b0=1, b1=0, b2=z1, a1=z 0.8, a2= 0.7211.
&% ++.
= # ' + " C; ( . 2.17)
# * # &$ ' * " + HJ(z), % & A:
52
H(z)
C
L
b 0 J b1J ˜ z 1
¦ H J ( z) , H J ( z)
1 a 1J ˜ z 1 a 2 J ˜ z 2
J 1
(2.50)
" # E
' & b1J a2J (2.50) & >.
&$ # * + &$ #&$ " + :
y( n )
C ˜ x (n ) L
¦ y J (n ) .
J 1
x(n)
y(n)
H1(z)
…
H2(z)
HL(z)
C
. 2.17. # % " " ,D
= # ' , >@ + * C;, " % & # # * '
+ , # * + * +- > *
.
= E # # * ' " + + * & HJ (2.50) # ' +< # " # * ' .
+ E
' & a1J a2J (2.50) #> >
@+> $ % < *, # # " C;.
E
' A
& % # # * ' " >
+ < M
C
z
– z 0pii .
i 1
E
' & A, b0J, b1J % & " + % " E
' & # *
& C;, & "& > , + * " +>.
& ($ 1) "' # " ( . 2.18) & " & #
53
y( n )
b 0 ˜ x (n ) b1 ˜ x (n 1) b 2 ˜ x (n 2) [a1 ˜ y(n 1) a 2 ˜ y(n 2)] (2.51)
x(n)
y(n)
b0
z-1
z-1
b1
x(n-1)
-a1
z-1
y(n-1)
z-1
b2
x(n-2)
-a2
y(n-2)
. 2.18. " " ! ( 1)
A Z–1 $ " E "# % " # # # "' !#.
> " (2.51) E % " &$ * #
w (n ) b 0 ˜ x (n ) b1 ˜ x (n 1) b 2 ˜ x (n 2),
y(n ) w (n ) a1 ˜ y(n 1) a 2 ˜ y(n 2)],
& "#+
& > >
>
" *
"' .
* "'
" $ # & & E
, 5 $ #
5 % * ( b0 = 1 % * 4).
= * "' % & + 5 ( 4) ' *
% 4 ' % 1 .
($ 2) "'
" 2-
# # # * '
#>@ #:
H(z)
B( z )
A(z)
1 ˜ B(z )
A(z)
W (z) Y(z)
˜
X(z) W (z)
H P (z) ˜ H H (z) ,
(2.52)
# W(z) – + ;
1
H P (z)
– # ' * " ;
1
2
1 a 1 ˜z a 2 ˜ z
54
H H (z) b 0 b1 ˜ z 1 b 2 ˜ z 2 – # ' *
" .
A " ( . 2.19) 2 " +< E Z–1.
w(n)
x(n)
b0
y(n)
z-1
w(n-1)
-a1
b1
z-1
-a2
w(n-2)
b2
. 2.19. " " ! ! ( 2)
! " & # " & :
y(n ) b 0 ˜ w (n ) b1 ˜ w (n 1) b 2 ˜ w (n 2),
w (n ) x (n ) a1 ˜ w (n 1) a 2 ˜ w (n 2)],
(2.53)
" &$ " > *,
– * " *
. J # & # * &< " &$ * " *
, + >
> " .
D # , ($ 2)
"' " + &+ @& C;, # &$ &< 2. D# # +
& "'
>
#& @ " #+ &
+<* + > * " # . =
E +" * #
"'
' C;, " E
+
+<* $ # # +>, . . +> " .
?
. 2.20, 2.21 #& -$& (A) * "' C; # + # # &$ " + . = & ; > ' > .
55
' * J @ # +
@ # & " +
+ $ " * ' *. " ' > " & " (2.53) & ( # ) + * W2(J)=W1(J), W1(J)=W, & #< > #>@
< ' A.
?
D &$ E
' B0(J), B1(J), B2(J), A1(J), A2(J), W1(J), W2(J)
# L, B0(J), B1(J), B2(J), A1(J), A2(J)
J=1
# X=x(n)
W=M(J)˜X–A1(J)˜W1(J)–A2(J)˜W2(J);
Y=B0(J)˜W+B1(J)˜W1(J)+B2(J)˜W2(J);
W2(J)=W1(J); W1(J)=W; X=Y
J=J+1
J>L
0
1
& # y(n)=Y
. 2.20. < -
! ! D
( )
? A
. 2.20, 2.21 +" & & &
( #
&): B0(J), B1(J), B2(J), A1(J), A2(J) – # E
' 56
" + b0J, b1J, b2J, a1J, a2J X, Y, W, W1(J), W2(J) – # ' M(J) @x(n), y(n), wJ(n z 1), wJ(n z 2). C @+> E
<
$ #&$ " + .
?
D &$ E
B0(J), B1(J), A1(J), A2(J), C
' # L, B0(J), B1(J), A1(J), A2(J), C
# X=x(n)
J=1
Y=C˜X
W=M(J)˜X+A1(J)˜W1(J)+A2(J)˜W2(J);
Y=Y+B0(J)˜W+B1(J)˜W1(J);
W2(J)=W1(J); W1(J)=W;
J=J+1
J>L
0
1
& # y(n)=Y
. 2.21. < -
! ! ,D
( % )
= $ # *
"' " + " ' (2.51) " #
X=M(J)X;
57
Y=B0(J)X+B1(J)X1(J)+B2(J)X2(J)zA1(J)Y1(J)zA2(J)Y2(J);
X2(J)=X1(J); X1(J)=X; Y2(J)=Y1(J); X=Y.
#
X1(J), X2(J), Y1(J), Y2(J) > "#+
& xJ(nz1), xJ(nz2), yJ(nz1), yJ(nz2).
" # $ C; , " "' , # +% "@ ++ # " ( . 2.22). = #+&$ $ #& "> &$ # , & " , "& .
y(n)
x(n)
z-1
b1
-a1
z-1
b2
. 2.22. E" % -a2
" " ! " ' @ * & " > #>@ &:
X=M(J)X;
Y=X+W1(J); W1(J)=B1(J)XzA1(J)Y+W2(J); W2(J)=B2(J)zA2(J).
&$ +&$ * & +
&, #>@ # % + * , # %& &+ & $ . J & W1(J), W2(J) #
*
& " +
X1(J), X2(J), Y1(J), Y2(J) – # *.
" & % ' 4' ++' C;, +"& $', ,.
2.12. *// :* *(A9 &(*(*%&'4 :8)*
? + , & A, $ . 2.23.
* "'
?C; $ # & (N z 1) E
, N % * N $ # .
58
x(n)
z-1
h(0)
z-1
z-1
h(1)
z-1
…
h(2)
h(3)
h(N-1)
y(n)
. 2.23. " " " ! % E$
?
D &$
H(k), X(I)
E
' # N, H(k)
I=0
# S=x(n)
X(I)=S
k=0, Y=0
Y=Y+H(k)˜X(I)
k=k+1
0
k=N
0
I=I+1
I=N
1
I=0
1
& # y(n)=Y
. 2.24. < -
! ! G,D
! E$
59
-$ * "' ?C; # . 2.24. # «< &$» &$
Yy(n), H(k)h(m), X(I)x(nzm). ; + " " > ' >
Y=Y+H(k)X(I). = & X(I) # %& &+ & $ .
! &* G & * * "'
(N z 1) ' * % N ' * % %#&* &$ # .
2.13. (*(-)&/ :&9/ %))&/ 4*)(*%)
&(*(*%&0 :8)*
= # ' ?(z)
$ ?(j˜q)
?C; #> Z- " " ; + + * $ :
N 1
H(z)
¦
h (n ) ˜ z n , H( j ˜ Z)
N 1
¦
h (n ) ˜ e
j˜Z˜n ˜T#
(2.54)
n 0
n 0
= +< * " " HF & + & >
# # & +& $ , >@ +< G & *.
% * & > *
+
" % + * * ;HF ""#& (U).
* ;HF + * $ + : h(n)=h(Nz1zn). D >@ # > ?C;
""#& t"=z[(Nz1)/2]˜T#.
> ;HF: M(q)=zq˜T#˜(Nz1)/2
2.14. (*(*%&'( :8)*' % &(6&6 :A%))&6
4*)(*%)6
= # > ' >
> $ ?C;
(2.54) + * $ *, >@* > h(n)=h(Nz1zn) ( . 2.25), N % #
H(z)
­
®
°̄
( N 1 ) °
z 2 h ( N 1)
2
­
H( jZ) e
j˜Z˜T# ˜( N 1) °
2
N 3
2
½
( n N21 ) º °
ª ( n ˜ N21 )
¦ h (n ) ˜ «z
z
»¼ ¾
¬
°¿
n 0
N 1
®h ( 2 ) °
¯
N 3
2
¦
n 0
60
>
(2.55)
½
@
°
2 ˜ h (n ) cos ZT# (n N 1) ¾
2
°
¿
(2.56)
h(n)
n
(N-1)/2
0 1 2 …
N-1
…
. 2.25. # " % G,D
= N h((Nz1)/2)
$ & % $ , $ * # " (N/2)z1.
" & % # HF #, ;HF + M(q)=–q˜T#˜(Nz1)/2 z *, ""#& t"=z[(Nz1)/2]˜T# – " &.
= # * '
(2.55) % +
?C;, >@> # +< ' *
% ( . 2.26).
x(n)
x(n-1)
z-1
z-1
h(0)
z-1
x(n-2)
…
z-1
z-1
z-1
…
z-1
z-1
h(1)
x(n-(N-1)/2)
h((N-3)/2)
h((N-1)/2)
y(n)
. 2.26. " " G,D " % ! " y(n ) h ( N 1) ˜ x (n N 1) 2
2
N 3
2
¦ h (m) ˜ >x (n m) x (n ( N 1) m)@
m 0
> % + # N.
A# +, N |H(j q#/2)|=0 M(q#/2)=0.
61
?C;, C;, % @ > #+ ( . 2.27)
< &.
x(n)
@-
…
h(N-1)
h(N-2)
z-1
h(N-3)
z-1
w(N-1)
…
h(1)
z-1
h(0)
y(n)
z-1
w(N-2)
w(1)
w(0)
. 2.27. E" % " " G,D E$
D @ * @ " * ' *:
Y=H(0)˜X+W(0); W(k)=H(k)˜X+W(k+1), k=0, 1…Nz1.
= & W(k), k= 0, 1…N, # %& &+ & $ .
2.15. *(*' *(D(&/ A- + )(* 9:*'4 %0&
> 1.
& '
* & y(n ) x (n ) b1 ˜ x (n 1) , b1=2.
D # + ' > & +&* #
­1, n 0, 1;
x (n ) ®
¯0, n ! 1.
U4
= &$ +&$ $ x(–1)=0 & #> # &.
y(0) x (0) b1 ˜ x (1) 1 2 ˜ 0 1, y(1) x (1) b1 ˜ x (0) 1 2 ˜ 1 3 ,
y ( 2)
x (2) b1 ˜ x (1)
# , 0 2 ˜ 1 2 , y(3)
x (3) b1 ˜ x (2)
&$ #& & y(n )
> 2.
& '
0
* & y(n )
0 2˜0
0.
nt3 & >.
x (n 2) .
D # + ' > & # x (n ) a n , a 1 .
D # + Z- " $ # &$ # .
U4
1. = &$ +&$ $ x (1) 0 , x (2) 0 & # > # .
62
, n 0, 1;
­0
! # &$ # * # y(n ) ® n 2
, n ! 1.
¯a
2. Z- " $ # * * (& >@* a 1 ).
f
f
X(z)
¦ x (k ) ˜ z k
f
k 0
k 0
3. Z- " &$ # k
¦ a ˜ z 1
¦ a k ˜ zk
1
1 a ˜ z 1
k 0
-
#,
+"
* Z^x (n m)` z m ˜ Z^x (n )`:
Y(z)
z 2 ˜ X(z)
z2 ˜
1
.
1 (a ˜ z 1 )
> 3.
* Z- " X(z)
1
.
1 5˜ z 6˜ z 2
1
D # + # # + x(n).
U4
1. D Z- " % &+ & X(z) ˜ z n 1 :
'
¦ Re s>X(z) ˜ z n 1 @ ¦
x (n )
>
zoz
n 1
lim (z z k ) ˜ X(z) ˜ z
x (n )
1
1 a ˜ z 1
>
z oa
N
X(z)
# X(z)
Ek
¦ 1 D
k 1
2. =
k ˜z
" %
1
1 5˜z 6˜z 2
1
@
> @
z oa
n
lim z
an .
Z- " , , Ÿ x (n )
1
N
¦ Ek ˜
-
Dk n .
k 1
# *
+
& # > z=a.
n 1
z
lim (z a ) ˜ z a ˜ z
& *
* Z- " #
@
,
k
zk – > ' X(z).
'
# X(z)
&
# '
X(z)
1
,
1 5˜ z 6˜ z 2
1
> (zp1=2, zp2=3) &.
3 3 , Ÿ x (n )
1
1 2˜z
1 3˜ z 1
63
(3) ˜ (2) n (3) ˜ (3) n .
> 4.
" & $ # *
&$ # * '
* &:
x (n ) ^1, 0, 1, 2`, y(n ) ^0, 1, 2, 1`.
D # + Z- " $ # &$ # , % # > ' > &.
U4
f
1. Z- " # & % X(z)
¦ x (k ) ˜ z k .
k 0
D#
# " & + & 4 # + * ( +& & >). A# + ,
X(z) 1 ˜ z 0 0 ˜ z 1 1 ˜ z 2 2 ˜ z 3 , Y(z) 1 ˜ z 1 2 ˜ z 2 1 ˜ z 3 .
2. = # ' & # < H(z)
Y(z)
X(z)
1˜z 1 2˜z 2 1˜z 3
11˜z 2 2˜z 3
1
2
z 1 ˜ 1 2˜z2 1˜z 3 .
11˜z
2˜ z
> 5.
& '
* & y(n ) a ˜ y(n 1) x (n ) .
D # + # > ' > &.
U4
& +> # y(n ) o Y(z) , x (n ) o X(z) ,
& * y(n 1) o z 1 ˜ Y(z) .
=
Y(z) a ˜ z 1 ˜ Y(z) X(z) .
# # & &
>
@
Y(z) ˜ 1 a ˜ z 1 X(z)
= # ' & # < H(z)
Y(z)
X(z)
1
.
1 a ˜z 1
> 6.
& '
* & y(n ) a ˜ y(n 1) b ˜ x (n ) .
D # + +> $ &.
U4
+ $ & # ' > ­1, n 0
& # &* + u 0 (n ) ®
.
!
0
,
n
0
¯
64
= &$
> #
h ( 0)
h (1)
h ( 2)
…
+&$ $ y(1) 0 & # &.
y(0) a ˜ y(1) b ˜ x (0) a ˜ 0 b ˜ 1 b ,
y(1) a ˜ y(0) b ˜ x (1) a ˜ b b ˜ 0 a ˜ b ,
y(2) a ˜ y(1) b ˜ x (2) a ˜ a ˜ b b ˜ 0 a 2 ˜ b ,
h (n ) a n ˜ b .
> 7.
= # ' '
* &
H(z) b 0 b1 ˜ z 1 b 2 ˜ z 2 b 3 ˜ z 3 .
D # + +> $ &, % + * $ (F F).
U4
+ $ & # ' > ­1, n 0
& # &* + x (n ) u 0 (n ) ®
.
!
0
,
n
0
¯
& # > # &, &* # y(n ) b 0 ˜ x (n ) b1 ˜ x (n 1) b 2 ˜ x (n 2) b 3 ˜ x (n 3) .
h (0) y(0) b 0 ˜ x (0) b 0 ,
h (1) y(1) b 0 ˜ x (1) b1 ˜ x (0) b 0 ˜ 0 b1 ˜ 1 b1 ,
h (2) y(2) b 0 ˜ x (2) b1 ˜ x (1) b 2 ˜ x (0) b 0 ˜ 0 b1 ˜ 0 b 2 ˜ 1 b 2 ,
h (3) y(3) b 0 ˜ x (3) b1 ˜ x (2) b 2 ˜ x (1) b 3 ˜ x (0) b 3 ,
h (4) y(4) 0 .
# , n>3 & + * $ & >, # + , + F- .
" # # %, & + *
$ + & E
' .
> 8.
5
* & H(z) 1 z 1 .
= # ' '
1 z
D # + + * $ & (F F).
U4
+" " % # * ' &
H(z)
1 z 5
1 z 1
1 z 5 .
1 z 1 1 z 1
65
D Z- " 1
1 z 1
'
# -
­1, n t 0
u1 (n ) ®
.
¯0, n 0
+ $ # Z- " # * ' &. A * "# % h (n ) u1 (n ) u1 (n 5) .
& # > # &
h (0) u1 (0) u1 (5) 1, h (1) u1 (1) u1 (4) 1 ,
h (2) u1 (2) u1 (3) 1 , h (3) u1 (3) u1 (2) 1,
h (4) u1 (4) u1 (1) 1 , h (5) u1 (5) u1 (0) 1 1 0 .
& + * $ # + , + F- .
> 9.
= # ' '
n>4 & >, -
* & H(z)
1
.
1 a ˜ z 1
D # + + * $ & (F F).
U4
+ $ # Z- " # * ' &. # + $ h (n ) a n . = + "+ ' > + nof (|a|<1), + F- .
> 10.
U# # ' '
1. H(z)
1 z 1 ; 2. H ( z)
1 0.2˜ z 1
* &.
1 z 3
; 3. H(z)
1 0.6˜ z 1 0.25˜z 2
1
.
11.2˜z 1
D # + *
+ &.
U4
'
&$ % &+ +" #>@ *
* +*: > # * ' # %& $
* Z- # # ? & + & # *
# # * z p
1. ;' *
# > z p
.
66
# +
z p 1.
&, + $ > $ f.
0.2 . = + z p
0.2 1
2. ;' z p1,2
# > z p1,2
0.5 1 *
0.3 r j ˜ 0.4 . = +
.
# > z p
* .
3. ;' 1.2 . = + z p
1. 2 ! 1
2.16. &)*8&'( +*%'
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
K '
&$ # + *, + $ &, *
.
C" & , "' '
+ *< $ E .
A "+ %# & # "
, % .
Z- " # '
&$ . D# Z- " . D Z- " .
= Z- " '
&$ .
A & $& '
&$ + .
" % "' &$
+
# * * ?
# + $ '
+ ,
'
& + & "& > + F F?
@ & '
& + ?
* & > E
' & &$ '
&$ + ?
# Z- " # &$ # + *, & & * > + '
&$ + ?
# # ' + " >?
* # +- >
# * '
+ " ?
%> > '
+ * Z- > ' >
+ % +
* > ?
* *
"'
&$ " + #?
+ A?
* G & +&$ ' * & + $ # ?
67
3. E =
# "# +" & #>@ : [1].
3.1. ))%)(%( 4*)(*%) +0*(D&%) &)&/
i
N/2
xmax
x (n)
e(n)
'x k
4
3
2
1
0
1
2
3
4
-N/2
n˜T#
1˜T# 2˜T# 3˜T#
xmin
. 3.1. ! " + = " < + # " , "& < +> . K % # # E * < # " + " # , * N, " ',.
C $ < * " # (,) ( . 3.2) ',, " ,, >@ # # * , ,.
K % # < ' %# " * * ' M ('x k )
x k 0.5
³ (x x k ) ˜ p( x ) dx .
x k 0.5
68
(3.1)
p(x)
'xk
x
xk-0.5 xk xk+0.5
xm
. 3.2. + !H
" ! !
()
x k 0.5
³
D('x k )
( x x k ) 2 ˜ p( x ) dx .
(3.2)
x k 0.5
= +< * % # % +, " * # * (xk) – " > ,=,.
! #
M ('x k ) p( x k )
x k 0.5
³ ( x x k ) dx
x k 0.5
>
1 p( x ) ( x
x k ) 2 ( x k 0.5 x k ) 2
k
k
0
.
5
2
@
, # , V('xk)=0.
< D('x k ) p( x k )
x k 0.5
³
( x x k ) 2 dx
x k 0.5
>
@
1 p( x ) ( x
x k ) 3 ( x k 0 .5 x k ) 3 .
k
k
0
.
5
3
=
, ,k # D('x k )
1 ˜ p( x ) ˜ 'x 3 .
k
k
12
+
, " # (,k) 'xk $ %# * # 'xk, D('x k )
1 ˜ >p( x ) ˜ 'x @ ˜ 'x 2 .
k
k
k
12
69
< " * # " " * 0 ,m
1 ˜
12
D('x k )
N
¦ p(x k ) ˜ 'x 3k .
k 1
& 'xk ='xi = const (izk)
'x 2k
˜
12
D('x k )
N
= +
¦ p( x k ) ˜ 'x k
N
¦ p ( x k ) ˜ 'x k .
k 1
'x 2k
.
12
1, D('x k )
k 1
! " , & % # # < # +< * # > " (,).
A # # < V('x k )
D('x k )
'x k
12
xm
N ˜ 12
.
# # < "# , % # + $ # + * :
N
xm
xm
'x k
V( 'x k )˜ 12
.
A# + , $ # +< < # & >@ + * .
3.2. 0*(D&%)8 *&(*&0 &)&/
+* *A&'4 A&4 (( *%+*(-((&/
" & , % + % " * " , # & " *, & &$ <&
# ' &$ '
* .
= E # " , # # " %*< $ &$ " * n x ˜ 'x k n x r 1 ˜ 'x k . "+ "-" " $ " + " ## < + .
70
x
x
x
x
D # " < # & $ " # < (',):
#$ ±'xk;
;
#$ ±0.5˜'xk;
+ " A .
p('x)
p('x)
'x
–'xk
0
'x
+'xk
+'xk
0
)
)
p('x)
p('x)
'x
–0.5˜'xk
0
'T
+0.5˜'xk
–'Tk–T0
)
+'Tk+T0
0
!)
. 3.3. + !H # & $ " # < ('$)
U'* '* # #$
±'xk ( . 3.3,) &$ '
&$ " +&$
$ $, .
K + " < 'x max
=
r 'x k .
# < +
Jk
r
71
'x k
xm
.
A # " < M ('x ) 0 .
A # # < "+ " n x ˜ 'x k , . . # ( . 3.3,)
V('x )
2˜
'x k
³
< > < > -
p('x ) ˜ 'x 2 d'x
0
'x k
.
3
U'* '* # ( . 3.3,)
'
&$ " +&$ $ '?@
+4, &$ #$ # @ # * &, + &$ " * # " n x ˜ 'x k # nx 1 ˜ 'xk # "+ " n x ˜ 'x k .
E + < +
'x max
=
r 'x k .
# < +
Jk
r
'x k
xm
.
A # " < M ('x )
'x k
.
2
A # # < "+ " n x ˜ 'x k , . . # ( . 3.3,)
V('x )
'x k
³
< > < > -
p('x ) ˜ 'x 2 d'x
0
'x k
.
3
U'* '* # ('x) #$ ±0.5˜'xk ( . 3.3, ) '
&$ $ '?@ +4 # #$ # $ $+?@+? + $*
$$, * 0.5˜'xk. + &$ " *
, " # " (n x 0.5) ˜ 'x k #
72
n x 0.5 ˜ 'x k # "+ " n x ˜ 'x k . J % " # $ + +% " . E + < +
'x max
=
r
'x k
.
2
# < +
Jk
r
'x k
2˜ x m
.
A # " < M ('x ) 0 .
A # # < "+ " n x ˜ 'x k , . . # ( . 3.2, )
V('x )
2˜
0.5˜'x k
³
< > < > -
p('x ) ˜ 'x 2 d'x
0
'x k
.
12
;+%'* '* # ( . 3.2,) $ +?@ $+%
# ;0. ! +&* " # " # $ &$ &$ " # –
T0 0 0 +T0. E + < +
'T max rT0 .
=
# < +
Jk
r
T0
Tm
.
A # " < M ('T) 0 .
A # # < "+ " n x ˜ T0 , . . # ( . 3.3,)
V('T )
2˜
T0
³ p('T) ˜ 'T
2
d'T
T0
³
0
73
< > < > 2˜
0
1 ˜ (1 'T ) ˜ 'T 2 d'T
T0
T0
T0
6
-
.
3.3. 0*(D&%)8 ) &)&/ +* A(*(&
%*(-&(-*)&0 %*(-&(0 A&(&6 (&'
# " # > & " " * &, # # # & " " #&* % . J & #,
# $ # ' > & " &, # # # & " "#&* % . ? , < $& E # & " #+&$ &$ , # # &
" " #&* % . E * "# * < " &$ " * " * & #+ ' " .
U# # * " > " # # " & " % # * '
&$ , " >@ $, , #* >@ " # $ , ">@ $ " * *. $ $ " # "+
" &$ " *. D # #* >@
# " * " &$ " $
$ # " # + @+> '
&$ .
D # * "# * < " # # # " * "+
" &$ " *. A , ' * &# ' ' '
> # # " . = # +$+? $$? " +& & .
& < # # # " *# # # & " ,(t) %
;=ti+1 – ti (%# &# # $ # &$
/
" *) $ x x . ; – # + +
– " "& ,(t) # .
A # # " & ,(t) # $ # "+
" &$ " *:
T# / 2
x 1 ˜
T#
2
³ >N ˜ 'x k @ dt
N ˜ 'x k ,
T# / 2
;.
# N – '
A # # " ,(t) # :
74
T# / 2
/
x 1 ˜
T#
2
'x º
ª
³ «¬ N ˜ 'x k t ˜ T#k »¼ dt
T / 2
>N ˜ 'x k @
2
'x 2k
.
12
#
= < + # # # " # ;:
/
x x /
x J "
N ˜'x k >N ˜'x k @
2
'x 2
k
12
N ˜'x k
1 .
24˜ N 2
|
" # # &$
H < N " *
, ,(t) + $ +< $ #$ " ,,
N|
1
.
24˜ J "
"# J " 0.1% , N=7.
?*# $ # < , ,(t)
4 $ 0 , $ + +%.
/
! # # # " x T
/
x 2
ª 'x k º
³ «¬ N ˜ T »¼ dt
0
'.
1 ˜
T
# ! – # + + N ˜ 'x k
3
,
A # # " x $ x 1
T
N
¦
(k )
T
N
³
T
k 1
( k 1)
N
ª ( k 1) T ( k ) T
N
N
«
2
«
¬
2
º
2
˜
'
N
x
ª
º
k
»
dt
» «¬ T »¼
¼
! # < + " ,(t) J "
/
x x /
x N ˜ 'x k
3
(1 1 2 ) .
8˜ N
# # # &$ $
N˜'x k
N˜'x k
(1 1 2 ) 3
3
8˜N
N˜'x k
3
12.
8˜ N
H < N " # # &$
" * , x(t) * $ 0 x
N
1 .
8˜ J "
75
"# J " 0.1% , N=12.
x(t) " $ + +', < +
" # # &$ " *
J "
/
x x /
x 0.4 .
N3
= J " 1% $ # , & N=10, J " 0.1% $ # , & N=50.
A# + , &$ J " * " # # &$ " * & # "&$ " " ,(t) .
D# "# " +& # " " , $ # +, < + J " +< ,
+ & . = E $ # + *
# "# " < %+
"
# " , #
* " ,.
% "+, < + " ' " ,(t) " + J
"
,(t) x x /
x /
0.01 ,
N2
#+ " 0.084 .
J
1.43
N
=
J " 1% $ # , & N=5, # , & N=23.
J "
0.1% $ -
3.4. +*(-((&( +0*(D&%) ) &)&/ % ()
%*&/ % --)&6 +0*(D&%)8F +*(*A&/
& & " " +&$
" *, &$ " > < . H
&$ " +$ " ## < + 'X ## , #
" . =
#
E $
$ * < " %& # #$ #.
& $ $, >, * 'x k < 'X ## . ! # " x #
& %# *,
" , x 'X ## # # (AD) * < 76
V6
#+ 'X 2
##
'x 2k
.
12
'X ## =0 V 6
'x k
12
, # * # < @ #$ # # > < . D# # %
& + 'x k < 'X ## =0, # + , V 6 0 .
& $, # >, &$ &< " $
# x 'X ## < + " + , x + 'X ## $ # " #& # * 'x k .
! #, 'x k < 'X ## < 2 ˜ 'x k , AD < V6
=
'X
##
˜'x k
2
'x k ˜ 2 < 'X ## AD < .
V6
$% + 'x k =0, . . AD * < V6
'X ##
12
'X 2## 2˜'x 2k
12
.
Nof, & % #
#$ #$ #>
.
$% + 'X ## =0 #$ #
#$ # V 6 = 0, > #$ V6 0 , # 'X ## =0 $ # # * , , " , < +
" + .
3.5. &)*8&'( +*%'
1.
2.
3.
4.
5.
D # , < " # #&$, #& .
= < + " &$ " $
# < .
= < + " # " #+ .
= < + " #* >@ " #+ .
= < + ## * $ .
77
4. E # G = # 9, 10, 11, 12].
"# +"
& #>@ : [1,
4.1. &)(%( +*(-%)(&( -%*()A*&&0 %0&,
*&(*&/ &(*&(*&/ -%*()A9/ %0&
"' & * * ' * % '
'* ( t ) : x # ( t )
x(t) x(t) ' > # "'
x ( t ) ˜ '* ( t ) .
;' '* ( t ) # + +> # &$ + # !#, # + +>, * 0, @#+>,
* # ', . . ' * :
*
' (t )
f
¦ G( t k ˜ T# ) .
k f
&* x # ( t k ) # + +> + , @#+ &$ x (k ˜ T# )
# x ( t ) & k ˜ T# , % &+ # #
"
x # (k ˜ T# )
N
¦ x ( t k ) ˜ G( t k ˜ T# ) .
(4.1)
k 0
"' % " # + , . . & < T#=const , . . & < . A & & > -# "
&
# "
& .
-' , , >
# + + % + E –
# # " , + ' " # + + + . # " - &$ -# " * " < +" >
78
" &$ '
" + %#
* '+> +"
" , &$ ' +
" * *, >@* # ,
* # + + . ? , E *
", +
' + * #' .
x#
x(t)
(t)
t
t
)
)
. 4.1. E !
:
) ! ; ) !
* # # " # "
* & " %& ( -# "
> +" " + @+> +
"-" # & #*), ' " > " + & >
, " " . ! & " >
" & # &$ " * * $ &< " , &$ ' # + " E * .
+-' > # + + , &
"+ '
# "' . ; " # "' & x(t) " " > + &$ " *
"#& & – & # "' .
=
* # "'
&, ">@*
, % *. =
+ * " " < + # "' .
D# &* # $ # "
# & # #+*<
" +" .
& '+> '
- &$ $ "# -# "
&* # # + +79
#& " # . ! ", , E $ * @+>
, &#>@
+& & $ # $ # " & " . J # # "' ' E $ * , & , <
> &$ " +&$ " *, &$
" & & "> .
D ' # "'
x(t) # " % + +< & " &# + " +> ' >
' # : " >
( ,
# + " % + +" + ).
$' $%
%?:
x & #&$ &$ " *, , E +&$;
x < " * # & , , & +< $ ;
x # '
& '
&
;
x % &$ " $ + $ # .
4.2. %%)&(&( &(+*(*'&0 %0& A -%*()A*&&0
"' & % & " , # > # #>@ $ ' * ( # , < " * # & # .). "
&* % % & "'
'
" # "#& & #&. # "
>
% & " , & # % + & . $ #>@ $ ' *: , #,
" # , ' + $ # & &* . = E # "
&* $ $
$ # " + & &*
+ % & " .
& «*» &$ # &$
" ' $ " *
& tk >
& " # "
; " "& % $+-$+%'.
80
& «*» &$ # '
&$ -
> & " " * & N k ˜ 'x k
>@ & .
+> # & *
' x(t) ' * . E $ # + " % & " x(t).
! " , " > + & " # "
:
x " # "
&
& " ;
x " & & " # "
>@ & # "' tk.
$ $ # % &+ " #
"# * < +>.
=
" # "
$ # " & & " " & &
, #>@ * # "' " & & ;, # + % & " E $$* $+ $ K$, # &$, " , "# + < &* * .
=
'
E ' $ # , %# , # + # + # # ?@+?
"+? +?. = E &* & &% * " &$ ' *:
N
x ( t )
¦ a k ˜ C k (t ) ,
k 1
# Ck(t) – " &$ ' *, & + * *;
' & #.
ak – E
E
' & # " & ' & + " &$ , , # # * < > # " * & & " # "
.
# & " &$ ' * "+ <
# " , , %
; – "' # + %
# ;. , " &
+ $ # "'
' # >, %# , " * +<* &
81
$ "' , > #+ # # % + < * '
.
+
%, & # & "'
'
E
' & # ak # + & ' *< # "
, & " # "
.
$ + " & '
E
' & #
& > $ ? + * $4, # "', +* '" * + *, E
' & # #> E
' & >@ # ; +:
T
³ x ( t ) ˜ C k ( t ) dt .
ak
0
=
E & *
T
2
min ³ x ( t ) x ( t ) dt .
0
# %# * " * '
E "
# " "'
. ? %& >@* ' .D.
%, &* # # # . E #
' & # ak (
" & > + , E
+ % # * "' ) & >@ & " # "
. J *
& # * .
+ " & '
E
' & #
& > $ ? $ * $' ' , $ & #> < & *
x ( t k W)
N M
¦ ¦ a i (t k W) ˜ Ci ( t k W) ,
(4.2)
k 1i 1
# W t t k .
& "'
" &$ ' * E & > ' « ' »:
Ci ( t k W) Pm (W) ˜ 3 (W / T# ) ,
(4.3)
82
# !# – ; Cm(W) – m- * # # "'
­1, 3 (W / T# ) ®
¯0, 0 W T#
T# W
W.
.
& $, < > E * "# ' $' $. J # <
" + * $ , +<* # # &$
"+
" &$ " * # "
, % , * "'
# & * +>.
4.3. (*( .. )(8&
' ,(t), # >@ $ (. . , - & E )
#>@ * * f, # "
' , # T# d 1 , % &+ 2˜f c
E * =
&$ " * " < .
+" %
f
x ( t )
¦
k f
x (k ˜ T# ) ˜
sin(Zc ˜ t k ˜T# )
,
Zc ˜ t k ˜T#
(4.4)
" . . & &* ,(t) % &+ # * # * &$ " * ,(k˜T), "&$ T, > ' > , "& > +* S
sin( Zc ˜ t k ˜T# )
.
Zc ˜ t k ˜T#
+ " +?@ *:
x
& t= k˜T # , 1;
x
& t= (k+n)˜T, # n – > ' , >;
x
+ .
! " , % # " @ +% " , K'
' ' ' ,(t) ,
# + , #> & .
;' # * ? %
% , $ # "#* # # * + * ' . A# + , # "
&* < 83
; ,(t) #+ $ # #+ '* f, &$ # < * & &* x(t).
+ $* &* " -
S
1
(k-1)˜T#
k˜T#
(k+1)˜T#
t
. 4.2. < " =
+" & + " > # ' +&$ +.
-$',, + #" # ' ' $, +& & x(t) # &
E > &* &* . D# # * # +> % + * f ( , f > f " >) +, " , &< $ . = E " > < "+ & & * .
-',, # "
&* .. + +&*
' * " + &
% $ % , %' %' " +? , #>@> * % +>
# '+&$ " * t. D#" %
@+> % $' $
, " #@ $ '
[9].
4.4. %%)&(&( %0& %)(+(&&' +&,
+0*(D&%) ++*%9
= #
% &$ " * " x(t) & " & * ' .
& x(t) $ # +, . . %
# +, % &
84
" %# & , " & #&
& . = ' x(t) %# %# " & " " *, ">@* # " ( , %* $* $ +$*
$$, " * $* $ +-**
$"' $ $"*).
E"%4+? % %# & , . . %& , #* +& % & " x(t), "& > $4%? , '
* $4%? $$ 'x .
= < + '
" " " ,(t).
,(t) – * ' , +&* " ' *&. & + $" $$ % % % $$+'. = < +
' # +<, +< < # "' ;.
C < + '
" &$ " $ ' .
+$ $$. +" &$
+ $, . . * * * ' , & % (4.2) (4.3) m=0
a1 x ( t k ) , C1 ( t k W) 3 (W / T# ) ,
(4.5)
# = – ' .
! # &* N M
x ( t )
N
¦ ¦ a i ( t k W) ˜ Ci (t k W) ¦ x ( t k ) ˜ 3( TWk ) .
k 1i 1
(4.6)
k 1
= # % , "# < + '
' , * &
" x(t) ; %# " tk tk+1 "> " x(tk).
K + " < '
'x . max
E # ' , # "# # +< " . , # #< >@ * " tk+1 < + '
'x . max
x k x k 1
x / ˜ T# ,
" # * .
# x / – " * & +% " * f + # # "'
# & % 85
2 ˜ S˜ f ,
J f#
# J – # < + ' .
= f=1 [ J =0.01 (1 %) # "' # % &+
628 [.
+-* $$. =
+" &$ $ $, . . - * * ' # & % (4.2) (4.3) m=1,
a1 x ( t k ) , C1 ( t k W) 3 (W / T# ) ,
a2
! #
x ( t k T# ) x ( t k )
, C 2 ( t k W)
T#
(4.7)
&* N
x ( t )
W ˜ 3 (W / T# ) .
¦ ª«¬x ( t k ) ˜ 3 ( TWk ) k 1
x ( t k T# ) x ( t k )
˜ W ˜ 3 ( W )º» .
T#
Tk ¼
(4.8)
= - * * ' % %#
# " & " " " *. = < +
'x E # +<* $ $ " ' , #
+% * $* # +< " .
C < + '
, &#>@
"+ " " # & %
, # " &, ">@* $ +%+ + * f ( Z 2 ˜ S ˜ f ). = < + # +<* E " :
'x . max
=
x1 x max
x max ˜ cos(Z ˜
# < + J =
T#
) x max
2
T
x max ˜ ª«cos(Z ˜ # ) 1º» .
2
¬
¼
'
>cos(S ˜ f ˜ T# ) 1@.
'x x max
&$ S ˜ f ˜ T#
cos(S ˜ f ˜ T# ) 1 1 ˜ sin 2 (S ˜ f ˜ T# ) | 1 ˜ (S ˜ f ˜ T# ) 2 .
2
2
A# + , < + ' #+ J 1 ˜ ( S˜f ) 2
2
f#
2
1 ˜ ( 2˜ S˜f ) .
8
f2
#
86
K + # # "'
f #
2˜ S˜f .
8˜ J ; # # < ' # ?"* + $ +-** $$ .?. F & [10]:
x //max
f #2
8˜ J ,
(4.9)
//
# x max
– + " *
" # *.
= f=1 [ J =0.01 (1 %) # "' #
#+ # % &+ f=22 [.
*
+
& # f * * ' , % # +, f # % &+
" +<. !, , # ' f * ' # % &+ 30
" +<, - * *.
-
#+ *
J f - * * '
H # "'
% + % * # "' .. + f. < [9], -
& x ( t ) x m ˜ e a ˜ t . E ' f #2 4˜a .
, # E ' + *
- * * J ! #, = 1 J =0.01 (1 %), f = 4 [.
# "' .. + # * < J 'x , " @* < @ xm
U @ & * # "'
f #.
a ˜J 2
[9],
.
2
S ˜ln( J
)
! #, = 1 J =0.01 (1 %), f. = 222 '.
A# + , - * ' # ' " *.
&" $$. @ ' , $ # # "'
87
f #3
x ///
max
15.53˜ J ,
(4.10)
///
# x max
– + " +* " # *.
? , # +%* + * ' , f=1 [ J = 1 %, f#
3
x max ˜Z3
15.53˜ J | 11 [.
A# + , * ' # "#&$
* # "' > - * * ' * % " + % &.
4.5. &/)( -+)&6 -%*()A9
%*&(&( *A&'4 - ++*%9
& <
'
', x /// , x //
x/
">
$ #$, &$ &< $ * * # "' , # ///
//
/
+ " > x max
, x max
x max
, " + +
" &$ &$ " * xk " <* "#&$
$ < . A# + , $
$ "' '4 . J # % > #+&$ "
" + * " " + ' .
= E %&$ " + - ' &$ $ @ > " & & $* & < , " @ ">@ $ ', @ " >,
" >@* # "' *
.
A @+> #&$ &<
% # + $ # > # "' " "# * < + $ &$ $ – " &$ " $
*, * +* " # *.
U# # $ # * & # "'
@ " " '
"# * < < @+> '
* & + * < &.
88
=
' * " f
# # * < ' J =5 %:
x * '
$ # # "' f=21˜f;
x * * ' f=5.9˜f.
J =0.2 %
x * ' $ # f=510˜f;
x * * ' $ # # "'
f=29˜f ( 17 " +<).
"+ < " ' &
& #+&
+ &
$ .D. %, $ # +
# "'
"+ % * f=2˜f [11].
, # $ ' * & &
* * '
"# "
J =5 %
# # "' f=8˜f, # J =0.2 % f=(30 – 40)˜f.
E # f # " , *
" % # +&$ >@ $.
= #& #& "& >, & & # "' + , < ' &+
" +& #% + % * * * ' .
+ " +&* & &< +< $ # * & # "' $ # * '
* *. =
* ' , " +
% *, *, $ # # "'
% " + . = E '
% *, *, & ' " .
# $ # > + #+&
&, , # " & " #&, # "' ' " & + > , # [12].
4.6. &)*8&'( +*%'
1.
2.
3.
4.
D # # "'
. #& # "' .
: @ * #$ #.
! + .
A < * *, * * *
' .
89
5. !$ " -! I$
=
# "# +" & #>@ : [2, 3, 5, 7].
5.1. G- ()-' %&)(A 9:*'4 :8)*
A " ;
@ > " # * '
&
+ "# * * + *
$ ' * " # # E
' + $ # , &$ # $ .
$* + ] H(z) "# * * $ Hd(j˜q) "> $$
# K $* +. K #& " "#> :
x ;
x ' &;
x &.
D ' > < "# '
" * *
. #& " &$
+
(C;) #& %-$$
(D&)
> #+ "* $".
' ', * &* #$ #&, #> # " &$ "#&$
$ >, , # >@ $ '# .
' & > ' ', +* *
'", +"& # " &$ +
(?C;).
^' ' & > # * ' "# * * $ + * < +> #& + .
=
# * * $ Hd(j˜q) " > '
&
+ & - " * # * $ * (HF) –
+ & % $ (;?H),
$ $ (;H), - >@ & (==;
=;), -" %#>@ % & (=U; C;), & (K=;) ( . 5.1) ; " + * * $ *. K &+ "
& % ; * $ * '
#
' " + .
90
q=
! & $ ; # & # q#
$ #+ (HF) (;HF) #> * * * + 0 q#/2, $ # "#+ (0– q#/2) (0–Ž) &$ Œ= qT# ( . 5.1).
)
|Hd(j˜Z)|
1
1-G1
= $ # = G2
0
)
Z
= "# % Zc
Z"
Z#/2
|Hd(j˜Z)|
1
= $ # 1-G1
= G2
0
Z
= "# % Z"
Zc
Z#/2
|Hd(j˜Z)|
)
1
1-G1
G2
0
= $ #
1
= $ #
2
= "# % 1
= Z"1 Zc1
= "# % 2
Z0
Z
Z#/2
Zc2 Z"2
|Hd(j˜Z)|
)
1
1-G1
G2
0
#)
= $ #
1
= 1
= $ #
2
= "# % Zc1 Z"1
Z0
= 2
Z
Z#/2
Z"2 Zc2
|Hd(j˜Z)|
1
1-G1
G2
0
Z
Z"1 Zc1
Zc2 Z"2
Z"3 Zc3
Zc4 Z"4
Z#/2
. 5.1. # CA ,D: ) DGC; ) D$C;
) #D ( ##D); !) D ( #*D); ) I#D
91
$ #& #& # " ; "# * * $ ( . 5.1) >:
1) & ", "# % q, q", #>@ '& " , "# % $ #&$ + ;
2) # + HF
+ ( '$ & &$ HF) , #;
3) + "$ HF "# % ", #.
= , ", #>@ # & < ' "# * # "
* HF |Hd(j˜q)|, >
. 5.1 # * HF |H(j˜q)| 1
(1–~1)
"# % ~2:
=20˜lg[1/(1–~1)], #; "=20˜lg(1/~2), #.
&#& . 5.1 "> # < ' , & # % % + >@ HF |H(j˜q)|, " . 5.1 .
5.2. &)(A *(*%&'4 :8)* + &0 +*))+
A " C; " % " , ">>@ # "' #
' + * ' , . . $ # " #&$ & " , $+%',
,, # "'
+ * $ * ' , Z-$"
# s s p(0)i o 1 z 1 ˜ e
s p ( 0 ) i ˜T#
, # s
(0)i
z >
-
" * # * ' * ' , "*
Z-$".
V " . = # # "# & & " . "+ E #
' + ( & >@ &* + )
" " ( & >@ '
* + ). J
' # " * * S # *
' + > > Z # * ' '
+ s=f(z). , " & #& #
'
## " & ' $ # < > s=f(z) , # + , " & "+ >@ '
& + &. ? * * – $$ <*.
V <* " #> & * ' dy(t)/dt * " +> #
92
dy( t )
y(n ) y(n 1)
,
t
nT
dt
T
# T – # "' .
*
#
(5.1)
1 z 1
s
f (z) .
(5.2)
T
> #+ (5.2) , z=1/(1–s˜T).
V $+%* , ">
'# $ # &$ +
'
& + .
J '# , + $ h(n) "+ >@ '
+ # * & + * $ h(t) >@ + # #>@ " : h(n)=h(t)|t=n˜T, # ! – # "' .
= # ' H(z) '
+ $ # @+> Z- " + * $ #>@ " :
H(z)
f
¦ >h ( t ) |t
nT @ ˜ z
n
,
(5.3)
n 0
#
" "&$ + .
D# # " &$ # # $ # &$ * ; .
! " ; - "& HF
"* $" (
', ,).
5.3. ()- &(6&0 +*(*A&/
5.3.1. = # * " " ; &* &*
+ - (;=)
# * ' * ?(s) * $ * H(j˜¡), # " "& # * ' * H(z) * $ * H(j˜q) ;:
;=
;
;=
s f (z)
H(s)
 
o
z f 1 (s )
m  

H ( j ˜ :)
H(z)
93
;
: f (Z)
 o
Z f 1 (:)
m  
H( j ˜ Z) .
A "+ E # * s=f(z)
* z=f–1(s) ">@ ' >@ s=j˜¡ z=ej˜qT# " ¡=f(q), q=f–1(¡) '
+. A @+> E $ " * #> ;=,
& $ < " & # " # ' H(s), " "
> # >
' > ; H(z).
= ">@ ' # %& # + #>@ :
x S- + s=‡+j \, ‡<0, * "@> > *
;=, # % # %+ +
# # |z|<1, Z- "@> > *
;, . . *
;= # %
+ * &* ;;
x + j˜¡ ;=, ¡=(0 ± w), # % # ,
. .
# $ #, %+ % + # # j˜Z˜T
#
, q=(0 ± q#/2), " + Z- e
&$ $ $ + .
J "* $".
5.3.2. * " # #>@ " :
(5.4)
s=f(z)=(2/T)[(1–z–1)/(1+z–1)].
K % % * < z–1=[(2–s˜T)/(2+s˜T)].
(5.5)
" * '# & $ # * " #, + S- % # >
% + Z- (# |z|=1)
Im[z]
Im[s]
Re[s]
Re[z]
. 5.2. " ! 94
* " – # " ' . J ", %# * Z- # s- . " E * # " #, ++ K $ * * '# % .
K # '
&$
+
# * " > $ %# #$ #@* # * ' ?(s) + * * " # # *
'
H(s)
'
+ H(z) H(s) |s (2/T)(1- z -1 )/(1 z -1 ) .
(5.6)
= E " # $ + & $ , * * + . D# E ", & $ '
+ # &, # + $ «
». ? , # $ + # #
0 <:< f, >@ * '
* + , &* @+>
< (5.6), # #+ #>@* HF 0 # p.
HF + k #G
# #
0 <:< f, # - $ >@
'
+ # #+ k #G # .
"+ $ # & ; &
" > #
2
Z˜T
).
(5.7)
:
˜ tg (
T
2
F #
' * " " . 5.3.
Zc 1 #/ $ # #
2
T
+ ;?H – : : c
˜ tg ( ) .
T
2
* " > '# $ # &$ '
&
+ $ # &$
$ " . J ", <
&
& + & * $ # * +> %> < & '
&
+ & " K . E "> @ E # > # + * $ . ?# * " , * + < %# ' * * Z * * ¡ # ? 95
', , &$
+ . , " , $+% ,.
E . 5.3. # CA ! ! DGC "+
" ! DGC
5.3.3. " %& # # ; .
$ + - (;=)
$ %# >@ + " $ (;=?H). #+*< +" #$ #@ " # # E " $
&* ;=. ? ', $+' " E &* + " %&* '
* F+ , &* # #G & . = +> E '# " . 5.3,.
= '# & $ # # $+%* , <* > $
< $ #
'
&$ + , + " . V "* $"
( "-" * < %# '
* * Z * * :) # < "+& + # $ &$
$ + , & # > * - "> ' >. J ", $+ " ( . 5.3,) $
< $ #
+
$ $ , " %#>@ $ &$ &$ + .
96
> E $ # +" # * #$ # '
&$ F- + . ! * " % . 5.3,.
E $+ " # # & '
& " $ . A# + , & #&#@ $ # "#$ '# & $ # + $
< "+&. E #$ # $ %#
#$ #@ + " $ . &* % '
*
+ - " $ (;=?H). ? ', +"
'
" # $ # '
" $ + , . . '
+ #$ #@ $ "# % # >@ #G & .
C + " $ ( * :=1 #/), # >@ "#&
$ .
C + " $ ( * :=1 #/), # >@ "#&
$ .
;=?H
;=?H
" # # ;=?H >@ * &* + - (;=).
* " ;=?H '
* + - " $ (;=?H).
;=
;=?H
* " ;= '
*
+ , # >@ * #G & .
"
;, #
#G
.
;
;=?H
>@ *
& -
;
)
)
. 5.3. #" %
97
5.3.4. C !"- (#$!")
A " ;=?H > & >@* ' , # # + m, " * * s0i > spi # * ' "#& & ¡ = 1, ¡" # < ' ~1, ~2 (A, A"). A " & @+> ' +&$ +> &$ .
?
> "
;=?H +> #>
# > ' > H(s):
m1
H(s) C ˜
– (s s 0 i )
i 1
m
,
(5.8)
– (s s pi )
i 1
# A – >@ * % +; m1 – &$ * (m1<m).
A# +, > ;=?H > @ &
- %& ( " # + * +>), & & .
A " ;=?H "> ' "# * # "
* HF @+> >@ $ >@ $
' *.
>@ $ ' * +"> &
# . +& ' !* ( +& ), H&< , # & – E –U (E + &), H&< .
= # & '
+
+ * ' * > &$ *, $ & $ & "# % .
+
# * ' * # & '
> &$ $ "# % , &
$ – +' ( &) E * . ; + & H&< E > & +'
.
! & &$ $ " ;=?H + * # * ' #& . 5.4.
&$ $ & +' $ "& >@ & * > ¡pi,
¡0i =;.
; + & # * ' * > < $ "$ # #
+ +<
" # "# "$ * $ .
98
. 5.4. < ! D#GC,
"+ "+ " % .
' ;=?H H(s)
C
n
#
,
(5.9)
– (s s k )
>
j˜ S˜ 12 ( 2˜k 1)
2˜n
k 1
@
# s k e
, A – .
? # + # "# > " * :".
n
lg(A 2" 1)
.
2˜lg(: " )
(5.10)
% ^"'4 1.
' ;=?H H&< 1 H(s)
C
n
#
,
– (s s k )
k 1
# s k
Vk j ˜ \ k , Vk
sh (M) ˜ sin( 2˜k 1 ˜ S) ,
2˜ n
99
+ n #
(5.11)
\k
J J 1
ch (M)
2 ,
ch (M) ˜ cos( 2˜k 1 ˜ S) sh (M)
2˜ n
,
J J 1
2 ,
1/ n
2 º
ª
, H – +'
+ .
J «1 1 H »
H
¬
¼
? # + H&< 1 # "# > " * :" +'
n
lg(g g 2 1)
lg(: " : 2" 1)
,g
A 2" 1
H2
.
(5.12)
% ^"'4 2 ('*).
' ;=?H H&< 2 ( ) #
n
– (s sn k )
H(s) C ˜ kn 1
,
(5.13)
– (s sp k )
k 1
# sp k
V k j ˜ \ k , sn k
j˜
:"
cos( 2 ˜ k 1˜ S)
2˜ n
sh (M) ˜ sin( 2˜k 1 ˜ S) E k
2˜ n
,
Dk
, Vk
: " ˜D k
D 2k E 2k
, \k
ch (M) ˜ cos( 2˜k 1 ˜ S) sh (M)
2˜ n
,
1/ n
: " ˜E k
D 2k E 2k
,
J J 1
2 ,
ª A A 2 1º
"
«¬ "
»¼ .
? # + H&< 2 % # "# > " * :" +'
, & % (5.12).
ch (M)
J J 1 J
2 ,
5.3.5. $% #$!" &*
+ - " $ (;=?H) " + - (;=) @+>
#>@ $ &$ " *:
s
D&E^-DE^: s o
( + " $ );
:u
:
D&E^-D ^: s o u ( + & $ );
s
s 2 :u :l
D&E^-D&: s o
( * + );
s(: u : l )
100
D&E^-DU: s o
s(: u : l )
s2 :u :l
( % &*
+ ).
:u – $ ", :l – % ".
= &* ;= " &* ; @+> * " (5.6).
;=?H % &+ " ;=?H * " (5.6). & > & " # ;:
1
z 1 D
sin(
>Zc Zu @
˜ T)
2
;
>
1
Zc Z u @
1- D ˜ z
sin(
˜ T)
2
>Zc Zu @
1
cos(
˜ T)
z D
2
]&E^-] ^: z 1 o ,D ;
>Zc Zu @
1 D ˜ z 1
cos(
˜ T)
2
z 2 2˜D ˜k ˜ z 1 k 1
1
k 1
k 1 ,
]&E^-]&: z o
k 1 ˜ z 2 2˜D ˜ k ˜ z 1 1
k 1
k 1
>Z Z @
cos( u l ˜ T )
>Z Z @
Z
2
D
, k ctg( u l ˜ T ) ˜ tg ( c ˜ T) ;
>Z Z @
2
2
cos( u l ˜ T)
2
>Z Z @
z 2 2˜D ˜ z 1 1k
cos( u l ˜ T )
1
1 k , D
k 1
2
]&E^-]U: z o
,
>Zu Zl @
1 k ˜ z 2 2˜D ˜ z 1 1
cos(
˜ T)
1 k
k 1
2
>Z Z @
Z
k tg ( u l ˜ T) ˜ tg ( 0 ˜ T ) .
2
2
]&E^-]E^: z
o
,D
>
>
@
@
> @
> @
Zu – $ ", Zl – % ", Z0 – ' +
=; C;, Z – " ;=?H, T – # # "' .
5.3.6. $ & C + '
*
+ : + – =; ( *); ' – ; & " – 50 ', 150 '; # 300 ' – 20 #; # "' – 1 '.
U4
1. C
+ & # n + " $ (;=?H) ' .
101
n
lg(A 2" 1)
,
2 ˜ lg(: " )
# :" – + "# % , " – E
' "# % .
= "# > $ " F2=150 ', "# % F"=300 '.
F
A# + , + "# % :"= F "
2
300
150
2.
E
' "# % "# # '$ # (20 #).
& " +&$ # '$ ("=10).
=
" # # + n
lg(10 2 1)
2˜lg(2)
= 3.31.
D +<> # n=4.
2. ;=?H 4 # &# #>@ " H(s)
1
,
n
– (s s k )
>
j˜ S˜ 1 ( 2˜k 1)
k 1
@
V k j ˜ \ k – >
# s k e 2 2˜n
+ .
n + % " + 2 #
H(s)
1
1
˜
s 2 2˜V1 ˜s V12 \12 s 2 2˜V 2 ˜s V 22 \ 22
Vk
V1
1
1
˜
.
s 2 2˜V1 ˜s 1 s 2 2˜V 2 ˜s 1
( 2˜ k 1) º
cos(S ˜ ª 1 ).
2˜ n »¼
«¬ 2
( 2˜11) º
cos(S ˜ ª 1 ) 0.383 , V 2
2˜ 4 »¼
«¬ 2
( 2˜ 2 1) º
cos(S ˜ ª 1 ) 0.924 .
2˜ 4 »¼
«¬ 2
3. =
" # " ;=?H &* + (;=) "# ( # * + ).
= " # * # > ' > H(s)
s 2 :u :l
, # :u – $ ", :l – % so
s(: u : l )
". ( : u 2 ˜ S ˜ Fc 2 , : l 2 ˜ S ˜ Fc1 , ': : u : l ).
' % * " & :l $ # # + Z12
Zc12
2 ˜ F# ˜ tg (
:l
)
2 ˜ F#
2 ˜ F# ˜ tg (
S ˜ Fc1
)
F#
2
H(s)
–
k
2 ˜ 103 ˜ tg (
S ˜ 50
103
) =50.41.
1
2
>Zc12˜:u @2 1
2˜Zc12˜:
2˜V ˜Zc12˜:
2˜V
˜ 2
1 s 2 ':k ˜s (1 ': u ) k ': u ˜ 1s s
':
': 2
102
.
4. & * " ;=
* + .
'
"#&*
s o (2˜F#)[(1–z–1)/(1+z–1)].
2 B B ˜ z 1 B ˜ z 2 B ˜ z 3 B ˜ z 4
0,k
1,k
2,k
3,k
4,k
– A 0,k A1,k ˜z 1 A 2,k ˜z 2 A 3,k ˜z 3 A 4,k ˜z 4 .
H(z)
k 1
2
ª 2˜ F# 2 2˜ Vk˜ 2˜ F# §
2˜ Zc12˜ Zc2 · ª 2˜ Vk˜ Zc12˜ Zc2 º ª« Zc12˜ Zc2 º» »º
· C0 « §¨
1
»
¨
¸ «¬
k « © dB ¸
dB
2˜ F#˜ dB
2
¹
¼ «¬ ( 2˜ F#) 2˜ dB2 »¼ »¼
dB
¬
©
¹
B
C0
A
2 ºº
2
ª
ª
« 4˜ § 2˜ F# · 2˜ §¨ 2˜ Vk˜ 2˜ F# ¸· 2˜ ª« 2˜ Vk˜ Zc12˜ Zc2 »º 4˜ « Zc12˜ Zc2 » » ˜ C0
k
« ¨© dB ¸¹
«
dB
2˜ F#˜ dB
2
2 »»
©
¹
¬
¼
¬
¬ ( 2˜ F#) ˜ dB ¼ ¼
2 ºº
ª 2˜ F# 2
ª
· 2˜ ª 1 2˜ Zc12˜ Zc2 º 6˜ « Zc12˜ Zc2 » » ˜ C0
« 6˜ §
«
»
k
« ¨© dB ¸¹
«
2
2
2 »»
dB
¬
¬
¼
¬ ( 2˜ F#) ˜ dB ¼ ¼
2
ª
« 4˜ § 2˜ F# · « ¨© dB ¸¹
¬
2
ª 2˜ F# 2 § 2˜ Vk˜ 2˜ F# · ª
2˜ Zc12˜ Zc2 º ª 2˜ Vk˜ Zc12˜ Zc2 º ª« Zc12˜ Zc2 º» »º
· ¨
Ǥ
1
˜ C0
¸ «
»
» «¬
k
« ¨© dB ¸¹ ©
«
dB
2˜ F#˜ dB
2
2
2 »»
¹
¼
dB
¬
¬
¼
¬ ( 2˜ F#) ˜ dB ¼ ¼
0 k
A
A
A
1 k
2 k
3 k
4 k
k
B
1 k
0
B
2 k
2˜ C0 B
3 k
k
0
B
4 k
C0
1
A
k
0 k
1
ª Zc12˜ Zc2 2 º º
§ 2˜ Vk˜ 2˜ F# ·
ª 2˜ Vk˜ Zc12˜ Zc2 º
«
» » ˜ C0
2
˜
4
˜
¸
«
»
«
»» k
dB
2
˜
F#
˜
dB
2
2
©
¹
¬
¼
¬ ( 2˜ F#) ˜ dB ¼ ¼
2˜ ¨
# ¢ 1
B
0 1
A
0 1
1
0.06527802
A
1 1
B
1 1
2.92520672
0
A
B
2 1
0.13055603 B
3 1
3.66251757
2 1
A
0
B
4 1
2.33655434
3 1
0.06527802
A
4 1
0.65819494
¢ 2
B
0 2
A
0 2
1
5. 0.0525718
A
1 2
B
1 2
0
2.69104173
A
B
2 2
2 2
0.1051436
2.94961679
A
B
3 2
3 2
0
B
4 2
1.54652942
0.0525718
A
4 2
0.33543104
& %# &# #>@ " y
j k
4
§ 4
·
¨
¸
B ˜y
A ˜y
t k j t k1
t k jt k ¸
¨
t 1
©t 0
¹,
¦
¦
# yj,k – &$ # * k- , yj,k–1 – $ # * k- .
$ #&* $ # * + " yj,0.
103
5.4. &)*8&'( +*%'
1.
2.
3.
4.
5.
' + . D & $ + .
= F- +
# * " : # # ".
A & ' #
' * " .
#& ' ;=?H. & + - .
U + # * ' > ( @ * #$ #).
& & " " # * " .
104
6. !$ -! I$
= # "# +"
3, 5, 7, 13, 17, 18].
& #>@ : [2,
6.1. &)(A &(*(*%&'4 :8)* ()- (%'4 :&96
6.1.1. A " ?C; (F- + ) & "# * # "
* * $ + Hd(j˜q) & ""#& # & < ' ( . 6.1). D
"> + * $ + h(n)N * # & N, >@* E
' # * '
N 1
¦
H(z)
h (m) ˜ z m .
(6.1)
m 0
& , $ + $ "& * " * ; +, @+> " ; + % &+ *# + $ hd(n), "# * # "
* * $ :
h d (n )
T#
˜
2˜ S
Z# / 2
³
H d ( j ˜ Z) ˜ e
j˜Z˜n ˜T#
˜ dZ .
(6.2)
Z# / 2
D# + $ (6.2) #+ + > # > " * " :
n < 0 hd(n) v 0 – + % $ # "#* .
= E % &+ # +" + * $ ?C;.
? , # '
;?H * ± q#/2
­1, Zc d Z d Zc ;
H d ( j ˜ Z) ®
¯0, # # $ Z ;
h d ( m)
T#
2˜ S
Z
³
H d ( jZ)e
j˜Z˜ m ˜T#
dZ
Z
105
Z T# sin(Z mT# )
S
Z ˜m ˜T#
O sin(O m )
.
S Om
. 6.1. @" % %! DGC
+&$ $ # $ ; #& . 6.1.4.
= + + * $ (6.2)
" "&* F- + * $ *, " * "# *, % # hd(n) (N – 1)/2 " # n < 0 n  N. = E $ + & # ; + E
' hd[n – (N –1)/2]:
H( j ˜ Z)
N 1
¦
h d [m ( N 1) / 2] ˜ e
j˜Z˜ m ˜T#
(6.3)
m 0
" , # ; + %# " ["", " >@ '
" & &$ ' *.
< '
# &$ ' * +> $ ?C; > # & + * $ hd[n – (N – 1)/2] @+> ' +&$ &$ ' * w(n) * # & N:
h (n ) h d [n ( N 1) / 2] ˜ w (n ) .
(6.4)
= E % > $+%+?
+? +? wR(n) = 1, n = 0,..N – 1.
= * " + * $ $ + H( j ˜ Z)
N 1
¦
h[m] ˜ e
j˜Z˜m ˜T#
,
m 0
# * * "# * * $ Hd(j˜q) * $ * (; +z " ) * ' W(j˜q):
106
H( j ˜ Z) W ( j ˜ Z) * H d ( j ˜ Z)
T#
˜
2˜ S
Z# / 2
³ W( j ˜ T) ˜ H d [ j ˜ (Z T)] ˜ dT ,
Z# / 2
# * – , £ – W ( j ˜ Z)
N 1
¦
w[m] ˜ e
j˜Z˜m ˜T#
(6.5)
,
– $ *
m 0
' .
& " * * >
> . 6.2, # #
%>@ '
"# * * $ & # ; +.
H $ * ' . 6.2 &* <
* ¤q & , + &$ $ " +& #> " ~.max @#+> #
& . A * @ @ #$ ± q#/2 " + % * * $ * '
& @# & "# * * $ * Hd(j˜q).
. 6.2. < + G,D
" 107
"
#, $ # * $ + H(j˜q) # <
* * $ * ' : 'Z | 'Z , < ' (+' ) "# % ~1, ~2
"& &$ . J # * ' , # % +:
¤q;
x +> <
x +&* + &$ ~.max +>
@#+ # & ;
x +> # N.
! E # &. !, # & '
> +< * + &$ , +<> <
, +<>@> # &
* ' N. J G " +"&$ &$ ' *. C & &$ " $.
6.1.2. '% & *
. 6.1 #& +"& " ; &
&$ ' *: + *, + *, F, FE E.
" * <
& ¤q=D˜q#/N, # D z
"& &* D- , + &$ ~.max >> % ' & " < ' * $ "# % ( +& +' * $ ) |~2max|, #, &
# '
;?H * " Œ = Ž/4 [14]. ! % < > " ;H.
; # " (==;, =U;, K=;) " &$ #&$ < + ' %
&+ +< ' " , 6 #.
! ' 6.1
# " ! = +
! +
F
FE E
¤q
2˜q#/N
4˜q#/N
4˜q#/N
4˜q#/N
6˜q#/N
108
~.max, #
z13,6
z27
z31
z41
z57
~2max, #
z21
z26
z44
z53
z74
C # + #& . 6.1, % "$ > * $ "# % " #+ &
* ' .
&*4 + – $+% z +> < +&* + &$ .
(6.6)
wR(n) = 1, n = 0,..N – 1.
H $ ( . 6.3,) # & % WR ( j ˜ Z) e
j˜Z˜ N21 ˜T#
˜
sin( Z˜ N2 ˜T# )
sin( Z˜ 12 ˜T# )
.
(6.7)
& * '
> <
¤q = q#/N ¤Œ = 2 Ž/N. = Œ = 0 |WR(j Œ)| = N.
;+% + * # $ +&$ &$ ' * # * N/2:
w T (n )
0 d n d N 1
­ 2˜ n ,
°
w R (n ) * w R (n ) ® N 21˜n
°̄2 N 1 ,
2
N 1 n d N 1
2
(6.8)
# +< <
# +< &$ .
H $ + * * '
# * $ + * * '
* # &:
WT ( j ˜ Z)
sin 2 (Z˜ N4 ˜T# )
sin 2 (Z˜ 12 ˜T# )
.
(6.9)
& > <
¤q=2˜q#/N ¤Œ=4˜Ž/N.
!""@ + HK & & % w H (n ) D (1 D) ˜ cos( 2˜S˜n ) .
(6.10)
N 1
= “=0.5 * + H, “=0.54 –
* + HK ( . 6.3,).
+ &$ * ' FE "& & # $ % * ?C;.
H > $ * ' FE ( . 6.3, )
% # + * $ &$ $ +&$ &$ ' * ' +& q0 = 0 q0 = ±q#/N:
>
@
>
@
WH ( jZ) DWR ( jZ) 1D WR j(ZT# 2S ) 1D WR j(ZT# 2S ) . (6.11)
!
!
2
2
109
)
)
)
. 6.3. C "! % " ( ),
" AJ! () ( )
& * $ > <
¤q=q#/N ¤Œ=2˜Ž/N. = @#+ # & 0.04 % @# # * $ * ' .
+ K #
w B (n ) 0.42 0.5 ˜ cos( 2˜S˜n ) 0.08 ˜ cos( 4˜S˜n ) .
N 1
N 1
(6.12)
= > * ' * FE < *
&* ( 1.5 ") + &$ .
H $ * '
E > * ' * FE # % # # +&$ &$ 0.04˜WR[j(q±2˜q#/N)]. ¥
&$ E * *
' ¤q=q#/N ¤Œ=2˜Ž/N.
= " ?C; +"> % E & & ' \' <, + -H&< , , # . [17, 18], # &$ " &$ ' * *" .
6.1.3. + ' & * ,
# $ &$ ' *, $ ">@ $ < & " &$ ~.max
D
'f ˜N
f#
'f ˜ N (D- f#
), &$
' * *" E -
& <
+
+ @+> K _,
$ #@ & % E * ' :
> @
2
w A (n ) I 0 (E ˜ 1 2˜ n / I 0 (E) ,
N 1
# I0(x) z ' #.
110
(6.13)
# E < # # #
" ' "# * * $ +< * # + "# ' .
*" ' (. 6.2) & E
&, & " > # "# "$ > "=|~2max| (#) *
$ H(j˜q), >@* #+&* ;?H, & +
+ " D- E
' & ¦ [2]:
D|
A " 7.95
,
14.36
A " ! 21 #; D 0.9222, A " 21 #;
­0,
°
E ®0.5842 ˜ (A " 21) 0.4 0.07886 ˜ (A " 21), °0.1102 ˜ (A 8.7),
"
¯
A " d 21 #
21 A " 50 #
A " t 50 #
! ' 6.2
$ D- J L
" " + A", #
25
30
35
40
45
50
55
60
¦
1.333
2.117
2.783
3.395
3.975
4.551
5.102
5.653
D
1.187
1.536
1.884
2.232
2.580
2.928
3.261
3.625
", #
65
70
75
80
85
90
95
100
¦
6.204
6.755
7.306
7.857
8.408
8.959
9.501
10.061
D
3.973
4.321
4.669
5.017
5.366
5.714
6.062
6.410
! ' 6.3
" " % " , "+ " [2]
A", #
30
40
50
60
1 ±~1max, #
±0.27
±0.086
±0.027
±0.0086
A", #
70
80
90
100
1 ±~1max, #
±0.0027
±0.00086
±0.00027
±0.000086
= & " " '& " > D # $ # &* # + N§D˜f#/¤f , &* " # %*< +< .
111
# # $ &$ ' *, '
#+&$
+
==;, =U;, K=; "$ * $ "# % % &+ +< " , 6 #.
6.1.4. - ' % '% / +&$ $ ; " > @ & " ; + $ # "
&$ &$ $ HF Hd(j˜q).
% E^, " &<, +
$ # & % Oc
; h d (n )
S
h d ( 0)
O c sin(O c ˜n )
˜
, n=r1, r2, …
S
O c ˜n
(6.14)
% $$+?@ % (=;) &$ # # $ #:
nz0; H d ( j ˜ Z) 1 Z d Z# / 2 . (6.15)
+& $ ; ^, & ( ),
U ( % ) V& ( ) &+ & %&
" +& $ '
E^
&:
H d ( j ˜ Z) ;H H d ( j ˜ Z) =; H d ( j ˜ Z) ;?H ,
(6.16)
y(n)=x(n); hd(0)=1; hd(n)=0 H d ( j ˜ Z) =;
H d ( j ˜ Z) C;
H d ( j ˜ Z) ;?H 2 H d ( j ˜ Z) ;?H1 ,
(6.17)
H d ( j ˜ Z) =; H d ( j ˜ Z) ;?H 2 H d ( j ˜ Z) ;?H1 , (6.18)
# Hd(j˜q);?H, Hd(j˜q);?H1
Hd(j˜q);?H2 – & $ #+&$ ;?H " Œc, Œc1, Œc2, (Œc2> Œc1), >@ " ;H, =; C;.
! % "+ # # +&$ $ , " # " + >@ & % :
h d (0) ;H
h d (0) =;
1
Oc
, h d (n ) ;H
S
O c sin(O c ˜n )
˜
, n=r1, r2, … (6.19)
S
O c ˜n
O c 2 O c1
, h d (n ) =;
S
S
h d (0) C; 1 O c 2 O c1
, h d (n ) C;
S
S
sin(O c 2 ˜n ) sin(O c1 ˜ n )
,
S˜ n
S˜ n
sin(O c1 ˜n ) sin(O c 2 ˜ n )
.
S˜ n
S˜ n
(6.20)
(6.21)
& " $ # < # K=;.
112
6.1.5. ! '% & *
` 1. = "# " > "$ * $ "# % " @+> . 6.1 & * ' , >@* > |~2max|  ", #, + " <
& , . . D.
=
+" * ' *" . 6.2 $ # >@ "# "$ > " & # * * ' ¦ D.
= E % & +, " "$ " # HF " + , &$ # & * ' N % "+ +<, +<
' " ~2max. H % HF + (=;, C;, K=;),
+< "$ # # * * % * ' . J % HF .
` 2. & * * '
"# * $ # *
& * $ + 'f f " f min
-
%& < ¤f=¤f =D˜f#/N $ # $ # # * '
# > # ' + * $ + : N t D ˜ f # / 'f , # D – E
, " @ * * ' (D- ), . . 6.1, 6.2.
U N %*< ' , &
.
` 3. A @+> " ; +
h d ( m)
T#
˜
2˜ S
Z# / 2
³
H d ( j ˜ Z) ˜ e
j˜Z˜ m ˜T#
˜ dZ
Z# / 2
#&$ &< $ & % *
@ + $ hd(m z (N z 1)/2), m=0…Nz1,
& -
>@ "# * * $ Hd(j˜q).
= E " "# * * $ +"> $ & " f , @& "# % $ # * &
+ ¤f
J " * & # # "& ' $ # & + "# % ( . 6.3). ? , # =;
f 1 | f 1 'f / 2 ; f 2 | f 2 'f / 2 .
113
` 4. ?$ # + $ + @ * (Nz1)/2 + * $ hd(m):
h (m) h d [m ( N 1) / 2] ˜ w (m), m 0,1,..., N - 1 .
` 5. C & HF + H( j ˜ Z)
N 1
¦ h[m] ˜ e
j˜Z˜m ˜T#
m 0
$ #& #& * $ A "$ > "# % A".
` 6. ! #&* # $ #&$
&$ #&$ ( '), $ # > " &$ " f1 , f2
# & + N
& >.
` 7. ?$ # + $ # " # + " *
+ * $ h(m) ( E
' + , " A), * HF @ # "#& .
` 8. & "' ?C; ( A =;)
<> >@ "# "' .
A# +, # &$ ' * > * + ;HF ""#& + # * * * E # + * $ h(m)=h(Nz1zm) (. . 2.13, 2.14).
6.2. &)(A &(*(*%&'4 :8)* ()- %))&6 '*
6.2.1. # * & + $ + "# * *
h(n)N $ # # "'
& # $ Hd(j˜q)
" ; + (D=;).
"' * $ Hd(j˜q) @ 0 … q# $ # & &$ " * & q # &: qk =¤q˜k, # k=0, 1, …, N z 1; ¤q=q#/N z < # "' ; k z * & ; N z # "' . C % & % j˜Z ˜T
e k # * Z- # " . 6.4.
114
" * N
. 6.4. CA ` ¤q & " ¤qu¤q /(L+1), # L z '& , L = 0, 1, 2, …; ¤q z $ #
+ .
"+ # "
$ + (HF) H d ( j ˜ Zk ) H d ( j ˜ Z) Z Z ( . 6.5). ! "#k
$ " " + & ""#& , # ; "&
HF # "
$ %# # $ # "
* HF.
"' * $ . 6.5 & < ¤q=¤q /2 (L=1).
. 6.5. E CA ! % HF " , & 1 (Hd(j˜qk)=1),
"# % z > (Hd(j˜qk)=0)
$ # * – 115
& % & + & ( " &) " Hd(j˜qk)=H1=var, &$ " ' "# *
* $ .
HF Hd(j˜qk) % + > +>
$ hp(m), #> @+> # " ; + (D=;), # "' @ & % # + * $ hd(m), >@* "# * ( & *) * $ Hd(j˜q):
h d ( m)
Z#
T#
j˜Z˜ m ˜T#
˜ ³ H d ( j ˜ Z) ˜ e
dZ .
2˜ S
0
& "&: Z o Zk ; dZ o 'Z Z# / N; ³ o
+> $ h p ( m)
1
N
N 1
¦
N -1
¦
, k 0
hp(m):
H d ( jZ k ) e
j˜Z k ˜m ˜T#
k 0
1
N
N 1
¦
H d ( jZ k ) e
j˜Z k ˜( m i ˜ N )˜T#
k 0
# i = 0, ±1, ±2, ±… .
# «p» ", E + $ # * # Np = N, . . # "'
* # "' * ( . 6.6).
. 6.6. @" % , "+ ECA
+ * $ " # * & ?C; & # # + * $ hp(m), # &* (Nz1)/2 (# " * " )
&* + * *
' * (# F- + ) ( . 6.7):
h (m) h p (m N 1), m 0,1,...N - 1
2
= + * $ h(m) $ # $ + H(j˜q), >@ "#>:
116
H( jZ)
N 1
¦ h ( m) ˜ e
m 0
1
N
N 1
¦
j˜Z˜ m ˜T#
H d ( jZ k ) ˜ e
1
N
N 1
¦
H d ( jZ k )
m 0
N 1
j˜Z k ˜( N21 )˜T#
N 1 j˜Z m N 1 T
k
# j˜Z˜ m ˜T#
2
¦e
m 0
¦e
m 0
e
j˜(Z Z k )˜ m ˜T#
m 0
( ZZ )
N 1
sin 2 k ˜ N ˜T#
j˜Z˜( N21 )˜T# 1
e
˜
H d ( jZ k ) ˜
( ZZ )
N
sin 2 k ˜T#
m 0
>
¦
>
@
@
(
& # +" & % # & * ).
. 6.7. @" % G,D,
! j˜Z˜( N21 )˜T#
E & %
% + e
N
1
˜ T# , + : M(Z) Z ˜
2
# ;HF
* # -
+ * $ .
HF
+ $ q=qk: H(qk)=Hd(qk) # & & HF, $ qvqk H(q)vHd(q) z "# * < ' .
$$ '" * , $,* $ L
$ " * Hi. (i=1,2,…,L), #>@ $ > ' > # *.
C" & " L > #>@ &
" + &$ :
L = 0: ~2$ § z20 #;
L = 1: ~2$ § z40 #;
L = 2: ~2$ § z50 z 60 #;
L = 3: ~2$ § z80 z 100 #.
C+ # * & % "
+ ?C; +& "$ "# % # (90z120) #.
! " , "' + ">
& L z
&
$ # * $ +&$ "117
* Hi. , " >@ $ < ' . D # ,
+ &$ &
@ % '# "' . D # E " JK # * .
6.2.2. ! / '
` 1. = " > "# "$ "# % " & + &$ L * $ $ # * . ? , " u 40 #, L = 1.
H % HF + , +< "$ # " L.
` 2. " L "# * $ # * &
'f f " f $ # < # "' * $ : 'f
'f L 1
# "'
:N
f#
'f
L 1 ˜
f#
.
'f =
N %*< ' , & .
` 3. " "#> > $ "+ HF Hd(jqk), k = 0, 1,
Hd(jq) < ¤f,
…, N z 1.
D # k # &$, &$
+ &$ &$ &
.
U# +& " Hi. " &$ &$ &
%# * $ # * , , * *
' HF %# & " "# % .
` 4. C & > $ ?(jq) $ # &$ $ # " Hi. , "#& .
? , # ;?H
L = 1, N = 33 " H1 =0.3904, ~2max= z40 #;
L = 2, N = 65 H1 = 0.588, H2 = 0.1065, ~2max < z60 #.
` 5. C & +> $ ?C; * $ :
h (n )
H d ( 0) 1
N
N
¦ 2 ˜ H d ( jZk ) ˜ cos> n N21 ˜ Zk ˜ T# @,
KB
(6.22)
k 0
n = 0, 1, 2, …, N z 1, KB= (N z 1)/2 N KB= (N/2) z 1 – .
` 6. & "' ?C; (A =;).
118
6.3. &)*8&'( +*%'
1.
2.
3.
4.
5.
K #& F- F- +
(
' ).
= ' & F- +
# &$ ' *.
A * + * * ' : HF, + $ .
F #+&$ ;.
= ' & F- +
# * & .
119
7. $ #$ G
!$ ! I
7.1. *)(* %(&&0 %&)(A 9:*'4 :8)*
H & +& #& " ; "> JK @+> '# # * ' "#&$
&$ $ + #&
"'
< ' . = E &
$ + + " +>
. D &
' F F- +
> # # < (AD) < &< % ( &* *).
' "' AD # &% M
E
¦ > H( j ˜ Zi ) H d ( j ˜ Zi ) @
2
,
(7.1)
i 1
# H d ( j ˜ Zi ) , H( j ˜ Zi ) – "# >@ & $ + , & & # % ' + .
qi. J ' * + E
K &* * "> "' % +&$ " * " < ' < :
E(Z)
W (Z) ˜ H( j ˜ Z) H d ( j ˜ Z) ,
(7.2)
# W(q) – % + ' .
= +&$ " * E
' + * '
@ # +< $ # ,
* , * * "'
(
; -=E # F- + ) * "& C"
(#
+
&< * ' * F F- ). $ > E & +> & &, , K " +&$ > H&< F+ , +& & " ; FDAS2K, DFDP, Signal & MatLAB # .
120
" F F- +
+"> %
#& # #
, >@ & "' .
= " ; & # & > "+&
* ;HF F- +
*
F- + .
A "
& & # +& ; >
+<> ( # # > +>) < +
+ +< * ' "# #
# "# * (# *) < ' .
F- +
% $ + * &< *
' * > # + * $ N % # + "#& # < ' @+> E
*
&, # * [13].
7.2. &)*8&'( +*%'
1.
2.
3.
= '
&$ +
& # : ' , # +& &, & & .
A
+ * # # < (AD).
A
+ * < &< % .
121
8. "$
"G !I
= # "# +" & #>@ : [2,
3, 5, 7, 19, 20, 21].
8.1. +*(-((&( %6%) # !
" ; + (=;), > . 8.1,
& $' $" +% ( ) X( j ˜ Z) # * # + x(n) * # & N1,
& & # &$ @ $ $ qk= k ¤q:
=; N >x (n )@ X( j ˜ Z) Z Z
k
N1 1
¦
x (n ) ˜ e
j˜Z k ˜ n ˜T#
,
(8.1)
n 0
# ¤q=q#/N – < # "' ; N – & &$
@ &$ & =; {0 z q#},
N1; k = 0, 1… N–1 – * & .
. 8.1. E !
& < # "' # " % +>
x(n) & X( j ˜ Z) =;.
# "
@ @+> " & (D=;). =; (8.1), D=; % &+ # "' & " ; +:
122
x (n )
T#
˜
2˜ S
Z#
³
X( j ˜ Z) ˜ e
j˜Z˜n ˜T#
dZ .
0
+" "& dq € q#/N; ‚€˜; q € q, $ # D=; N >X( j ˜ Zk )@ x p (n )
A xp(n) ±1, ..
1 ˜
N
# N 1
¦ X ( j ˜ Zk ) ˜ e
j˜Z k ˜n ˜T#
.
(8.2)
k 0
# N: x p (n )
" x(n) < x p (n )
x p (n i ˜ N) , i = 0,
¦ x (n i ˜ N) .
i
& N u N1 xp(n) = x(n), n = 0, 1.. N – 1, . . xp(n) 0…N–1 # $ #& x(n), # &
(N – N1) & # # % " # E ( . 8.2). D=;, & 0…N–1, # x(n) =;.
. 8.2. ! , "+ E#D N M N1
& N < N1 (¤q = q#/N > q# /N1) & # "
&$ # N # + * x(n) ( % * ), xp(n) v x(n) n = 0.. N1z1
( . 8.3). J > " % + # "
.
A < N  N1 # & < # "' ¤q u q#/N1, % % * ":
$ * % "'% $ ' '", ' '4+'
4 $ wF.
123
& =; N, &<>@ # # + N1 (# > E (N–N1) & ), E '
, # "
+& # & < ¤q=q#/N1. x(n) & +" # &< "< =;.
. 8.3. ! , "+ E#D N<N1
! " , N- =; # "
* # N $ # * # + x(n) *
# & N1 u N.
=; # % " ; + # * # , & N, >@* *&*
# + xp(n) .
= " =; z D=; (8.1), (8.2) # > #
' # * & qk, * & k:
=; N >x (n )@ X(k )
N 1
¦ x (n ) ˜ e
j˜ 2N˜S ˜k ˜n
, k = 0, 1… N – 1.
(8.3)
n 0
D=; N >X(k )@ x (n )
1 ˜
N
N 1
¦
X(k ) ˜ e
j˜ 2N˜S ˜ k ˜n
, n = 0, 1… N – 1. (8.4)
k 0
& D=;
=; N2 ' * % N˜(Nz1) ' * % &$ .
D " +"> # &* & +&* , &* $ # * " " :
D=; N >X(k )@
^
>
@`
1 ˜ =; X* ( k ) * ,
N
N
# * z ' % .
124
(8.5)
* &
=; # % * , & " ; + ( * +, # # + ), # +> *.
? % * # '
*
+ '
"+ =;
# &$ # + *. # &$ # + * " > > ($+?) *+? .
+ # # # $ # + * x1(n), x2(n) # N:
y(n ) x1 (n ) * x 2 (n )
N 1
N 1
m 0
m 0
¦ x1 (m)x 2 (n m) ¦ x1 (n m) x 2 (n ) . (8.6)
" , # + *
* % $ *, . . & " ; +
# $ # + * " # > " * ;+ E $ # + *: Y(k) X1 (k) ˜ X 2 (k) ( ).
& D=;, % @+> =; & + >
# $ # + *:
y(n ) D=; N ^=; N [ x1 (k )] ˜ =; N [ x 2 (k )]` .
(8.7)
C* # # &$ # + * x1(n) # * N1 x2(n) # * N2:
y(n ) x1 (n ) * x 2 (n )
N 1 1
N 2 1
m 0
m 0
¦ x1 (m) x 2 (n m) ¦ x1 (n m) x 2 (n ) . (8.8)
A * * y(n) # N=N1+N2–1. H &
+ # , =; # + * x1(n) x2(n) $ # & + # N,
>@ # # + y(n), # & < # "' ¤q=q#/N.
= E # + x1(n) x2(n) # > N01, N02
& : N01=NzN1, N02=NzN2, * ' > $ # "
.
A y(n) #& * % % &+
# @+> D=; " # N- &$ =; & &$ # + * x1(n), x2(n):
y(n ) D=; N ^=; N [ x1 (k )] ˜ =; N [ x 2 (k )]` .
(8.9)
& % (8.9) # & * *
&$ # + * * . =
125
+" &$ # & " ; + "& > % & * . D # , =; * * # + * * # &
x1(n), x2(n) E =; * # + *,
&$ # "'
$ # N=N1+N2z1.
8.2. !8)*9/ %0& & %&( # !
A * =; &$ # + * +">
# "' F- +
* * .
A &$ # + # # * *
* (A) $ # * # + x(n) ( # * # & N1) * + * $ * h(n) # * N2:
N 2 1
y( n )
¦ h (m) ˜ x (n m) , n=0,1, …N–1; N=N1+N2.
(8.10)
m 0
= & A
* "> & '
& + & (?C; A).
=
* A % &+ & (8.11):
y(n ) D=; N >H(k ) ˜ X(k )@, n=0,1, …N–1; N=N1+N2.
(8.11)
# "& > * % # + * * # & &. D # * $ * . 8.4.
E =; + * $ h(n)
H ( j ˜ Zk )
N 2 1
¦
h (m) ˜ e
j˜Z k ˜ m ˜T#
m 0
Y ( j˜Z k )
X ( j˜Z k )
# "
* * $ + & $ #(HF), X( j ˜ Zk ) , Y( j ˜ Zk ) – # "
*
&$ # * # + *.
x(n)N
x(n)N1
X(j˜Zk) Y(j˜Zk)
=;N
[x(n)]
+N01
h(n)N
h(n)N2
+N02
D=;N
[Y(j˜Zk)]
y(n)N
H(j˜Zk)
=;N
[h(n)]
. 8.4. " " G,D E#D
126
> #>@ ' :
x " N1 $ # * # + x(n);
x & N- &$ =; # + * x(n) h(n);
x % N &$ & =; $ # * # + HF + " N- * # + Y( j ˜ Zk ) H( j ˜ Zk ) ˜ X( j ˜ Zk ) ;
x & N- D=; # + Y( j ˜ Zk ) ,
"+ > N &$ # * # + y(n).
! " , # & &$ # $ # & & $ # , " <& "# *
* $ *
+ . ; + ' @ # + $ # " * >, * $ #
>.
K % & + "'% ' $+%* ,, $ * * , H( j ˜ Zk ) .
D +> ""#& &# &$ # , & > +
* $ # * # + . "
E # " +, ""#& * " "& " "#+
&* $ .
"'
+ $ # + # " &$
# + * x(n), X( j ˜ Zk ) , Y( j ˜ Zk ) , y(n)
E
' H( j ˜ Zk ) # > N. D > % K 4 ˜ [2 ˜ N 2 N]
' * % K % 4 ˜ [( N 1) ˜ N] ' * % @ &$ . # &$ # E ' * K (1) 4 ˜ (2 ˜ N 1) K % (1) 4 ˜ ( N 1) .
= G & *
+ =; ?C;
*
* –
+ A (#
# & N2 ' % ).
D# E + @ " +" # & =; D=; & " ; + (=;). !, & =; > 2 >
+ % ' *
K 2 ˜ N ˜ log 2 ( N) ' * % % @ &$ . D@ # # ' * # ?C; =; E 127
K 4 ˜ N ˜ >log 2 ( N) 1@, K %
K (1)
4 ˜ >log 2 ( N) 1@, K % (1)
4 ˜ N ˜ log 2 ( N) ,
4 ˜ log 2 ( N) .
=
N = 1024 K (1) 44 , K % (1) 40 .
?C; A ' * " # & + * $ N2 N2 = N/2 K (1) K % (1) 512 .
! " , "' ?C; =; +< G ' *. = * '
+" # $ " &$ =; E + # * "'
"& @ &<. = G & * '
&
+ & =; & & '
&
+ ( G ).
8.3. +()*8&'6 &A %0&: A-, ()-', +*()*'
A +&* " ">
" %
& +& >@ ' " $
+&$ $ – #&, "&, @ , + * @ # .
"#, <& # + ", :
x % ;
' ;
x " < x % #&$;
&$ " ;
x &# ' G ( # &$, +&$
x #
# $ $ );
x " " ( , " % *) # .
*&$ @+> + " < @ "# & &&$ # * $ ( ' &$) "*.
A +&* " # &$ # $ ( &$) * # + "& > %
" [19].
D & # + " > %' ( #& "), "%' ( & =;), ( $ #* *&$ ' [20]), @ , +"@
@ + ", # + + , # + + , + + ( " ).
128
x
x
x
x
"
";
># " (<
) T N ˜ T# >@ # N & * "' ;
" 'f , &<>@ # # &$ * & ±f#/2;
" < , ' + >@ " # $ # $
": 'f p 1/T
" <&$ ( "#&$) &$ >@ $ .
A +&* " <
# $ %&$ > $.
D + " =;
"& ' * "' * # &,
. . ># . = E , "
# E > # # % * "' . ¥
"
=; & E &$ & +&$ =;.
8.4. +()*8&'6 &A %0& & %&( # !
"
, +">@ $ =;, % " , # . 8.5. D " " & ' " – " < & =;. &$ # =; $ # *
@ * # # + x(n), * * ' * w(n) * # & N:
~
=; N >~
x (n )@ X(k )
N 1
¦ x ( n ) w ( n )e
j˜Z k ˜ n ˜T#
n 0
N 1
j˜
¦ ~x (n )e
2˜ S
N
k ˜n
,(8.12)
n 0
k=0,1, …N–1.
U#+ ~
x (n ) x (n ) ˜ w (n ) – " $ # # + + =;; qk=k˜q#/N fk=k˜f#/N – & ", "& &
% " &: 1 < # "' * f#/N. "
N "&$ 1 (f#/N) " ' +& qk (fk), E " k=0,1,…N–1 > , ~
~
* & =; X( j ˜ Zk ) X(k ) . ' # , " ># $ # * , # * ># .
# " T=N˜T# 129
…
=;N
[x(n)]
~
x ( N 1)
…
~
x (n )
x(n)
~
X ( j ˜ 0)
~
X ( j ˜ 1)
~
x ( 0)
~
x (1)
~
X ( j ˜ ( N 1))
w(n)N
. 8.5. " " E#D
% > " < >
* *, E & =; # "
* * " X(j˜q) * $ * ( ) * ' W(j˜q):
~
X(j ˜ Zk ) X(j ˜ Z) * W ( j ˜ Z) Z Z , # * – , . . k
# % > ( # >) $4% . D
# # + , %>@ "+& + ".
= ' +&$ &$ ' * " # + + &"& & E " &
$.
+*< &$ #&$ #&$ =; @ " &$ ' &$ @+> =; +&$
$ , " @ $ # " &$ .
$, xp(n) # N˜T# ' >
#& A m (Zk )
"& M(Zk ) * k˜f#/N $
# " # @ >A m (Zk )@2 / 2 .
', * % x(n)
(
# $) ' >:
x +> + X(j ˜ Z) " +> [/'], #>
# | X(j ˜ Z) | M(Z) , . . #&
" &
& > $ " q=qk $ =;;
x E * +> + E Sx(q)
2
( X(j ˜ Z) ) " +> [2˜/'], "& >@> # E % & > # &$
$ qk.
+*', x(n) ' > +> +
@ Px(q) " +> [2/'], >@> < + * E *&
130
&, . . & * E * % & > # &$ $ qk.
, ', *&$ x(n), y(n) @+> =; " > $ " > +> + @ Pxy(q).
=
"'
&$ + "
" &$ % " + <
"+ " $ " [20].
=; # & % X ( j ˜ Zk )
N 1
¦ x (n ) ˜ e
j˜Z k ˜ n ˜T#
.
n 0
@ $ xp(n) N˜T# k˜f#/N, #>@ =;,
#& #> A m (Zk ) 2 ˜ X( j ˜ Zk ) ,
"& – M(Zk ) arctg[X Im ( j ˜ Zk ) / X Re ( j ˜ Zk )] ,
# N
2
# @ 2 ˜ 1 ˜ X( j ˜ Zk ) .
N
* # + N˜T#
& " $ # #&, "& @ k-* * & , + + $ qk # T#˜X(j˜qk). +& $ "& =; < :
Sx(k)=|T#˜X(j˜qk)|2 z + + E qk;
Px(k) =(T#/N)˜|X(j qk)|2 z + + @ qk;
Sx
Px
1 ˜
N ˜T#
1 ˜
N ˜T#
N 1
¦ S x (k ) – E ;
¦ Px (k ) – # @ + .
k 0
N 1
k 0
K %
+, + <
& E @ " * " & % T# # =; 1/T# # D=;, "& # - & # ; + (C;) [20].
8.5. +*(-((&( %%:9/ 0*) " !
& & " ; + (=;) – E &
& & =;, >@ * > =; & +> "& +. D & & # %& 1965 #
131
' !+>
" & DA
* . & & > *, $* K$' e
j˜ 2N˜S ˜k ˜ n
kn
x WN
kn
WN
:
( N k )n
WN
( N n )k
WN
;
( k l˜ N )( n m˜ N )
kn
WN
# , & # x $ WN
& * "' N ( =;).
pkn
A # * E WN
kn
WN
/ p -
# N/p, # p – '& , & # N.
+" #&$ *
$ =; >
+< >@ $ & =; ' *.
D@ * ' =; ">
" =; $ # * # + =; # # + * +<* # &,
+ # +
" % * ( * > =;), " &
& =; $ # * # + .
C" " % # + *
* * . " E " > & $ $ & $ $ .
=;, =; % & + + # N, >@ ' * m:
N=mL, # L – E E % : L=logmN.
+"& =; m= 2, 4,
8, @ > =; $ ? 2.
"
[7], . 8.8, @+> =; & %
=; (D=;).
8.6. 0*) " ! + %&&F 2 % +**(K&( + *((&
=+ "# # + + x(n) * # & N,
n=0,1,…N–1. ?% * =;:
N 1
X(k )
¦ x (n ) ˜ e
j˜ 2N˜S ˜k ˜n
n 0
N 1
¦ x(n ) ˜ WNk ˜n ,
(8.13)
n 0
# k = 0, 1,…N–1 ( =;) +& G & *. C< E * "#
# =; $ # #>@ " .
$ #> # + + x(n)N # * N " + 2 # # + # * N/2 – > ( >>@> & x(n)
&
# n: x1(n)=x(2n)
>: x2(n)=x(2n+1),
132
n = 0,1,…(N/2)–1. J ( . 8.6).
. 8.6. @ + !
%
> D " $ =; X1(k)N/2 X2(k)N/2. & " =; $ # * # + x(n)N " =; # # + * x1(n)N/2, x2(n)N/2:
N / 2 1
X(k )
¦
x1 (n )e
j˜ 2 ˜ S ˜ k ˜n
N/2
N / 2 1
¦
x 2 ( n )e
j˜ 2 ˜ S ˜k ˜ n j˜ 2 ˜ S ˜k
N/2
e
N
n 0
n 0
(8.14)
k
X1 (k ) X 2 (k ) ˜ WN
,
k = 0, 1,…(N/2)–1.
J & N/2 &$ & =;.
> &$ & X(k) # k=(N/2), …(N–1)
*# * # :
kN / 2
X(k N ) X1 (k ) X 2 (k ) ˜ WN
2
k = 0, 1…(N/2 – 1).
& % (8.14), (8.15)
( ' > G# ):
k
X1 (k ) X 2 (k ) ˜ WN
, (8.15)
#> "+? $?
&
k
X(k ) X1 (k ) X 2 (k ) ˜ WN
,
k
X(k N ) X1 (k ) X 2 (k ) ˜ WN
.
2
(8.16)
k
, &* #> # ',
$ #@ * (8.16) % + WN
"& > $?@. & (8.16)
>> # % % – & .
" > ' > # > @+> + ( =;), . 8.7.
? " ' > % ( $ * &$ #)
& ( % * &$ #), € % > k
>@ * % + WN
.
133
X1(j˜k)
X(j˜k)
k
WN
X(j˜(k+N/2))
X2(j˜k)
. 8.7. ! % ! ?#D A +&* =; # " &$ ' *. E % "
. 8.8 # N=8.
. 8.8. ! % ! ?#D ! J D' &* G & * #&
' * % :
# =; K.=;=N2;
# =; K.=;=2(N/2)2+N/2=N2/2+N/2.
# ,
"+ # % G & * +< 2 ".
+< %#> " # + * x1(n) x2(n) % " + @ # # # + # +<* # &: x11(n),
x12(n) x21(n), x22(n) (> >) + &<
#& '
G# $ =; @+> " &$ ' *. ! % & L " # N/2 # $ &$ # + * xl(0), xl(1), =; &$ & + :
X L ( 0)
x L (0) x L (1) ˜ W20 ,
X L (1) x L (0) x L (1) ˜ W20 .
"+ &* # N=8.
134
=;, "&* . 8.9
X(j˜0)
xp(0)=x(0)
xp(1)=x(4)
xp(2)=x(2)
xp(3)=x(6)
xp(4)=x(1)
X(j˜1)
0
W2
0
W2
0
X(j˜2)
W4
1
0
W4
W8
1
xp(5)=x(5)
xp(6)=x(3)
xp(7)=x(7)
W8
0
W2
0
W2
2
W8
0
W4
3
1
X(j˜3)
X(j˜4)
X(j˜5)
X(j˜6)
X(j˜7)
W8
W4
. 8.9. # ! ?#D N=8
%# " L E
& –
G# =; & > N/2 " &$ ' *, @ * G
& * # &$ ' * % % –
& :
K .=;
N ˜L
2
N ˜ log N
2
2
,
K %.=; N ˜ L N ˜ log 2 N .
(8.17)
H ' * @' 4 " +< #
% 2 " +< # % – & . & &< =;
+ =; ' * % K .=; / K .=; 2 ˜ N / log 2 N .
N =210 = 1024 K .=; 5120 , K .=; | 10 6 & &< 204.8.
&#& . 8.9 " & > * * + * . ! & & >
E , " % @ $, #>@ @> > +> +
G, 2N # N
&$ ( $ + * * ). = E +"& * $ , N $ # x(n) ( @ ) @? N
& & & =; X(k).
D +> =; % &* &* # $ # ,
&* & " & &
# # + (n = 0, 4, 2, 6, 1, 5, 3, 7 # N = 8). ! * !, 135
# # "& > -'. J # $ # # + * $ # * # + # & *.
E & # + x(n)
# > L- " # #
#, #& E & >
#, . . "> " # >
, >@> *
# + x(p).
? , # . 8.9 n(10)=4 $ # * # + x(n)
# * > #
&* #
n(2)=100, #
- &* ( &*) # n# . .=001 # &* p=1 * # + x(p).
J& & – G# =; +& . 8.9 #> #, E % , & & & # =;.
. 8.10. < -
! ( )
136
? E & > N/2 # $ &$ =;, %# "
&$ # " ' =;.
? E $ G# @+> # $
" &$ ' * & > N/4 & $ &$ =; . #.
? L- E # (N/2)- &$ =; @+> N/2 " &$ ' * G# > N- =; $ # * # + .
. 8.11. < -
! ! ?#D
+ 2
137
A " * " ' & =; % " + %&$ ' ( # $
% ):
x E & - G# =; i = 1, 2,…L ( < *);
x & =; i- E l = 1, 2, …2L–i;
& =; m = 1, 2, …2i–1.
x " * '
U >@ $ % * # " * ' i E #> @& & % Wk
N/2
L i
>
@
k=0,1,… N/(2 L -i 1 ) 1 ).
"+ -$ * "' =;, # . 8.11.
D >:
x ( G ) +"&$ &$;
x
# N & * # + ( )
x(n) ( X(n));
#
* x * # + x(p);
x " & > # # P1, P2 " j˜ 2˜S ˜P3
P3
P3
>@ % WN
# " *
e N
' . P3 % &+ % # # +
j˜ 2˜S ˜k
k
& >@ $ % * WN
e N
k =0, 1, …N–1.
x # & > " ' =;, "@ ,
#
' ' $ .
; * # + x(p) @ -$ * (# * ) . 8.10.
8.7. 0*) " ! + %&&F 2 % +**(K&( + %))(
C , @ > % # =;
#> " > ' >. E $ #> # + + x(n) # >
# *
* &%> " $ =; $ # * # + :
N / 2 1
X(k )
¦
n 0
kn
x (n ) ˜ WN
N / 2 1
¦
n 0
k = 0, 1,…N–1.
138
k ( n N / 2)
x (n N / 2) ˜ WN
(8.18)
k˜N / 2
& , WN
N / 2 1
X(k )
¦
n 0
e
j˜ 2N˜S ˜k ˜ N2
e j˜S˜k
>x(n) (1)k ˜ x(n N / 2)@˜ WNkn
= #
k (8.19) " 2k
# &$ &$ =;:
X ( 2k )
X(2k 1)
(1) k 2k+1, & %-
N / 2 1
N / 2 1
n 0
n 0
¦
>x (n ) x (n N / 2)@ ˜ WNkn/ 2
N / 2 1
¦
>x (n ) x (n N / 2)@WNn WNkn/ 2
n 0
(8.19)
¦ >x 0 (n )@ ˜ WNkn/ 2 ,
N / 2 1
¦ >x1 (n )@WNkn/ 2 .
n 0
"+ =; $ # * # + & % "
=; &$ N/2- &$ # + * x0(n), x1(n), #&$ #>@ " :
x 0 (n ) >x (n ) x (n N / 2)@,
x1 (n )
>x (n ) x (n N / 2)@ ˜ WNn ,
(8.20)
n = 0, 1, …(N/2)–1.
& % (8.20) > "* $ # , # * " + %& +&
=; % ( . 8.7). D '
« » "> , % & ' % – & .
" # + * x0(n) x1(n) % %
+ # (N/4)- & # + , =;
&$ %
"> =; $ # * # + x(n). "+ L- E % (N/2) # $ &$ # + *, =; &$ & " * ' * (8.19)
"> =; $ # * # + X(k).
D# "-" % * * $ ', '" & ' $ K ' – -', >@ " <
& # +&$ . D & > %, $ # * # + x(n) # & =; % . , $%% "#+ '* $ . J " *
# + * +> # .
139
= &* +&* =; % " +& % + =; % ( . 8.9 # N = 8).
-$ * "' =; % * &$ " * # . 8.12. = $ # & &$ # * # + X(k) %
+" +
-$ * . 8.10.
. 8.12. < -
! ! ?#D
140
D =; > # > & +> E +, #> (8.17).
= @ " > E +" + $ "'
&$ '
&$
+
=; (=;) ( . 8.13).
x(n)N
=;N[x(n)]
% h(n)N
=;N[h(n)]
% X(j˜Zk) Y(j˜Zk)
=;N[x(n)]
% y(n)N
H(j˜Zk)
. 8.13. " " " ! % ?#D
A @+> =; % , >@ $ #, & > =; $ # * # + x(n)
+ * $ h(n), @+> =; % & D=; $ " # Y(k), >@ $ # &* # # #
- &* # . &$ #& & D=; E > #,
"+ +> > $ # +
&$ & ' .
8.8. '%(&( # ! & %&( 0*) " !
% +, & =; % +" + #
E & D=;, # # + x(n)
# x (n )
1 ˜
N
N 1
¦ X(k ) ˜ WN kn , n = 0, 1,…N–1.
k 0
= # %#& E & % > ' > % ( *), :
*
^
`
ª N 1 *
kn º
1
1 ˜ =; [ X* (k )] * .
x (n )
˜ « ¦ X (k ) ˜ WN
(8.21)
»
N
N
N
¬« k 0
¼»
! " , & & + D=;, % * X(k) X*(k)=Xre(k)–j˜Xim(k), " " # * >@*, & + =; # + X*(k) & " + 141
&* " # * >@* @ *
&$ # * # + =; x*(n), # x(n).
@', ',', $%* $ # + # " .
K<
D=; & > # N $ # *
X(k) &$ # * x(n) # + *, % 1/2
@ $ "+ E & =;.
H
$ $ =; # , "#>@ * & " ; + – =; D=;.
& =; & >
@ & $ #& # + . @* ,* $% x(n) % +, =; # +? X(k)=X*[N–k]
+ # +> E > & * .
= E " %& # [21].
$ " $ @+> # N- =; # & > =; # $ (N/2)- &$ # + *
x1(n)N/2 x2(n)N/2, # $
# + * * * N * * # + x(n)=x1(n)+j˜x2(n).
= E =; # + * x1(n) x2(n) "+
& =; "#> :
X1 (k )
>
@
1 ˜ X (k ) X* ( N k ) , X ( k )
2
2
>
@
1 ˜ X ( k ) X* ( N k ) ,
2˜ j
X( N) X(0) .
k = 0, 1,… (N/2)–1.
8.9. &)*8&'( +*%'
1.
2.
3.
4.
5.
6.
" ; + (=;) # $ # + *. D =;. =; &$ # + *.
& # " ; + (=;) % .
" # =; % "' ;. D' E +< ' *, $ # &$ # =; # =;.
= =; + ". D # # =;.
= =; + ' .
& D=; @+> =;.
142
9. ! "" =
# "# +" & #>@ : [8, 14, 15].
9.1. +%' *(A9 0*) A # DA " "'
& *
% &# + &, " &* %&. ! , " % & @ > @+> "', $*: % , & , % .
$% – E % , –
& , % &+ '& # & , E "' # $ # "#+ %> + .
= + & +& ' " # #& , "# % & + # # # # # "' T# @+> K , # >@ $ *
& (* ), G# & "# % , $ # + " % + @ + $' ',.
, # & +& ' $ # # + $.
&< &$ ' * # # > * % ( * # "& >@ ).
= ' + " % + & ", +"&* "'
#
# %#. %*< , #>@ # + "# * '# & & # % , ' # ( 4).
D#
& " + '# &, # >@* E , "' . " %& "' DA:
x &*;
x &*;
x - &*.
143
D$$ # " +" " "&$ ' +&$ : , , % *, < , #<
, , * "# % , * ,
# *, $ E , &$ $ ', +< $ +&$ $ . #. A + ' +&$
"* %# # "&* .
x(n)
X(n)
X(n-1) X(n-2) X(n-3)
=+ #&$ X
X(n-4)
% +
X
b0
=+ E
' B
b1
b2
b3
b4
+
RG
!
?
>@ *
y(n)
. 9.1. " ! ! %
& # " # # &, > # + #& #
& # # + " &$ .
= # % &+ "& , >@ ' . + +> E # > * " "&
& (A++, Java,
Pascal), # ' '
' (=DA) – >@ * "& .
?# * "' " & #* # + & ' * ' . & + & #, #
+ % " # + >@ * ,
" .
D$$-$ # " , +
' * & DA & ( -'
'
- " , % , % , # #&$ . #.), # + ' * –
.
= #$ # " % + " + # +& & +& ' & @ " & #
( , % >- >, #<
. #.), # #* " , " % + >&* & &<: > * & &< # * & " .
144
C" &$ &$ # " " + & +& " % E * "&
+ "' > DA ' .
9.2. %(&&%) 0*) , /FL( & M((&)&F A
' % $+$ ',.
? , + & # > *
+> # 20 000 #, %#&* " $
% # %+ 8 # 16 ( " " # =).
D& & "> # &, & &$ + " "& . 9.1. ,
+< # % #
+< # + +,
" " &* .
! ' 9.1
# # ( )
53
144
80
+ + # ()
22.5
30
10
A
+ ( /)
2400
4800
8000
A + #&$ # " # + +>
' , & % &$ # ' &$ #, & &$ # (. 9.2): MIPS (Million Instructions Per Second) # '
;!
MFLOPS (Million
Float Operations Per Second) # '
=!.
! ' 9.2
# %
= ' &
TMS320C2xxx
TMS320C5xxx
TMS320C6xxx
ADSP-21xx
! (K')
20–80
30–133
167–250
40–100
=
" # + +
(MIPS)
20–40
30–532
# 2000
75–150
=
" # + +, & % MIPS (MFLOPS), * #+
" % * # # ' . U% $145
%% % &+ " + +<* ' >
& ', ;
,
& =;. = E "> '
ADSP-21160 (100 K', 600 MFLOPS) @ # ' TMS320C6701 (167 K', 1000 MFLOPS), + & =; " 90 , – " 120 . ! % # + G " * * &
#/ & #,
" * #&$, ## % &$ ' $ . #.
* # + * " # + , "&&* BDTImark (. http://www.bdti.com/), =DA ' +&$ "#. C"+ & % #+&$ &$ # '$ (. 9.3): &< " # + +, +< # ' ' ' .
# %% = ' &
Lucent DSP161210
Motorola DSP56303
TMS320VC549
ADSP-2189M
TMS320C6201
=
= (MIPS)
100
100
100
75
1000
! ' 9.3
BDTImark
" # + +
C+ # '$ BDTImark
36
25
25
19
600
" . 9.3 #, :
" # + x ' + * " + * *;
x ' & # * * " # + +> "+ > # > +> " # + +.
`* $ * ,',/',',
',.
D& # " #&$ 40 – 80 #, # &$
* $ % # $ # + # 100 #. A# + ,
# $ # + > E> ", & "' > #&$ +< * " # . +, # 6 #, " # + % *
" &$ # " $ " &+ *, "
. 9.4, & " # * # %& + # > " # +.
146
! ' 9.4
E %
*
# " (#)
40
60
80
100
C" # + % *
7
10
14
17
C" # + " # 14
20
28
34
* # " #&$ # > #+ "# +> =, E # 20–24, . . #
# # " = 120–144 #. #* + " E # * # " "& + +< , % " * . 9.4 " # .
C" # + 7–10 # &, +"& $ .
" + # * " # + 13–14 .
* # " , + & * @ + < '
* ' " + " # , – * * (;!) >@* * (=!). +< (. 9.5) &> ' & .
! ' 9.5
& %% ;
Analog
Devices
Motorola
Texas
Instruments
= ' &
ADSP-21xx
ADSP-21xxx
DSP5600x
DSP563xx
DSP96002
TMS320C2xx
TMS320C3xx
TMS320C4xx
TMS320C5xx
TMS320C54x
TMS320C5000
TMS320C662x
TMS320C67x
TMS320C8xx
C" # +
! #&$
;!
16
=!
32
;!
24
;!
24
=!
32
;!
16
=!
32
=!
32
;!
16
;!
16
;!
16
;!
32
=!
32
;!
8/16
147
=
" # + +
(MIPS)
33.3
40
40
80
20
40
25
30
50
50
40–2000
1200–2400
600–1000
50
%4 $* , + , $*.
"& + , E ' > # & # &$ # . , #& % * &+ # & " ' * &$ &< : , , =;, *&$ $ " *. D># #, E " # % &+
& & $ . , # % &+
" $$ + $ ( % +&$ " # *) "# +< + #&$ + # & & & # .
E",% "$ " $* ]!.
* " " " "&$ ,
E
' #&$
&$
# &$ $.
# & & $ # +< '
# # E$ - " " * #&,
'
# ( # &
# % "& –
#% ), ' $ " , # *& #" . #.
& .
= " , # %# $ #&$
#&$ & > #* , & @+ . ? , + ' & TMS320C6xxx " * "' $ &.
U+% .
!. . + #+&$ ' *. ! & > ' « » =; # & .
9.3. %&&'( %6%) A" &< " &# + & * =DA,
>@ * E > "' > DA:
x & & &$ ' * DA;
x "' * ' % (
+&$ " # *);
x ;! =! " " * " # +>;
x + & #+&$ * , # * "' * # &$ ;
148
x +< + + #&$ + ;
x " " % # ' + " & "#: "' , ## % - * # '
=; . #.;
x + #&$, >@ $ & *
+>;
x + * ( # +&$
+&$ * , #/ & #, * );
.
x @ E <* D @ &$ * , $ &$ # " "&$ =DA $ $ '
* #& . 9.6.
! ' 9.6
,#
A * = +< DA ( + ' ,
& % " , +&* ", *
. #.)
" # + , + $ ' DA, >@ +< G
+&
#&$, > # &
# @ #&
%# # ' C% & ' + * J ## % #&$ # '
FIFO
J ' &$ $ DA; & ' +&
& , ## % >@ &
#& #/ & #
+ , >>@ +
" "& * ( # &, # ,
* &, *&
#/ & #,
*&
& <* @
#/ & #
" # .), " " & +
& & * = DA # " & #& "#, & &+ & # ' , E " ' "
& "# , < &$ " % + %&$ ' $.
149
# &$ $ "#> ' +& =DA (ASIC), & "" # %+ # +& ' +& : - ' *, $ *
#
, * ">@ =; . #.
""&$ '
"#> + ' & "
# +&$.
9.4. L( +*&9+' +%)*(&/ *4)()* 9.4.1. $ % *
! « $ » & +" # ,
' #* , '
" # &$
"
& + * &. J > % " % " % * ,
#&$, &
#, # '
. #. ! " , « $ » & # >, $ ' .
A &$ &$ =DA (1982 .) $ $ + DA. \>& E $ ' #> , " >@ "' '
* (DA). # &$
DA $ & +&$ * < # " " $ & =DA.
! # ' & & , >
>
DA '
=DA, F- + .
&$ # * + # & % N 1
y( n )
¦ h (i) ˜ x (n i) ,
(9.1)
i 0
# $(n) – & $ # ; h(i) – E
' & + .
, & $ # %> E
' &
+ >. = # & & +">
$ # $ $ DA. ! " , " * ' * DA ' % # ( ) "+ % . = # > ' > "> $ * MAC.
, & + & * " # + +>, ' # % & + ' > MAC " # ' () & ' . D& , E
' &
+ #& & $ . & ' " 150
& " – #& # $ % *. A# + , # & & * " # + +> E & $ # " " # & ' . = E # " , "+ '
* & ' ( ' + ' * =), @ +. @ % @ ' " "+ +, . . $ # & & @ " ' .
! " , " # + + ' , %# , # " % #& %# = +> ' "' * $ " #* .
? % > " & #
#&, +"&
= # &< " # + &. J # >
@ # +< '
* *
#
" – # * " "&$ #*, # & > "&$ ' * + $ #$.
9.4.2. #% & ! % ? . 9.2 " # ' & + * &, >@ « -* *» & + * < .
* .
?* (1903–1957) # % '' > & + * < & (
, $ * &), % +< &$ < .
D# " &$ E * '' , # # * +>, * $ #& &
#&. A # % # < #&$ (¥), * #> #& &, #&. A# + , * ' # & #& # $ % * (
+ # & ' MAC).
' $ =DA # $ & + * &, # . 9.3. = # $ " , & * 40-$ #$ XX- # # # . * (1900–1973). E * '' * # $ & ( #) #&$ +"> " & * . A , # < # E $ * : < # (¥==), < #&$ # & +>
(¥==) < # #&$ (¥=), < #&$ #&$ (¥=) # & +> #&$. # * $ * % # " # + '
@ " & * , . . $ & + # "
== < % + " #&$ = 151
< ¥=. A , E # & '
MAC # ' & ' . C+ " " &$ # +&$ # ' MAC # # ' . C" & & "'
'
&
%. , == # +" + # $ #, #&$. = E $ $, ]&! * * ,+.
¥
=+
= #&
=
¥
. 9.2. " G ¥
=+
¥
=+
#&$
=
¥
¥
. 9.3. < " A# <+ +
#, + < # # * & #&$ # " = == +"> +
=DA * +> ' . @ <* $ ' $ # < $ < – ¥ ¥. J # , #& & $ * & # A. = E " DA +" + + >> +,
' & &> +< * * +> ==, =.
=
+" <* , # $ &
#&$, , " & ' *.
9.4.3. *
$
? . 9.4 # @ ' =DA, %>@ + * " ' $ " #* .
$ '
' +"> + == + #&$ =, & "& # * < . =DA < & " " .
152
< * * #/ & #
¥==
*
'
# =
#
¥=
*&
¥==
U &
& ¥==
*
+&
' +&
#
C &
=+
% +
=+
#&$
\
* < $ < ¥
¥
. 9.4. " % ,#
+ (+%) $%.
` $ $ ¥== #" # # # .
` ', $ $ ¥== % # # #,
$ &$ , % #&$ +" == #
$ #&$ ( , ' E
' '
&$ + ).
` 4 ', $ ', (¥= ¥=)
> # # # #&$ #&$.
< , < #&$
" &$ ' $
@ . ¥= " " # + '
" # * # #&$ # +" " &$ #$. J # " % + # # & + #& ' . &$ ' $ ( , TMS320C5000) " # +* 4' ',: +"> " & < & #&$ # " ' .
4 $%.
* 4, 4, 4 4' `D ', ` .
' & =DA > >> ( +>)
+. D# * ' # "& 153
# # $ #&$. , '
% + * =U # $ &,
". E $ $ % +" + <
+, "+ * @ " * < $ < < < & # ¥ #&$ ¥. % "& + , < $ < # , E +" < $ == = # @ % &" + "# % ' * " . < < &
+" + + # @ <* , # # & * , , +& .
* +$ & & # , & " ==, & & & * $ " ' .
U' +$.
* " . E &, # & * , " , E
' "' & " ' , >@ *
' , , ' +" * ' # # %# <*
* +>. E % & " ' @ ' , , $ # " & .
* /'.
? * < $ * >
" & & * & &. % +, =DA, , > $ + < . C % & , ,
#/ & # ' & " > ' & + > / &# +> ( *) & . #/ & # '
@ "
* #/ & #, &$
>
" # # +& &.
&*' +. =DA > +< *&$ #*, &$ #> " ' .
;*'. ' & > " & * &, #"&, %, # ' $ # &$ ( , & # "'
< =)
$ " & * , @+> &$ %
" + * < $ # ' .
DC , +% # +& ' +& "& #"& # & ' * # & * ' 154
*. =
,
' & $ #> " # + + ' & > %.
* ()
# #&$,
" &$ " =. # * & + $ #
$ # + # + # . E '
% + + * . J * >> # # & # " &$ %&$ #$ # ' .
9.4.4. ' *
$
* '$ .
= ' & #&
$ ' $ " + E . * &* ' & # , " & E& ', & > # .
%.
D # # &$ #* " % +,
+"&*
$ =DA. D " # ' > % #&$
« » ' (16 u 16 # 16- " #&$ ' ) " # ' ( &$ #
"'
' % , & > $ ' ).
? , ' i8086 ' % " , ' % +< 100 .
.
A# #
> # " # % " # + \, # E #+ #. $ =DA > " & # # , %& '$ # # %#
" & # . D " > " # + # # " " # " +" # +&$ #.
$%' DC .
+ \, & >@ " &
' , =DA > +& * . D " > & + " & '
# & \, &< " # + + &.
* [D (AGU).
' $ =DA +"> ' "
& * # ' # #&$ #&$. J * > #
' > # # @ #, "@& #&$ =.
155
; # " &$ #$ # ' , ' +&$, " & & *. ' >
+ # #
" > # & ' * \ & + # # # #>@* #&.
$ +"> & # $ # &$ #&$ ( , " * #
@ * #
' # ) ' "
& \.
D#+ * ' # #&$ &#>
' $ ADI (DAG), Motorola (AGU), TMS320C55X
(DAGEN). E $ ' $ +"> # * , " >@ $
+ # # # # # $ # .
D$$ .
'&, . . # &$ #
$
, " > " + # DA. D&
"' ' & " +" #
* ' , &
# %& & + %# $ %# «» ' . ? & E $ # " . = E =DA +"> * , & " > " + ' & « & » "' > ( * ).
$%' ' .
"' DA =DA @ > ' +& #& # ' . , %# , - ' (' ) # ' . U#+ <
"' >
' &$ , +"&$ ' * # ' .
]+'* "+ # * #&$, @ & " # ' , . . # %
#* * * *, * " # # @ , #>@ #, + *. ? .
9.5 " % # * 10 " # ;
(n–1) – (n+8). # "& «# »
> 1–10. D @ * % #
> :
« "» « $». = # % « "» * ;, & (n+8), # + @ * # (n–1), # % « $» * (n–1) – @ * (n+8). " # # % % $ # + >& # (< ).
&* % +" +, , # "' "# % .
"' $' '.
+< " "&$ # +&$ \ ' +&$ " # " % " # + '156
$ # + #* *. J , > #+, # " % +
# <
+" &$ #, @ >@ $ # + #* *. & #& >
' $
* «# *» «< * # *» $ *. &$ @&$ & " # +&$
' $ & $ RISC @&$ #
« , o ». J G , %&
& #& $ "> $ "& A
' $ + \. E &, & "& A, & > E . A# +, +" %&$
&$ # $ < " & # $ & ' .
;
# n-3
n-2
n-1
n
1
2
n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
3
4
5
6
7
8
9
10
. 9.5. , " "
& #&, %# , +"> # & * ' DA – % " &$ .
U"' +* /' $.
C< "# DA +" =DA @ "-" E $ ' $ &$ " "&$ *
#- & # '
*&$ * .
* #/ & # :
x +&
# +& &
#/ & #, +">@ " & & # ' ;
x & # + DMA, " >@ # +/ & # + ' > + & " +" @ * =, . . " " # + &;
x # = = (16- " #&* #+- =/=
' $ DSP56156 Motorola, 16-+& 10- " #& =
' $ TMS320LF240X TMS32024X);
x " "& # ,
& < &$
"# : # , # # &, &;
157
x & ' * %# ' "'
' * &;
x ' & # < ' +&$ "#: ' & – # # & "& #
( , DSP16XX,
DSP16XXX Lucent Technologies, TMS320C6416), '
–
Turbo Decoder (TMS320C6416), ' & # "' ' &$ +
(DSP56307, DSP56311 Motorola);
% ATM (UTOPIA), >x *& # , #&$
>@ ATM, # 8- " #&$ ' * +> # / # 50 K (TMS320C6416);
x & ¥K (<
- + * #' )
DSP $ (TMS320C24X TMS240X).
]&! * (;) $?@* * (&;).
= ' & *
>@* * >
+> & + & #&, +">@ >@ & # . = E # +
#, ' & =! > # # #&$ ;!, =!, . . > E & +& .
A # * &, ' $ ;! # %
" +
#&$ =!, & " . A >@ & " #&$ > # # & .
D & '
;! =! ">> #>@:
x
' +& # , & >@ '
' % , ' $ =! > =DA
;! "# %, . . & & ' * #
;! =! @ >;
x ' & =! > " "& & # #&$, & # # #&$ ;!, =!
$ " " ;
x " # + # #&$
' $
=! 32 " #, &$ =DA " % +" *
& # .
% '
=! # , $ ' &<, '
;!. D# # $ *
E +< @ =DA =!. D & @ # #>@:
x +" 32 " #
=! @ &< + # #&$;
x @ < " %&* # * # " #&$, . . < +
" % 158
+
" % " > < /<;
+" '
=! <x #&$ '+> "%+ & " &$ ' *
' * ;
#&$ =! x +< " " #&$
# , $ =DA =! # % * # "& A; E , > #+, " + E & & =DA =! +" "&
& .
'
=! # , $ +" & DA & &.
9.5. %&&'( )+' 9.5.1. ,
&* *
$
=
# '
# # % + , +" * [14]. * ' & % "# +, " $ &, #>@ & &:
x # & ' & (conventional);
x <& # & ' & (enhanced conventional);
#&);
x ' & VLIW ( + # x & ' & (superscalar);
x #& =DA/ .
J # &* $ , #
'
&$ # $ . , # *
&* ' , % &" + " # . D# ' # " * # # * $ & '
.
A# % +, &-
" # G >
&$ '
, &$ $ .
! " % '
, #& >@ $ #> ' >.
9.5.2. ' *
' $ (Conventional DSP)
= ' & '
E $ "'
$ ' % . & " * '
' $ " &$
.
% +, # & E * ' " & " – #& # $ % *.
159
&' TI.
A \ # #&$ '
&$ * #& . 9.6 9.7.
, ' & + & % $ -
N 1
y( n )
¦ h (i) ˜ x (n i) ,
i 0
. . ' & + ' > x(n–i)˜h(i) " &$ " $
$ (n-i) E
' + h(i).
' $ * " * (TMS320C2X/2XX/24XX/5X)
% +" + # & .
1.
E
' &
+ & $ #&$ = # & # &< & % ' & > # +& #&, &$ # +
#&$ dma (data memory address).
LT
dma ; " " 1- % !
MPYA dma ; % 2- % # % ; !, # " # ; C, # #&#@ " # ; ( # % C) # % A$ & '
" % . 9.6.
¥=
=+
#&$
=+
¥==
C % !
% +
C " # P
A
. 9.6. #" LT – MPYA
160
' ' & " # E & " # , . . & # # # " # DUD.
& & n " # * $ # (2n+1).
! & ' % # , " #&$ " # % " #
& , # # & ' # @ #&$.
2.
$ E
' + +" + ==. E # & &$ #
+ % + # > # MAC, " # + # # $ % * + #&$ (dma, data
memory address) + (pm, program memory address):
MAC pm, dma ; % # % # &$ ; == =, # " # ; C, # #&#@ " # ; ( # % C) # % A$ & ' # . 9.7.
¥=
=+
#&$
=+
¥==
C % !
% +
C " # P
A
. 9.7. #" MAC
161
=
MAC ' @+> #& RPT $ # & + %#&* " #& " ==.
= E # # * ( ). & & n " # * $ # (n+2). =
+" # & #& MAC ( '+> & * (n+2) # $ E
' $ # "#* + + >> + .
9.5.3. 0 /7' ' *
(Enhanced-conventional DSP)
' $
K # &< " # + ( & # &$ ), &* +" " =DA, < " &. = E %
# # & :
x + ' *, " # &$ # ;
x + #, & &$ # .
= ' &, +">@ &* &< " # + ,
<& # & ' (Enhanced-conventional), ' &, +">@ * – ' VLIW.
' *, " # &$ # ,
<&$ # &$ (Enhanced-conventional) =DA # :
x # +&$ ' +&$
' &$ "
#* ( % , &, \ . #.);
x " &$ ' "
&$ * , ' "
&$ '
(# # & ,
' & # '
&$ +
. #.);
x « < » < # #&$ ( <
& < ) #
&< # * # ' ;
x +" & # ( " % +> & + $ @ * " # );
x < % & #, & " >
+" + # +& ' +& # .
= & & > # ' & # =DA
+" +, &$ &$ '
. = E "# + ' & # & <& # " % , + ' & " > % % %# . <& # & % ' & DSP56301 (Motorola),
TMS320C55x (TI), ADSP-2116x, DSP16xxx (Lucent) & # .
D# E @ % $ # ' " ' +&$ 162
&$ #. , & + E & & , $ # «$ <» " $ & & # ' . J $ % & " # +&. A # * &, # $ # % * # "&
& ("& A).
% + &<, & E +"> + & #&, $ & # $ RISC [15].
9.5.4. $*
' $
% VLIW
% +, " %& &< #, & &$ # . = # &*
# " ' $ $ * VLIW (Very Long Instructions Word, + # #&). J =DA "& > % Multi-Issue Architectures ( & #& + % ) [14].
= # & ' & +"> @> #
(,+ RISC [15]), %# " &$ # # >
' >. ? + &$ # & > + ( # ) " &$ ' &$ #$. D@ # ' +< +$ – " ($) # #+&$ #* , , +<> # .
$ # +" &$ * +< " # $ #
"+
& $ ' &$ #*. = E > #& « , o
», «+ o », « o +». # « , o » ", # $ # > &
"+ ' @
. &
# > % @ " #&$ < # #&$ #&.
+" * & # " " & +
E & & "& A E & " &. "+ % + & & & +" # $ #&$ "& & .
# =DA $ * VLIW # +< G& , * # " & # & # , ' + +" E * .
9.5.5. ' *
'
A & ' & (superscalar) > ' VLIW "&$ %# * $.
163
#& ' , #"& # #+&$ ' &$ #*, G# >
# @>
cy #, &> + .
= '
#+, &* #, " # &+ & & + , $ . = & " $ #&$, +"&$ #$ # + ,
' .
! " , ' $ VLIW + & &$ # " , &$ ' $ E "# < ' .
D# % # % - " & + " &$ E$ & &. = E #"
& &, % # + , #&. =
$#< * * ' +& " % ' # +" & +>.
9.5.6. : ' *
'
'
, & "& > ,
G
+ <
. J <
* '
, #>@ *
+<* ' "' *, " " ' *
,
" " " &$ *&$ * . & +&
, #G & , "> # &. K & <
> &$ E
" & &.
U# & +& G , ,
# , > '
&$
+
'$ . +< * =DA " &$
& "' > "# E # . = % + * TMS320C24xx
&
TI,
% # =DA A2000, & & * ADMC3xx
& ADI,
% 16- " # # ADSP-2171, & # .
A@ "#, & > " % *
< $ "# DA "# . = % + & + * , # &$ *, # . #., "# +&$ &$ . & $ < <> "# E & "#$
DA . = E # " #
< 164
# &$ "# # # & +" # $ #+&$
'
. # + #& ' &, G# >@ # " % =DA.
9.6. /&( *4)()*' & AK&%) +*9(%%*
$ * $ &
=DA " % & . 9.7 #& +& #& "'
F- + =; " +" " &$ '
.
! ' 9.7
$ " ,# ! :
K1, T1 – @A- % , T2 – ?#D 256 ! #&$
;! 16
;! 16
;!
16/32
;! 16
;! 16
=! 32
=! 32
=! 32
=!
H ,
T1,
MIPS K1
K'
120
120 730 6.1
A# TMS320A54
160
<
DSP16xxx
120
120 757 6.3
# (Lucent)
250
2000 347 1.4
VLIW
TMS320A62
300
SC140
VLIW
300
1800 183 0.6
(Motorola)
A LCI400 (LSI)
200
800 607 3.0
A# ADSP-2106x
60
60
812 13.5
<
ADSP-2116x
100
100 573 5.7
# VLIW
TMS320A67x 167
500 2.5
550
1498 2.7
–
PIII (Intel)
1000
$ = '
T2,
65
9
21
9.5
9.7. &)*8&'( +*%'
1.
2.
3.
4.
= ' & ' DA. K #&
"' DA. " & ' DA.
D DA, >@ E> ".
$ =DA. D @ =DA.
' =DA $ . D " &$
# =DA.
165
G N
#" # # * # «
' - " + $ $ " <>@ ».
= + <
# '
* , %# , # +> , # " '
&$ : F- F- + , +
=;, "
.
166
"" ! 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
D * =.=. ! & ' - " + * $ . – : @ < , 1983. – 455 .
C \., # . !
'
* / . . # #. °.?. # . – K.: K ,
1978. – 848 .
+# \.K. # . . – 2- "#.,
. # . – K.: C#
"+, 1990. – 256 .
K.!., A .., < .?. ! &
# $ . – K.: &< < , 2002. – 306 .
A.. C# $ '
&. C #
< > "#: # # $. '. " . –
2- "#., . # . – K.: &<. < , 2002. – 214 .
A .. . – A=.: = , 2003. –
604 .
.A. : .
2-$ . H.1. – : "#- !, 2001. – 199 .
A .., $
.., \.. & ' &'
* . – A=.: F-= , 2001.
– 464 .
A # .. !
'
"# . – K.: ?, 1967.
F .?. D & '
* E " + * $ . –
K.: J , 1966.
* \.;. ' - " +& &. – K.: J , 1966.
F# .?. D' #
" '
* '. // ! #& ?J=, 1969. – &. 6.
+ .. & '
& &. – K.: C#
"+, 1986.
Eyre J., Bier J. The Evolution of DSP Processor / IEEE Signal Processing magazine, 2000, March.
°. ? =A Texas Instruments / & $ , 2001. – ¢ 1.
167
17. .. # . K & : . # " / # #. H # .. –
K.: &< < , 1971. – 808 .
18. ., # ., J =. & +&
$ . – K.: J "#, 1983.
19. FE C.. & + &. – K.: ?# , 1987.
20. * .A., K.=. C# $ '
&:
. . – K.: C#
"+, 1994.
21. K A.\. * +&* " % . –
K.: K , 1990.
22. # '
>
+ ' > / # #. C. ,
. # . – K.: K , 1976.
168
O
169
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
/ 1 34 /
5 // MATHCAD
K # " & > * & ¢ 1
«
».
!DKA 2008
170
C" " ‹ 1
V *', $ $ Mathcad
1.
\² CD!µ
1.1. " ' * Mathcad # #
*&$ ;
1.2. " # * '
+ Mathcad;
1.3. # # - * $ (HF)
+ , $ # * $ .
2.
C! =DA?? \DC!DC?D³ CD!
2.1. D' *' '
A "+ %# $ #& X(t)
&$ #& Y(t) * * & "& +* $"
Y(t)=F[X(t)].
(1)
C*' "& > &, # &$ & ' " ' : ' *> ' > * *
'
' * E &, #& $ # #+ .
F[X1(t)+X2(t)]=F[X1(t)]+F[X2(t)].
(2)
F>C˜X(t)@=C˜F>X(t)@, # A=const.(3)
C' G-$+% "& $+%* ,* ' – h(t). ; " "& & # > # f
h(t)=0 ³ h(t) dt f .
t<0
(4)
0
C' & # "#* "& $,* ,* h1(t). = $ # $ " + * $ * " +> h1 ( t ) ³ h(t) dt .
+ $ # $ & " > # + ' > & " +&* $ # * ( ?) # * " & $
t
Y( t )
X (0) ˜ h1 ( t ) ³ X c(W) ˜ h1 (t - W) dW .
(5)
X (0) ˜ h1 ( t ) ³ X c(t - W) ˜ h1 (W) dW .
(6)
0
t
Y( t )
0
t
Y( t )
X ( t ) ˜ h1 (0) ³ X(W) ˜ h(t - W) dW .
0
171
(7)
t
Y( t )
X ( t ) ˜ h1 (0) ³ X(t - W) ˜ h(W) dW .
(8)
0
" & $" +%
> % $" C$ f
*
Y (s)
³ Y(t) ˜ e
s˜ t
f
³e
dt
0
0
Y * (s)
f
³ h(W) ˜ e
H (s)
s˜t
s˜W
t
dt ˜ ³ X(W) ˜ h(t - W) dW ,
(9)
0
H(s) ˜ X * (s) ,
dW , X (s)
0
(10)
f
³ X(t) ˜ e
s˜t
dt .
(11)
0
# Y*(s), X*(s) – " % ($" C$
); H(s) – $ + &.
*
Y ( j ˜ Z)
f
³ Y(t) ˜ e
j˜ Z˜ t
*
dt , X ( j ˜ Z)
-f
H ( j ˜ Z)
f
³ h(W) ˜ e
f
³ X(t) ˜ e
j˜Z˜t
dt ,
(12)
-f
j˜Z˜W
dW
H (Z) ˜ e j˜M(Z) ,
(13)
-f
Y * ( j ˜ Z)
H( j ˜ Z) ˜ X * ( j ˜ Z) .
(14)
# Y*(j˜Z), X*(j˜Z) – " % ($" +%
); H(j˜Z) – , & (" +
&$ # "#*
$ # &); H(Z), M(Z) – $+- -
,.
H $ & % &+ # # * ' # s j ˜ Z .
* * & & ' " '
Y*(s)=H(s)˜X1*(s)+H(s)˜X2*(s)= H(s)˜>X1*(s)+X2*(s) @,
(15)
(16)
Y*(s)=C˜H(s)˜X*(s)=H(s)˜C˜X*(s).
= # + / + # *&$ @ # ' " # > / # &$ ' * E $ H*(s)=H1(s)˜H2(s),
(17)
H*(s)=H1(s)+H2(s).
(18)
172
, & "#& * , %# , " # # * ' ( * $ ) &. = # * ' #
% # + +> ( $ #>) $ &.
? ,
$ $ # ' & H(s) % &+ # # - ' + *
H(s)
b 0 b1 ˜s b 2 ˜s 2 ... b m ˜s m
B( s )
A (s )
a 0 a 1 ˜s a 2 ˜s 2 ... a n ˜s n
,
(19)
m<n E
' & ai, bi – #* +& .
& " A(s), . . $? ' spi, % # + # > ' >
#
H (s)
b 0 b1 ˜s b 2 ˜s 2 ... b m ˜s m
B(s )
A (s )
a n ˜(s sp 0 ) k 0 ˜(s sp1 ) k1 ...˜(s sp n 1 ) k n 1
,
(20)
# ki – + *.
, > & (ki=1), + $ & # & % n 1
h(t)
¦ A / (spi ) ˜ e t ˜sp i , t > 0.
B(sp )
(21)
i
i 0
= $ # $ -
# E & % h1 ( t )
B( 0 )
A ( 0)
n 1
¦ sp ˜A / (isp ) ˜ e t ˜sp i , t > 0.
i 0
B(sp )
i
(22)
i
2.2. + Mathcad ', *',
$ #&$ #&$ # * '
H(s) & *
. = # * '
# $ # $ & h1(t) – #&* $ # @ ' * invlaplace. U $ #> $ $ # X(t) % * ' > & Y(t) " + "#* , +" # " & % * (5) – (6). =
E * " #> $ # Xc(t), # -
% &+ +" ' Mathcad # #
'
d
.
dt
? , # + " $ (;?H) 1 #:
+ – ;?H; ' – ;
' – K0=10; # " F = 100 '; E
+ – 1.
173
2.2.1. + 1 # # 'c " & A 1
A 0
1
1
H( s ) 2˜ S˜ Fc
K0
A s˜A
0
#
.
1.
2.2.2. = $ # $ h1(t) & #>@ " 1
1
1 ·
h 1( t ) H( s ) ˜ invlaplace s o 2000˜ S˜ §¨
˜ exp 200˜ S˜ t ¸
s
200˜ S ¹
© 200˜ S
2.2.3. U# tx # " , % + $ # * $ .
tmax 2˜ Fc
1
dt tmax
tx 0 dt tmax .
100
12
11
10
9
8
h1( tx)
7
6
6
h1 10 ˜ 0.95 5
4
3
2
1
.
0
0.005
0.01
0.015
0.02
tx
. 1. # DGC 1 2.2.4. = $ # * $ % # + + &$ # & 95 % < " ( 105 % *). ? . 1 +
95 % "
# * , < " # # " # +< " tx ( , 106 ).
2.2.5. , ' &* x(t), "#&*
# & % , Ux 1
fx Fc˜ 1
wx 2˜ S˜ fx
x( t ) Ux˜ sin ( wx˜ t )
# Ux – # #+ , wx – ' ;
" & & % > (6)
´
y ( tx) h 1( tx) ˜ x( 0) µ
¶
tx
0
174
h 1 W ˜ dx tx W dW
# +" " #
$ # "#* , " dx(t) % &+ & Mathcad @+> ' #
'
dx( t) d
x( t)
dt
10
.
8
6
K0 ˜ x( tx)
4
2
y ( tx)
0
K0 ˜ 0.5
0.005
0.01
0.015
0.02
2
4
6
8
10
tx
. 2. DGC 1 ! !
2.2.6. * , ' %
+" + " * * s j ˜ Z # * ' H(s).
" # & * $ %
&+ "# #>@ " f 1 2 Fc˜ 4
Hf ( f )
Hf ( 0)
2
s ( f ) 2˜ S˜ i˜ f
Hf ( f ) H( s ( f ) )
.
12
11
10
9
8
7
6
5
4
3
2
1
1
10
1 10
3
100
f
. 3. "- DGC 1 ;' Hf(f) # * $ * &. K #+ # *
'
# # 175
> $ (D^H), ' Mathcad arg() #
" - > $ (^H).
= HF % # + + – # * > HF , #>@ + # 3 #.
3. =CDCKK?D DA=H?
=
& * &
Mathcad 2000 &<.
+" 4.
=CDCKK \DC!DC?D³ CD!µ
4.1. " + #& #
*&$ Mathcad.
4.2. C + "
+ HF &.
4.3. ?* + # + – $ #> $ + .
4.4. ?* + & "# % , ' + " +&
* + .
5.
D?!CD\²?µ D=CDAµ
5.1. A * &$ *&$ .
5.2. A * G- + + .
5.3. H + $ # $ &?
" "+ + * $ # * $ .
5.4. H # ' &?
5.5. " "+ + * $ # *
' &.
5.6. # &$ # * & " + $ # ( >)?
5.7. #> & & " HF?
5.8. ' Mathcad # & " \?
5.9. "#+ Mathcad * Tmin # Tmax < dT?
5.10. # + $ # * $ ?
5.11. "#+ Mathcad # " Fmin # Fmax < dF?
5.12. # Mathcad " HF Fx " * # * ' H(s)?
5.13. # + HF " ;?H?
176
5.14. " + Mathcad ' >, * ( #& ) ' F(t)?
6.
=DCD µ=D\?? \DC!DC?DD U?
6.1. = # +
($. 2.2.1) $ #& #&
"#& ( +>), $ # & # " ;?H: ' – ; " F; E
' K0; # + N=2.
1
100 '
10
F
K0
;?H H(s)
6.3.
6.4.
6.5.
2
200 '
20
K0
A 0 A 1 ˜ s A 2 ˜s 2
6.2.
7.
" #-
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
# # #>@ " :
2
2 ˜ S ˜ Fc
1
.
>2˜ S˜ Fc @2
C + HF + ($. 2.2.6). C # " , # # ". U + " HF " (Fx=˜Fc) "# % (Fx=2˜Fc). = +
HF ($. 2.2.6).
& + $ #> $ & h1(t) ($.
2.2.2). = + $ # * $ ($. 2.2.3).
D # + t ($.2.2.4) &$ # 95 % ( 105 % + $ # ').
& + #
+ # >.
& + $ # * X(t) * Fx * " + Fc # * # *
($. 2.2.5). = + &$ # Y(t) ($. 2.2.5).
= + .6.4 # * Fx=2˜Fc.
, # A0=1, A1
, A2
A=AD \!C!Cµ
1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 .
2. .. C# $ + +> +Mathcad. – K.: – ! , 2001. – 416 .
3. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 .
4. A .. . – A=.: = ,
2003. – 604 .
177
/ 1 34 /
5 // MATHCAD
K # " * ¢ 1
«
».
A + * +
178
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
5 31 5 // MATHCAD
K # " & > * & ¢ 2
«
».
!DKA 2008
179
C" " ‹ 2
$%'* $ $ Mathcad
1.
\² CD!µ
1.1. " ' * Mathcad # " ;
1.2. " ' * Mathcad # & * #&$;
1.3. # .
2.
C! =DA?? \DC!DC?D³ CD!
2.1. $' $, =
# ( ) &
X(t)=X(t+k˜T),
(1)
# k – ' , ! – # .
$ # $,
. . &$ $ >@ $, &
%
" % + . A & % &*
( +&*) , . . # #&
"& .
= * % &+ # # &
# ; + (# & ):
f
X(t)= a20 ¦ a k ˜ cos( 2T˜S ˜ k ˜ t ) b k ˜ sin( 2T˜S ˜ k ˜ t ) ,
(2)
k 1
# Z0
bk
T
2 ˜ X(t) dt , a
k
T
0
2˜ S
,a0
T
³
T
2 ˜ X(t) ˜ cos( 2 ˜ S ˜ k ˜ t) dt ,
T
T
0
³
T
2 ˜ X(t) ˜ sin( 2 ˜ S ˜ k ˜ t) dt .
T
T
0
³
f
X(t)= c 0 ¦ c k ˜ cos( 2T˜ S ˜ k ˜ t M k ) ,
(3)
k 1
# c 0
a0
2
– # " , c k
a 2k b 2k , M k
arctg(
bk
ak
).
' $' .
Xmax – + " ;
X
1˜
T
tT
³ X(t) dt
– # " ( >@);
t
X . &
1˜
T
t T
³ X(t) dt
– # & " ;
t
180
2
X "
1˜
T
t T
³X
2
(t) dt – #* >@ " (AU);
t
f
2
1 ˜ X 2 (t) dt = a 0 ˜ 1 ˜
a 2k
4
2
T
k 1
0
X "
Xm
,K
– E
X "
X . &
T
¦
³
2
X "
Ka
b 2k .
' & #&
&;
&+%'* $+%.
ak
a0
2
2 ˜ Xm ˜ TW ˜ S( kT˜W ) , bk=0,
sin( S ˜ x )
S˜ x
S( x )
2
Xm ˜ W – #, X "
T
Xm 2 ˜ W – AU,
T
.
S(Z)
X(t)
Xm
Z
t
W
T
Z0
2˜Z0
)
4˜Z0
6˜Z0
8˜Z0
)
. 1. #"! % " % ( ) ! ()
;+%'* $+% ('*).
ak
a
Xm ˜ W ˜ S 2 ( k ˜ W ) , bk=0, 0
2˜T
T
2
2
Xm ˜ W – #, X "
2˜T
Xm 2 ˜ W – AU.
3˜ T
S(Z)
X(t)
Xm
Z
t
W
T
Z0
2˜Z0
)
4˜Z0
)
. 2. &"! % " % () ( ) ! ()
;+%'* $+% ($"'*).
bk
a
Xm ˜ 1 ) , k=0, 0
S˜ k
2
2
Xm ˜ 1 – #, X "
2
181
Xm 2 ˜ 1 – AU.
3
S(Z)
X(t)
Xm
Z
t
Z0
T
2˜Z0
4˜Z0
)
)
. 3. &"! % " % ( ) ( ) ! ()
&++.
ak
2
X "
>
@
a
Xm ˜ W ˜ S( 1 ˜ ( 2˜ k ˜ W 1)) S( 1 ˜ ( 2˜ k ˜ W 1)) , bk=0, 0
T
2
T
2
T
Xm ˜ W ˜ 2 – #,
T S
2
Xm 2 ˜ W – AU.
2˜T
S(Z)
X(t)
Xm
t
W
T
Z
Z0
2˜Z0
)
4˜Z0
)
. 4. # "" ( ) ()
2.2. V $ $, $
Mathcad
2.2.1. =
#
# Mathcad # "+ & % # E
' # ; + "#+ " &$ .
? , # + "
+ & 10 .
k 0 9
- Xm 10
- # +
- # + + +
- # t0 0.5
T 2
Q
T
t0
Q
4
- % + 182
sin S˜ x
FF( x) S˜ x
Xm § k˜ 1 ·
a 2˜
˜ FF¨
¸
k
Q
© Q ¹
C a
k
2
k
b
- ' a 1˜
Xm
0
2
b 0
k
Q
- E
' & # ; +
- # - $ k
.
6
.
10
4.5
xd( t )
Ck
1
0.6
0.2
0.2
0.6
3
1.5
1
0
1
2
3
4
5
6
7
8
9
10
k
t
)
)
. 5. #"! % !
( ) ! ()
2.2.2. %&* & , +&*, +" & '
Mathcad " & + E
' & # ; + " + *
# $ .
? , # + "
+ & 10 .
A % &+ "# ( . 5.) –(T/2) # +(T/2). E " #& & E
' #, & % 2–3.
Xm 10
- - # +
t0 0.5
- # + + +
T 2
- k 0 9
Q
tst T
t0
T
2
xd( th ) Q
tmax Xm if
# 4
- % + 2
T
t tst tst t0˜ 10
2
th d
t0
tmax
-
#
- 2
( 0) otherwise
183
2 ´
˜µ
Ad k
T µ
¶
tmax
tst
2 ´
˜µ
Bd k
T µ
¶
tmax
§ 2˜ S ˜ k˜ th · dth Ad 1 ˜ ´
xd( th ) ˜ cos ¨
µ
¸
0
T ¶tst
© T
¹
tmax
§ 2˜ S ˜ k˜ th · dth
¸
© T
¹
xd( th ) ˜ sin ¨
tst
Cd Ad
k
2
k
Bd
2
- E
xd( th ) dth
' & # ; +
' & # ; +
- # - $ k
- E
C"+ & # # * %, . 5..
2.3. $' $, D $ #&$ (
# $) # $ , $ +" # + * , +
#
$. D# & % # +
#
$' $, " ; +
S(j ˜ Z)
f
³ X(t) ˜ e
j˜ Z˜ t
S(Z) ˜ e j˜ M(Z) .
dt
(4)
0
& S(j ˜ Z)
e j˜Zt
A(Z) j ˜ B(Z)
& %
S(j ˜ Z)
cos(Z ˜ t ) j ˜ sin(Z ˜ t )
#
f
f
³ X(t) ˜ cos(Z ˜ t ) dt -j ˜ ³ X(t) ˜ sin(Z ˜ t ) dt .
0
(5)
0
<$%'* $+%.
X(t)
­°Xm ˜ e - a ˜ t , t t 0;
®
°̄0
, t 0.
(6)
S(Z)
X(t)
Xm
Z
t
)
)
. 6. ' % " % ( ) ! ()
184
>+,?@ ".
X(t)
­°Xm ˜ e - a ˜ t ˜ cos(Z ˜ t)
®
°̄
0
, t t 0;
, t 0.
(7)
S(Z)
X(t)
Xm
t
Z
)
)
. 7. * " + ( ) ()
&+%'* $+%.
X(t)
­Xm
®
¯0
, 0 d t d W;
, t 0; t ! W.
(8)
S(Z)
X(t)
Xm
W
t
Z
)
)
. 8. #"! % " % ( ) ! ()
2.4. V $ $, $ Mathcad
& # $ #
" # + & % (5). E #
& + + & * > & & + " ; + (4).
# & + +.
185
- # +
- # + + +
Xm 10
t0 0.5
2
t 0 t0˜ 10
x( t) -
t0˜ 2
#
Xm if t d t0 š t t 0
( 0) otherwise
´
A ( q) µ
¶
f
´
B( q ) µ
¶
x( t ) ˜ cos ( q ˜ t) dt
0
S( q ) f
x( t ) ˜ sin ( q ˜ t ) dt
0
2
A ( q ) B( q )
2
- #&* fx 0 0.1 50
- &* # " #
wx( fx) 2˜ S˜ fx
- .
x( t )
12
11
10
9
8
7
6
5
4
3
2
1
6
5.4
4.8
4.2
3.6
S( fx)
3
2.4
1.8
1.2
0.6
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
.
0
5
10
15
20
t
25
30
35
40
45
50
fx
)
)
. 9. #"! % " % ( ) ! ()
2.5. D $ $@%? ' $" +%
( &)
" , " &$
# * #&$,
Mathcad2001 > #>@ ' :
READPRN(«file») – & #&$ " *;
WRITEPRN(«file») – " + #&$ " '& &* *;
READWAV(file) – & # " WAV- *
( > #&$, – ).
WRITEWAV(file,s,b) – " + '&
WAV- *;
CFFT(A) – & =; '& A (# + ' * cfft(A));
ICFFT(B) – & =; '& B.
;'
& =; >, & &V
&$ & 2 , # V – ' .
186
2.5.1. ? , " + &*
@ " * <.
3
F# 8.192˜ 10
fx 96
* #&$ ,
#1
T# F#
- , [
Zx 2˜ S˜ fx
- , [
- $+ Ux 10
" # $ #
* fx , Nmax 2V, Nmax # % #+ #>@ " :
§ log§ F# ˜ 2· ·
¨ ¨ fx ¸ ¸
©
¹¸
Nh floor¨
log
(
2
)
©
¹
Nmax 2
Nh 1
i 0 Nmax 1
xideal Ux˜ 1˜ sin Zx˜ T#˜ i
i
L 10
Nh
7
Nmax 256
- ' - - 4+
- K O
Kr 20
1
Kr˜ 100
L2 1
L
¦
x xideal i
i
k
Ux˜ O˜ 1˜ sin Zx˜ T#˜ i˜ k
- +'* 2
# +"> & * <.
2.5.2. " # " + &$ *
«DataX.prn»
f "DataX.prn"
WRITEPRN( f ) x
-A+%8 )%() %0& :6
2.5.3. " & #&$, , " &$ @+> &< "&$ '# , & ' d "DataX.prn"
-* ,', ',
- ,', ', *
Y READPRN( d )
nm length ( Y) - * ',
i 0 nm 1
nm
3
Fo 8.192˜ 10
256
- 187
T ( Fo)
1
Transform
,' '
Yi
20
16
12
8
4
0
4
8
12
16
20
6
5.4
4.8
4.2
3.6
3
2.4
1.8
1.2
0.6
Cj
Cj
0
0.005
0.01
0.015
0.02
0.025
0.03
0
0.035
2
4
6
8
10
j
i˜ T
)
)
. 10. ! , «DataX.prn» ( ) ! ()
2.5.4. = + * 2V, $ # & + & &$ #&$.
& =; # .
- & " ; +
- "& &$ =;
C CFFT( Y)
j 0 16
2.5.5. = %
.
# + >@> fj 3˜
Fo
nm
fj
96
# 3 96 '.
3.
=CDCKK?D DA=H?
=
& * &
Mathcad 2000 &<.
4.
+" -
=CDCKK \DC!DC?D³ CD!µ
4.1. " + #& " Mathcad.
4.2. & + " + & *, # %@ &
.
4.3. C + "
+ & @+>
& " ; + (=;).
4.4. C + "
+ & # $ @+> " ; +.
4.5. C + "
+ & # $ @+> # # ; +.
188
5.
D?!CD\²?µ D=CDAµ
5.1. D # .
5.2. K #& # .
5.3. K #& # .
5.4. D # # , # # , # & " *, E
' #&
& .
5.5. D & '
Mathcad # " / & *
#&$ " .
5.6. # + %*< +< 2V, # V –
' ?
5.7. "#+ Mathcad +&* + ( +&*
&*)?
5.8. '
+"> Mathcad # " / & &$ * #&$?
5.9. # + * #&$?
5.10. ' Mathcad +"> # & =;,
=;?
6.
=DCD µ=D\?? \DC!DC?DD U?
6.1. $%'* $% &
+
* & «lab2_1.mcd» $ #&
6.1.1. = # #& ($.2.5.1), $ # & # " X: ' K=20 % (L=10,
F= 100 '; # – 10; E
& 10 & # ), # # % &+ 2B, # B –
"' F#=10 '. ' ( # " + 2-$ # ).
6.1.2. U + & * «dataX.prn». = + ($. 2.5.2).
6.1.3. A "#+ * &* * «lab2_2.mcd», " & #&$ ($. 2.5.3) " * «dataX.prn» ' Y.
6.1.4. = + Y ($. 2.5.3). D # + * ( , " " ).
6.1.5. & + # =; ( ' C=FFT(Y)).
= + # ($. 2.5.4).
6.1.6. = + %# #* + * * ($. 2.5.5). –
E $ # * K + * # * Fc=100 '.
=
Fk=K˜F / N & (N – " ). @ %# #* + * * Fc * Fk.
189
6.1.7. &% $$. 6.1.1 – 6.1.6 # * Fc=27=128 '. ( # "' F#=10 '). = +
$ # X C, % + %# #* + * * .
6.1.8. &% $$. 6.1.1 – 6.1.6 # * Fc=100 '. ( # "' E 2V, # V – ' , V=13). = + $ # X C, % + %# #* + * * .
6.1.9. &% $$. 6.1.1 – 6.1.6 # * Fc=27=128 '. ( # "' E 2V, # V –
' ). = + $ # X C,
% + %# #* + * * .
6.2. D $ $% $" +%
+%
6.2.1. A "#+ &* * «lab2_3.mcd». U#+ # * # '
( , +&* # * Ux=10 # + +> W=0.1 ), $. 2.4.
6.2.2. & + , +" " ; +
( > #* +> # & + "#+ ).
= + ($. 2.4).
6.2.3. D # + E
' & # ; + # & , # # (
# "#+ # "
+< # + ). = + ( # + # # &$ ), $. 2.2.2.
6.2.4. A + &$ .
7.
A=AD \!C!Cµ
1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 .
2. .. C# $ + +> +Mathcad. – K.: – ! , 2001. – 416 .
3. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 .
4. A .. . – A=.: = ,
2003. – 604 .
190
5 31 5 // MATHCAD
K # " * ¢ 2
«
»
A + * +
191
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
/ 1 34 /
5 // MATLAB
K # " & > * & ¢ 3
«
».
!DKA 2008
192
C" " ‹ 3
V *', $ $ MatLab
1.
\² CD!µ
1.1. " ' * MatLab # #
*&$ ;
1.2. " # * '
+ MathLab;
1.3. # *
+ .
2.
C! =DA?? \DC!DC?D³ CD!
2.1. D' *' '
A "+ %# $ #& X(t)
&$ #& Y(t) *
* & "& +* $"
Y(t)=F[X(t)].
(1)
C*' "& > &, # &$ & ' " ' : ' *> ' > * * '
' * E &, #& $ # #+ .
F[X1(t)+X2(t)]=F[X1(t)]+F[X2(t)].
(2)
F>C˜X(t)@=C˜F>X(t)@, # A=const.
(3)
C' G-$+% "& $+%* ,*
' – h(t). ; " "& & # > # f
h(t)=0 ³ h(t) dt f .
t<0
(4)
0
C' & # "#* "& $,* ,* h1(t). = $ # $ " + * $ * " +> h1 ( t ) ³ h(t) dt .
+ $ # $ & " > # + ' > & " +&* $ # * ( ?).
" & > % $" C$ $" +%
*
Y (s)
f
³ Y(t) ˜ e
s˜ t
f
dt
0
³e
s˜t
0
Y * (s)
t
dt ˜ ³ X(W) ˜ h(t - W) dW ,
0
H(s) ˜ X * (s) ,
193
(5)
(6)
f
³ h(W) ˜ e
H(s)
s˜W
dW , X(s)
0
f
³ X(t) ˜ e
s˜t
dt .
(7)
0
# Y*(s), X*(s) – " % ($" C$
); H(s) – $ + &.
*
Y ( j ˜ Z)
f
³ Y(t) ˜ e
-f
H( j ˜ Z)
j˜ Z˜ t
f
Y ( j ˜ Z)
³ X(t) ˜ e
dt , X ( j ˜ Z)
j˜Z˜t
dt ,
(8)
-f
³ h(W) ˜ e
-f
*
f
*
j˜Z˜W
dW
H(Z) ˜ e j˜M(Z) ,
H( j ˜ Z) ˜ X * ( j ˜ Z) .
(9)
(10)
# Y*(j˜Z), X*(j˜Z) – " % ($" +%
); H(j˜Z) – , & (" +
&$ # "#*
$ # &); H(Z), M(Z) – $+- -
,.
H $ & % &+ # # * ' # s j ˜ Z .
* * & & ' " '
Y*(s)=H(s)˜X1*(s)+H(s)˜X2*(s)= H(s)˜>X1*(s)+X2*(s) @,
(11)
(12)
Y*(s)=C˜H(s)˜X*(s)=H(s)˜C˜X*(s).
= # + / + # *&$ @ # ' " # > / # &$ ' * E $ H*(s)=H1(s)˜H2(s),
(13)
H*(s)=H1(s)+H2(s).
(14)
, & "#& * , %# , " # # * '
( * $ ) &. = # *
' # % # + +> ( $ #>) $ &.
? ,
$ $ # ' & H(s) % &+ # # - ' + *
H(s)
m<n
E
B( s )
A (s )
b 0 b1 ˜s b 2 ˜s 2 ... b m ˜s m
a 0 a 1 ˜s a 2 ˜s 2 ... a n ˜s n
' & ai, bi – #*
194
,
+& .
(15)
& " A(s), . . $? ' spi, % # + # > ' >
#
H(s)
b 0 b1 ˜s b 2 ˜s 2 ... b m ˜s m
B(s )
A (s )
a n ˜(s sp 0 ) k 0 ˜(s sp1 ) k1 ...˜(s sp n 1 ) k n 1
,
(16)
# ki – + *.
, > & (ki=1), + $ & # & % n 1
h(t)
¦ A / (spi ) ˜ e t ˜sp i , t > 0.
B(sp )
h1 ( t )
(17)
i
i 0
= $ # $ -
# E & % B( 0 )
A ( 0)
n 1
¦ sp ˜A / (isp ) ˜ e t ˜sp i , t > 0.
i 0
B(sp )
i
(18)
i
2.2. + Simulink ', *',
C MatLab @ @+> &
+ Simulink. = Simulink " @ + # ( #
) # # $
. U Simulink % " " # MatLab, % & -
> #+ ( ).
= " Simulink & > # : untitled
( # "# –# & # )
Library Simulink
( ) &$ "# .
& < untitled $ # # + , # >@ , " +&$ &$ .
2.2.1. #
& + + #>@> > $ ( #+), . 1.
. 1. " " 195
! ! % .
A & # #> . \ # &$ # *
# $ #& # . \ % %
" + # + &$ # * # &$ #& + $ . \> " % + " + *, %# " &$ " *.
H & # + &$ # * # $ #& # , % & + #>@ #* :
x + "+ &< &$ # * (
E # % +
);
x %+ > &< , # % E % , # + "+ $ # ;
x + &< .
\ % + $ # &$ # , .
2.2.2. K #
& + " $ %
&+ & @+> Transfer Fcn (Simulink / Continuous
/ Transfer Fcn).
. 2. Transfer Fcn
Transfer Fcn $ #&$ #&$ # * ' H(s) &
*
. = # ' H(s) "#¸ + , &* &196
"& # *&
@ + ,
' , Denomi# Numerator – E " E
nator – " E
' " ( E
' &
# " , E
' +< # ).
. 3. ? % Transfer Fcn
2.2.3. "# , +" Signal
Generator (Simulink/ Sources/Signal Generator), . 4..
)
)
. 4. Signal Generator ( )
! ()
197
= & "#> Signal Generator
( . 4.), &* &"& # *& @ Sig). Wave form "#
nal Generator (
: sine– #+&* , square – +&* , saw tooth – "&* , random – *&* (<). $ Amplitude Frequency "# # . Units "# # ' " , &$ "#
(Hertz – '& rad/sec – #/ .).
2.2.4. , & $ # & #+ "#* , +" Constant (Simulink/ Sources/ Constant),
. 5. C' & #&* $,* ,* &.
. 5. Constant
2.2.5. "+ +"> , &
#
> + &$ ; % Scope( ' ) (Simulink /Sinks/ Scope), . 6.
Scope # $ # " ' #
>#+ >@ +" '&. H & +
, % # %#& @+ &<+> .
D & ' $ #
(. . %&$ , # % %+ # 30 ). " ' 198
% + + E . J ' # $ #
&# , " . 7. ( &# . 6. )
).
Scope
)
. 7. ' ! Scope
" ( ) & # " &$ #* *
+ , # %@
+ #>@ " :
+ # % Scope;
&"
* Scope;
199
" < * " < " < ;
" + * ;
+ * ;
+ < * ( <);
$ < *.
# > *
?% &
Scope (Scope parameters), . 7..
Number of axes "# $ #
' ,
Time range – $ * # , % ' ,
Tick labels – % * # (all – , none – *,
bottom axis only – + " + +). C # +" + * , & & >.
2.3. U' $ Simulink (?
Simulation)
? , > Simulation ( #
) # % + # ( . 8), > > + #
# * # . = # E $ # " " % + + # + #
, "+ %*< & # ,
, , " #+ , # "+ #
.
. 8. I+ Simulation.
200
C # # #+> #
, & # # > Simulation Parameters ( & #
), . 9. J&
# Solver & &.
Simulation time ( #
) – &
#
# " + (Start time) (Stop time) " * #+ .
Solver options ( & ) – &
# "'
( ) # .
Output options ( & & #) – & & # &$ #&$ # * & ( #
& < ).
. 9. " .
= # & # "' # # #>@. # * &
# –# &,
" % & + # % $ # #
.
A @+> # $ #& >@ $ Type (! ) %
&+ " #>@ $
$:
x # & # & $ # "
# # ;
& & $ #;
x # & # & $ # ;
x & & & & $ # .
x & & = &* ( ) " & + " #+ :
201
x Variable – step ( &* <) – #
&
< ;
x Fixed – step ( &* <) – #
& < .
* ( ) " & + # &. = &* (discrete) # &$ * &. D+& & >
& # # & &$ . J
#& " > # (Variable – step) #
(Fixed – step) < , & # * # –
< & &$ #
' +&$ *(ode).
? % # $ & >@ $ Type $ # , " " " & " #+ ( # + & >).
= & # $ # % % +" + >.
3.
=CDCKK?D DA=H?
=
& * &
MatLab 6.0 &<.
+" 4.
=CDCKK \DC!DC?D³ CD!µ
4.1. " + #& #
*&$ MatLab.
4.2. A "
+ # > ' > * * *
&.
4.3. ?* $ #> $ + .
4.4. ?* + & "# % , ' + " +&
* + .
4.5. A + "+& #& , & #
* &
Mathcad ( ¢ 1).
5.
D?!CD\²?µ D=CDAµ
5.1. A * G- + + .
5.2. H + $ # $ &.
" "+ + * $ # * $ ?
5.3. H # ' &?
5.4. " "+ + * $ # *
' &.
202
5.5. #> & & " HF?
5.6. "+ #
# # %& &+ #& " + Transfer Fcn, # ' H (s )
1˜ s2 2
3 4 ˜ s 5 ˜ s2
5.7. " %
"&$ 5.8. "#+ Simulink?
5.9. &
$ +&$ +&$
.
# "
+ ?
#
Simulink +"> # "# , &$
"#* *, + ?
6.
=DCD µ=D\?? \DC!DC?DD U?
6.1. A "#+ #+ + ($. 2.2.1) Simulink.
6.2. = # +
$ #& #& ($. 2.2.2)
"#& ( +> ),
$ # & # " ;?H: ' –
; " F; E
' K0;
# + N=2.
F
K0
;?H H (s)
1
100 '
10
B0
A 0 A1 ˜ s A 2 ˜ s 2
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
# # #>@ " :
, # B0=K0, A0=1, A1
2
2 ˜ S ˜ Fc
, A2
1
>2˜ S˜ Fc @2
.
6.3. = #+ $ # ;?H # "#* ($. 2.2.4).
& + $ #> $ & h1(t). = + $ # "#* $ # *
$ E ' Scope ($. 2.2.5).
D # + t &$ # 95 % ( 105 % + $ # ').
A + &* " t #& , &
#
& Mathcad.
6.4. & + $ # * X(t) * Fx * " + Fc # * # * ($. 2.2.3). = + $ # X(t)
&$ # Y(t) ($. 2.2.5).
203
A + #& , & #
& MathCAD.
6.5. = + .6.3 # *
Fx=2˜Fc.
7.
A=AD \!C!Cµ
1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 .
2. + .. MatLab. ' #
# Windows: . – A=.: DCD? = , 1999. – 288 .
3. + .. "+ #
# MatLab.
. . – A=.: = , 2000. – 480 .
4. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 .
204
/ 1 34 /
5 // MATHCAD
K # " * ¢ 3
«
».
A :
* + + 205
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
5 31 5 // MATLAB
K # " & > * & ¢ 4
«
»
!DKA 2008
206
C" " ‹ 4
$%'* $ $ MATLAB
1.
\² CD!µ.
1.1. " ' * MATLAB Simulink # " ;
1.2. # " $ %# " & + &.
2.
C! =DA?? \DC!DC?D³ CD!
2.1. D $ & ( &)
2.1.1. $" +%
" ; + (=;), >
. 1,
& $' $" +% ( ) X( j ˜ Z) # * # + x(n) * # &
N1, & & # &$ @ $ $ qk= k˜¤q:
N1 1
=; N >x (n )@ X( j ˜ Z) Z Z
k
¦
x (n ) ˜ e
j˜Z k ˜ n ˜T#
(1)
n 0
# ¤q=q#/N – < # "' ; N – & &$
&$ & =; {0 z q#},
@ N1; k = 0, 1… N–1 – * & .
. 1. E !
& < # "' # " % +>
x(n) & X( j ˜ Z) =;.
# "
@ @+> " & (D=;):
D=; N >X( j ˜ Zk )@ x p (n )
1˜
N
207
N 1
¦ X ( j ˜ Zk ) ˜ e
k 0
j˜Z k ˜ n ˜T#
(2)
A xp(n) ..
# N: x p (n ) x p (n i ˜ N) , i = 0, ±1,
# " x(n) < x p (n )
¦ x (n i ˜ N) .
i
= " =; z D=; (1), (2) # > #
' # * & qk, * & k:
=; N >x (n )@ X(k )
N 1
¦
j˜ 2N˜S ˜ k ˜ n
x (n ) ˜ e
, k = 0, 1… N – 1.
(3)
n 0
D=; N >X(k )@ x (n )
1 ˜
N
N 1
¦
X(k ) ˜ e
j˜ 2N˜S ˜ k ˜ n
, n = 0, 1… N – 1.
(4)
k 0
& D=;
=; N2 ' * % N˜(Nz1) ' * % &$ .
D " +"> # &* & +&* , &* $ # * " " :
D=; N >X(k )@
1˜
N
^=; N >X* (k)@`* ,
(5)
# * z ' % .
& N u N1 xp(n) = x(n), n = 0, 1.. N – 1, . . xp(n) 0…N–1 # $ #& x(n), # &
(N – N1) & # # % " # E ( . 2). D=;, & 0…N–1, # x(n) =;.
& N < N1 (¤q = q#/N > q# /N1) & # "
&$ # N # + * x(n) ( % * ), xp(n) v x(n) n = 0.. N1z1 ( . 3).
J
> " % + # "
.
. 2. ! , "+ E#D N M N1
208
. 3. ! , "+ E#D N<N1
2.1.2.
D $ &
"
, +">@ $ =;, % " , # . 4. D " " & ' " – " < & =;. &$ # =; $ # *
@ * # # + x(n), * * ' * w(n) * # & N:
~
=; N >~
x (n )@ X(k )
N 1
¦ x ( n ) w ( n )e
j˜Z k ˜ n ˜T#
N 1
j˜
¦ ~x (n )e
2˜S k ˜ n
N
,
(6)
n 0
n 0
k=0,1, …N–1.
U#+ ~x (n ) x (n ) ˜ w (n ) – " $ # # + +
=;; qk=k˜q#/N fk=k˜f#/N – & ", "& & % " &: 1 < # "' * f#/N. "
N "&$ 1 (f#/N)
" ' +& qk (fk), E " k=0,1,…N–1 > , ~
~
* & =; X( j ˜ Zk ) X(k ) . ' # , " ># $ # * , # * # ># .
" T=N˜T# …
=;N
[x(n)]
~
x ( N 1)
…
~
x (n )
x(n)
~
X ( j ˜ 0)
~
X ( j ˜ 1)
~
x ( 0)
~
x (1)
~
X ( j ˜ ( N 1))
w(n)N
. 4. " " E#D
209
% > " < >
* *, E & =; # "
* * " X(j˜q) * $ * ( ) * ' W(j˜q):
~
X(j ˜ Zk ) X(j ˜ Z) * W ( j ˜ Z) Z Z , # * – , . . # % k
> ( # >) $4% . D # # + , %>@
"+& + ".
E $%', ', +* – % &"& & E " &
$.
2.1.3.
V4" +% $ $ &
+*< &$ #&$ #&$ =; @ " &$ ' &$ @+> =; +&$
$ , " @ $ # " &$ .
$, xp(n) # N˜T# ' >
#& A m (Zk )
"& M(Zk ) * k˜f#/N $
# " # @ >A m (Z k )@2 / 2 .
', * % x(n)
(
# $) ' >:
x +> + X(j ˜ Z) " +> [/'], #>
# | X(j ˜ Z) | M(Z) , . . #&
" &
& > $ " q=qk $ =;;
x E * +> + E Sx(q)
( X(j ˜ Z) 2 ) " +> [2˜/'], "& >@> # E % & > # &$
$ qk.
=
"'
&$ + "
" &$ % " + 4" +% $ " [5].
=; # & % X( j ˜ Zk )
N 1
¦ x (n ) ˜ e
j˜Z k ˜ n ˜T#
,
n 0
<
& #>@ % "& .
@ $ xp(n) # N˜T# k˜f#/N, #>@ =;,
x #& #> A m (Zk ) N2 ˜ X( j ˜ Zk ) ,
210
x
"& – M(Zk ) arctg[X Im ( j ˜ Zk ) / X Re ( j ˜ Zk )] ,
x # @ 2 ˜
1
N
2
˜ X ( j ˜ Zk ) .
* # + N˜T#
& " $ # #&, "& @ k-* * & , + + $ qk # T#˜X(j˜qk). +& $ "& =; < :
x Sx(k)=|T#˜X(j˜qk)|2 z + + E qk;
x Px(k) =(T#/N)˜|X(j qk)|2 z + + @ qk;
x
Sx
1
N ˜T#
˜
N 1
¦ Sx (k ) , Px
k 0
1
N ˜T#
˜
N 1
¦ Px (k) –
E #
k 0
@ + .
2.2. + Simulink '$ $ Simulink % " # + " # =; (# " ; +). = E " % "
+ & % $, & .
" # $ ' "
+" + '
"& MATLAB. D#
E #
Mathcad.
# * * " # $ , + & # "*
" ‹ 2 «A +&* " Mathcad».
C MATLAB @ @+> &
+ Simulink. U Simulink
% " " # MATLAB, % & > #+ ( ).
= " Simulink & > # : untitled
( # "# –# & # )
Library Simulink
( ) &$ "# .
& < untitled $ # # + , # >@ , " +&$ &$ .
" $ " $ # & + # * * @ . = E # % &+ * Block Parameters.
211
2.2.1. %
# + " + #>@> > $ ( #+) (
+ . 5).
. 5. " " %! %
K #+ + ( # * # +
) &# , " . 6, "# @+> #>@ $ :
x &*
+ # & Analog Filter Design
(DSP blockset/Filtering/Filter Design/Analog Filter Design), . 7;
x + Gain (Simulink/Math/Gain), . 8.
. 6. I % % ? ! MATLAB
$ #& #& $ # & # " + :
# ' ;
x
x # + N;
/ " %# ( #
x +'
+
);
x E
' K.
$ #& #& "#> + Block Parameters: Analog Filter Design ( . 9), #:
x Design method – # ' ;
x Filter order – # + .
E
' "# #+
Block Parameters: Gain ( . 10).
212
. 7. . 8. 213
Analog Filter Design
" Gain
. 9. ? Analog Filter Design
. 10. Gain
2.2.2.
Power Spectral Density ( $)
+ * +"> " & Power Spectral Density (Simulink Extras/Additional
Sinks/Power Spectral Density), . 11.
* Block Parameters: Power Spectral Density, . 12,
"#> #>@ & " :
x Length of buffer – # ( > 128);
x Number of points for fft – " &$ ( > 512);
x Plot after how many points– , " # ( > 64);
x Sample time – # # "' .
&, # # "' , # %& &+ N
& 2 , # N – ' .
214
)
)
. 11. Power Spectral Density ( )
" % ()
. 12. Power Spectral Density
C"+& " , & Power Spectral
Density, # > $ $ ( . 11.):
1. #&* (Time history);
2. #&* (Power Spectral Density);
3.
" &* (Power Spectral Density (phase)).
215
H & + % " + # .
J % #+, &" > Simulation % # Start, –
% < Ctrl + T % @ Start simulation.
2.2.3. Signal Generator ( )
"# , +" Signal
Generator (Simulink/ Sources/Signal Generator) ( . 13).
. 13. Signal Generator
* Signal Generator "#> #>@ &:
x Wave form –
:
- sine– #+&* ;
- square – +&* ;
- saw tooth – "&* ;
- random – *&* (<);
x Amplitude Frequency – # ;
x Units – # ' " & (Hertz – '& rad/sec –
#/).
216
. 14. Signal Generator
2.2.4. Sum (+)
"# %&$ +" (Simulink/ Math Operations/Sum), . 15. Sum & $ #&$ . = +" #
% # $ $ #&$ " . 16.
A % +" + # $ % $:
x A % $ #&$ ( "& " );
E
, >@ $ $ # .
x A
D * Sum " % . 18.
# " List of sings ( " ), % +
% & Sum.
U "# + # " $ :
x
# # + " «+» «–», "
# $ # , " – >@ $ $ #&$ . = +< &$ $ ' " " + + , # #
# *  ( : + +¹– +);
# ' * % + * & ( +< 1), " x
* $ # , $ #& > % +& ( ,
# & 4 # « " »
+ + + +);
x
# " 1 " & & E
$ # ( E & # ?).
217
. 15. Sum
. 16. # % " " ! # $ * > #>@ * &:
") " &x & >@ * Icon shape (
+
: round ( % +) rectangular ( + );
% Show additional parameters ( "+ # +& x
&) # " % + "#+ $ # + « » 218
"+ % , &< # " , &*
# ' &$ " *.
. 17. Sum
2.3. U' $ Simulink (?
Simulation)
= # E $ #, $ #@ $ > Simulation ( # )( . 18), " " % + + # + #
, "+ %*< & # , , , " #+ , # "+ #
.
. 18. I+ Simulation
219
J& # Solver Simulation Parameters ( & #
) ( . 19), & &.
Simulation time ( #
) – &
#
# " + (Start time) (Stop time) " * #+ .
. 19. " Solver options ( & ) – &
# "'
( ) # .
Output options ( & & #) – & & # &$ #&$
# * & ( #
&
< ).
= # & # "' # # #>@. # * &
# –# &,
" % & + # % $ # #
. A
@+> # $ #& >@ $ Type ( ) %
&+ " #>@ $
$:
x # & # & $ # "
# # ;
& & $ #;
x # & # & $ # ;
x & & & & $ # .
x & & = &* ( ) " & + " #+ :
220
x Variable – step ( &* <) – #
&
< ;
x Fixed – step ( &* <) – #
& < .
* ( ) " & + # &. = &* (discrete) # &$ * &. D+& & >
& # # & &$ . J
#& " > # (Variable – step) #
(Fixed – step) < , & # * # –
< & &$ #
' +&$ *(ode).
? % # $ & >@ $ Type $ # , " " " & " #+ .
= & # $ # +" >.
3.
=CDCKK?D DA=H?
=
& * &
MATLAB 6.0 &<.
+" 4.
=CDCKK \DC!DC?D³ CD!µ
4.1. " + #& #
+&$ &$
+
MATLAB.
4.2. " + ' * MATLAB Simulink # " .
4.3. # + " $ $ %#
" & + &.
5.
D?!CD\²?µ D=CDAµ
5.1. & % # & =;. % =;.
5.2. & =; (D=;). & D=; +" =;.
5.3. " # =;. +" &$
' *.
5.4. " " # <
# " # =;?
5.5. " "# # # "' " Power Spectral Density?
5.6. "+& %>
" Power Spectral Density?
221
5.7. " "#
+ Filter Design?
5.8. "#+ #
Simulink?
5.9. & Simulink +"> # $ , &$
"#* *,
+&$ +&$ + ?
Analog
"# -
6.
=DCD µ=D\?? \DC!DC?D³ CD!µ
6.1. A "#+ #+ + Simulink.
= # +
$ #& #& + ($. 2.2.1)
"#& ( +> ): ' – ; " F; E
' K0;
F
K0
4.
5.
6.
7.
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
6.2. = #+ $ #
+ + ($. 2.2.3).
6.3. &$ # + #> + " &
Power Spectral Density ($. 2.2.2).
6.4. & + " " + #
4
:
#+&* (SIN) * Fx=2˜Fc ($. 2.2.3);
+&* (SQUARE) * Fx=2˜Fc ($. 2.2.3);
+&* (SAWTOOTH) Fx=2˜Fc ($. 2.2.3);
#+&* (SIN) * Fx=2˜Fc < (RANDOM)
# F<=2˜Fc. A < # $ # "
Sum($. 2.2.4).
6.5. = #
# & + #>@ &
"# Simulation parameters ($. 2.3): &* < (Variable step); #
– Domain
Prince 45; #
– Stop time=10 / Fx (10 #
$ # ).
6.6. "
(Power Spectral Density) # + "+ # # "'
Sample
# $ # ($. 2.2.2).
time=1 / (10˜Fx) 222
7.
A=AD \!C!Cµ
1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 .
2. + .. MATLAB. ' #
#
Windows: . – A=.: DCD? = , 1999. – 288 .
3. + .. "+ #
# MATLAB.
. . – A=.: = , 2000. – 480 .
4. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 .
5. K A.\. * +&* " % . –
K.: K , 1990.
223
5 31 5 // MATLAB
K # " * ¢ 4
«
»
A :
* + + 224
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
5 6 / / 1
7
5 // MATHCAD
K # " & > * & ¢ 5
«
»
!DKA 2008
225
C" " ‹ 5
& % "* $" $ $ Mathcad
1.
\² CD!µ
1.1. " # * " " &$
# '
+ - ;
1.2. " # * ' '
+ (;) # * " ;
1.3. # $ # * # - * (HF) $ + .
2.
C! =DA?? \DC!DC?D³ CD!
2.1. > ' ', %
A " ; @ > $* +
& + "# * * + * $ , % + "+* # E
' + $ # , &$ # $ .
$* + ] H(z) "# * *
#
$ Hd(j˜q) "> $$
K $* +. K #& " "#>
, ' & &.
=
# * * $ Hd(j˜q) " > '
&
+ & - " * # - *
$ * (HF) – + & % $ (;?H), $ $ (;H), - >@ (==;), -" %#>@ (=U;),
& (K=;) ( . 1) ; " + * * $ *. K &+ "
& % ; * $ * '
#
' " + .
! & $ ; # & # q#
$ #+ (HF) (;HF) #> * * * + q = 0 q#/2, $ # "#+ (0– q#/2) (0–Ž) &$ Œ= q˜T# ( . 1).
$ #& #& # " ; "# * * $ ( . 1) >:
x & ", "# % q, q", #>@ '& " , "# % $ #&$ + ;
+ x # + HF
( '$ & &$ HF) =, #;
226
x + "$ HF "# % U, #.
= =, U, #>@ # & < ' "# * # "
* HF |Hd(j˜q)|, >
. 1 # * HF |H(j˜q)| 1
"# % ~2:
(1–~1)
==20˜lg[1/(1–~1)], #; U=20˜lg(1/~2), #.
&#& . 1 "> # < ' , & # % % + >@ HF |H(j˜q)|, " . 1, .
2.2. V "* $"
K # * " .
= # * " " ; &* &*
+ - (;=) # * ' * ?(s) * $ * H(j˜¡), # " "& # * ' * H(z) * $ * H(j˜q) ;:
;=
;
;=
s f (z)
H(s)
 
o
z f 1 (s )
m  
H ( j ˜ :)
H ( z)
;
: f (Z)
 o
Z f 1 (: )
m  
H( j ˜ Z)
A "+ E # * s=f(z)
* z=f–1(s) ">@ ' >@ s=j˜¡ z=ej˜qT# " ¡=f(q), q=f–1(¡) '
+ .
A @+> E $ " * #> ;=,
& $ < " & # " # ' H(s), " "
> # >
' > ; H(z).
= ">@ ' # %& # + #>@ :
x S- + s=‡+j \, ‡<0, * "@> >& *
;=, # % # %+ +
# # |z|<1, Z- "@> > *
;, . . *
;= # %
+ * &* ;;
x + j˜¡ ;=, ¡=(0 ± w), # % # , . .
# $ #, %+ % + # # 227
Z- e j˜Z˜T# , q=(0 ± q#/2), " + &$
$ $ + .
)
|Hd(j˜Z)|
1
1-G1
= $ # = G2
0
)
Z
= "# % Zc
Z"
Z#/2
|Hd(j˜Z)|
1
= $ # 1-G1
= G2
0
)
1
1-G1
G2
0
)
1
1-G1
G2
0
#)
Z
= "# % Z"
Zc
Z#/2
|Hd(j˜Z)|
= $ #
1
= $ #
2
= "# % 1
= Z"1 Zc1
= "# % 2
Z0
Zc2 Z"2
Z
Z#/2
|Hd(j˜Z)|
= $ #
1
= 1
= $ #
2
= "# % Zc1 Z"1
= 2
Z0
Z"2 Zc2
Z
Z#/2
|Hd(j˜Z)|
1
1-G1
G2
0
Z
Z"1 Zc1
Zc2 Z"2
Z"3 Zc3
Zc4 Z"4
. 1. # CA ,D
228
Z#/2
J * " , # #>@ " :
s=f(z)=(2/T)[(1–z–1)/(1+z–1)]
K % % * < (1)
(2)
z–1=[(2–s˜T)/(2+s˜T)]
" * '# & $ # * " #, + S- % # >
% + Z- (# |z|=1)
Im[z]
Im[s]
Re[s]
. 2.
Re[z]
" ! * " – # " ' . J ", %# * Z- # s- . " E * # " #, ++ K $ * * '# % .
K # '
&$
+
# * " > $ %# #$ #@* # * ' ?(s) + * * " # # *
'
H(z)
'
+ H(z) H(s) |s (2/T)(1- z -1 )/(1 z -1 )
(3)
= E " # $ + & $ , * * + . D# E ", & $ '
+ # &, # + $ «
». ? , # $ + # 0 <:< f, >@ * '
* + , &* @+>
< (3), # #+ #>@* HF 0 <Z< f,.
229
! +, HF + k #G
# 0 <:< f, # - $ >@
'
+ # #+ k #G # .
"+ $ # & ; &
" > #
:
F #
" . 3.
'
Z˜ T
2
˜ tg (
)
2
T
(4)
* " -
. 3. # CA ! ! DGC CA ! DGC
Zc 1 #/ $ # #
;?H – : : c
+
T
2
˜ tg ( ) .
2
T
* " > '# $ # &$ '
&
+ $ # &$ $ " . J ", <
& &
+ & * $ # * +> %>
<
& '
&
+ & " K
. E "> @ E # > # + * $ . ?# * " , * + < %# '
* * Z *
* ¡ # ? ', , &$
+
. , E " , $+% ,.
230
2.3. & U] $ + $$+
" %& # # ; .
# + - (;=) $ %# >@ + - " $ (;=?H). #+*< +" #$ #@ $" # # E " $
&* ;=. ? ', $+' "
E &*
+ "
%&* '
* F+ ( + * + * $ *), &*
# #G & . = +> E '# " . 3..
C + " $ ( * :=1 #/), # >@ "#&
$ .
C + " $ ( * :=1 #/), # >@ "#&
$ .
;=?H
;=?H
" # # ;=?H >@ * &* + - (;=).
* " ;=?H '
* + - " $ (;=?H).
;=
;=?H
* " ;= '
*
+ , # >@ * #G & .
"
;, #
#G
.
;=?H
>@ *
& -
;
;
)
)
. 3. #" %
= '# & $ # # $+%* , <* > $ < $ 231
#
'
&$ + , + " . V "* $"
( "-" * < %# '
* * Z * * :) # < "+& + # $ &$
$ + , & # > * - "> ' >. J ", $+ " ( . 3.) $
< $ #
+
$ $ , " %#>@ $ &$ &$ + .
> E $ # +" # * #$ # '
&$ F- + . ! * " % . 3.. E $+ " # # & '
& " $ . A# + , & #&#@ $ # "#$ '# & $ # + $ < "+&. E #$ # $ %#
#$ #@ + - " $
. &* %
'
*
+ " $ (]&E^). ? ', +" $" # $ # '
" $ + , . . '
+ #$ #@ $ "# % # >@ #G & .
2.4. E^-$$ (D&E^)
A " ;=?H > & >@* ' , # #
+ m, " * * s0i > spi # * ' "#& & ¡ = 1, ¡" # < ' ~1, ~2 (A, A").
?
> "
;=?H +> #>
# > ' > H(s):
m1
H(s)
C˜
– (s s 0 i )
i 1
m
(5)
– (s s pi )
i 1
# A – >@ * % +; m1 – &$ * (m1 < m).
A# +, > ;=?H > @ &
- %& ( " # + * +>), & & .
A " ;=?H ">
'
"# *
# "
* HF @+> >@ $ >@ $ ' *.
232
>@ $ ' * +"> &
# . +& ' !* ( +& ), H&< , # & – E –U (E + &), H&< .
= # & '
+
+ * ' * > &$ *, $ & $ & "# % .
+
# * ' * # & '
> &$ $ "# % , &
$ – +' ( &) E * . ; + & H&< E > & +'
.
! & &$ $ " ;=?H + *
# * ' #&
. 4.
. 4. < ! D#GC,
"+ "+ " &$ $ & +' $ "& >@ & * > ¡pi, ¡0i =;.
233
; + & # * ' * > < $ "$ # #
+ +<
" # "# "$ * $ .
% .
' ;=?H #
C
H(s)
(6)
n
– (s s k )
>
j˜S˜
1 ( 2˜k 1)
2
2˜n
k 1
@
# s k V k j ˜ \ k e
, A – .
? # + # "# > U * :U.
n
lg(A 2" 1)
2 ˜ lg(: " )
(7)
+ &* # n, # # + # > ' > + # " # # &$ " +
C
, V k cos S ˜ 22˜k˜n1 12 .
H(s) n / 2
> >
2
– (s 2˜V k ˜s 1)
@
k 1
% ^"'4 1.
' ;=?H H&< 1 H(s)
#
+ n C
n
#
(8)
– (s s k )
k 1
# s k
sh (M)
V k j˜ \ k , Vk
J J 1
,
2
ch (M)
sh (M) ˜ sin[ 22˜k˜n1 ˜ S] , \ k
J J 1
,
2
J
ª1 H 2 1 º
« H »
¼
¬
1/ n
ch (M) ˜ cos[ 22˜k˜n1 ˜ S] ,
, H – +'
-
.
? # + H&< 1 # "# > U * :U +'
H.
n
lg(g g 2 1)
lg(: " : 2" 1)
,g
A 2" 1
H2
.
(9)
+ &* # n, # # + # > ' > + # " # # &$ " +
C
.
H(s) n / 2
2
2
2
– (s 2˜V k ˜s V k \ k )
k 1
234
% ^"'4 2 ('*).
' ;=?H H&< 2 ( ) #
n
– (s sn k )
H(s)
C ˜ kn 1
(10)
– (s sp k )
k 1
# sp k
V k j ˜ \ k – >, sn k
Dk
,\k
2
:U ˜
Ek
ch (M) ˜ cos[ 22˜k˜n1 ˜ S] , sh (M)
D 2k Ek
: U ˜
Ek
2
D k E2k
Vk
, Dk
j ˜ -k
j˜
:U
cos[ 22˜k˜n1˜S]
– .
sh (M) ˜ sin[ 22˜k˜n1 ˜ S] ,
J J 1
, ch (M)
2
J J 1
,J
2
ªA A 2 1º
U
«¬ U
»¼
1/ n
.
? # + H&< 2 % # "# > U * :U +'
( & % 9).
+ &* # n, # # + # > ' > + # " # # &$ " +
n/2
s 2 -2k
H(s) C ˜ –
2
2
2
k 1 (s 2˜Vk ˜s V k \ k )
.
2.5. &, D&E^ ] $
&*
+ - " $ (;=?H) " + - (;=) @+>
#>@ $ &$ " *:
s
( + " $ );
:u
:
D&E^-D ^: s o u ( + & $ );
s
2
s :u :l
D&E^-D&: s o
( * + );
s(: u : l )
s(: : l )
D&E^-DU: s o 2 u
( % &* + ).
s :u :l
D&E^-DE^: s o
:u – $ ", :l – % ".
= &* ;= " &* ; @+> * " (1, 3).
;=?H % &+ " ;=?H * " (1, 3). & > & " # ;:
235
]&E^-]E^: z
]&E^-] ^: z
]&E^-]&: z
k
ctg(
>Z u Zl @
2
k
tg (
>Z u Zl @
2
1
1
˜ T) ˜ tg(
]&E^-]U: z
1
1
˜ T) ˜ tg (
o
z 1 D
1- D ˜ z
o
,D
1
sin(
˜ T)
2
>Zc Z u @
sin(
˜ T)
2
z 1 D
1 D ˜ z
>Zc Z u @
,D 1
cos(
>Z c Z u @
> k 1 @ k 1 , D
o
k 1 ˜ z 2 >2 ˜ D ˜ k @˜ z 1 1
k 1
k 1
cos(
;
>Z u Zl @
˜ T)
2
,
>Z u Zl @
cos(
˜ T)
2
˜ T) ;
>k 1@ 1 k , D
o
1 k ˜ z 2 >2˜D @˜ z 1 1
1 k
k 1
Z0
2
˜ T)
2
>Zc Z u @
cos(
˜ T)
2
z 2 2˜D ˜ k ˜ z 1 k 1
Zc
2
;
z 2 2˜D ˜ z 1 1 k
cos(
>Z u Zl @
˜ T)
2
>Z u Zl @ ,
cos(
˜ T)
2
˜ T) .
Zu – $ ", Zl – % ", Z0 – ' +
# # "' .
=; C;, Z – " ;=?H, T – 2.6. !" ] "* $"
Mathcad
D ;
Mathcad #
" + .
# " '
$
% (&) $$* ^"'4 1 , $
D&E^ – 2.
2.6.1. ,', ',
3
F# 4 ˜ 10 - H # "'
T# ( F#)
1
T#
4
2.5 u 10
;, '
- # # "'
fx 100
- ' + & dF 20
- f1 f1
2˜ F#
2˜ S
§ 2˜ S˜ fx ·
¸
© 2˜ F# ¹
˜ tan ¨
100.206125367257
A 1
-
N 2
-
Nr N
;, ;, '
dB 2˜ S˜ dF
;, '
# ;
Zx 2˜ S˜ fx
dB
Zx
628.3185
125.6637
- #&% * # *& " Z1 2˜ S˜ f1
Z1
+ +' * A
629.6137
;, #
236
H
10
10
1
H
0.5088
2.6.2. U $? E^
1
N
2·
§ 1
J ©H
1 H ¹
V
JJ
1
2
2
O V \
2˜ k 1 º
˜ sin ª«
˜ S»
¬ ( 2˜ N) ¼
2
-
>@ * E
P1 V i˜ \
2
P2
1
. ˜ cos ª«
2˜ k 1
˜ Sº»
¬ ( 2˜ N) ¼
' P2 V i˜ \
0.5489 0.8951i
P1
\
JJ
+ - > ;-
0.5489 0.8951i
O
1.1025
2.6.3. U D^H %-$$
Zmin Zx dB˜ 2
Zmax Zx dB˜ 2 dZ Z Zmin Zmin dZ Zmax
s Z i˜ Z
s1 Z s Z
2
-# " HF
s Z ˜ dB
H Zx
+ - " ;- =; "#& - " # *
'
;- 2
s1 Z ˜ 2˜ V O
§ H Zx˜ 2
1.0002
20˜ log¨
© H Zx
s1 Z
1
2
Z1
1
H Z O˜
Zmax Zmin ˜ ( 100)
· 34.056
¸
¹
- " HF ;- .
1.5
H( Z )
1
0.707
1
0.5
60
70
80
90
100
Z ˜ ( 2˜ S )
110
120
1
. 5. < CA D# ( % CH
237
130
1 )
140
2.6.4. U K ]
2· §
2· ª
4
ª 2˜ F# 2 2˜ V˜ 2˜ F# §
ºº
Z1
¨ 1 2˜ Z1 ¸ ¨ 2˜ V˜ Z1 ¸ «
»»
· C0 « §¨
« © dB ¸¹
¨
dB
2˜ F#˜ dB ¹ «
2 ¸
2
2 »»
dB ¹ ©
¬
©
¬ ( 2˜ F#) ˜ dB ¼ ¼
B C0
0
B 0
B 2˜ C0
1
B 0
2
3
B C0
1
A 1
4
0
A 2·
4
2
ºº
ª
§
ª
Z1
« 4˜ § 2˜ F# · 2˜ § 2˜ V˜ 2˜ F# · 2˜ ¨ 2˜ V˜ Z1 ¸ 4˜ «
» » ˜ C0
¨
¸
« ¨© dB ¸¹
«
2
2 »»
© dB ¹
© 2˜ F#˜ dB ¹
¬
¬ ( 2˜ F#) ˜ dB ¼ ¼
A 2·
4
ºº
ª 2˜ F# 2
§
ª
Z1
« 6˜ §
» » ˜ C0
· 2˜ ¨ 1 2˜ Z1 ¸ 6˜ «
« ¨© dB ¸¹
¨
«
2 ¸
2
2 »»
dB ¹
¬
©
¬ ( 2˜ F#) ˜ dB ¼ ¼
A 2
ª
« 4˜ § 2˜ F# · « ¨© dB ¸¹
¬
A 2· §
2· ª
4
ª 2˜ F# 2
§
ºº
Z1
Ǥ
» » ˜ C0
· § 2˜ V˜ 2˜ F# · ¨ 1 2˜ Z1 ¸ ¨ 2˜ V˜ Z1 ¸ «
« ¨© dB ¸¹ ¨© dB ¸¹ ¨
2˜ F#˜ dB ¹ «
2 ¸
2
2 »»
dB ¹ ©
¬
©
¬ ( 2˜ F#) ˜ dB ¼ ¼
1
2
3
4
§¨ 2.3955u 10 4 ·¸
¨
¸
0
¨
¸
B ¨ 4.791 u 10 4 ¸
¨
¸
0
¨
¸
¨ 2.3955u 10 4
©
¹̧
4
2.3955u 10
C0
2·
4
§
ª
ºº
Z1
§ 2˜ V˜ 2˜ F# · 2˜ ¨ 2˜ V˜ Z1 ¸ 4˜ «
» » ˜ C0
¸
«
2
2 »»
© dB ¹
© 2˜ F#˜ dB ¹
¬ ( 2˜ F#) ˜ dB ¼ ¼
2˜ ¨
§ 1 ·
¨
¸
3.9165
¨
¸
A ¨ 5.8008 ¸
¨ 3.85 ¸
¨
¸
© 0.9663 ¹
- " E
' ;
2.6.5. U D^H ]
Zmin Zx dB˜ 2
Zmax Zx dB˜ 2 dZ Z Zmin Zmin dZ Zmax
zZ e
i˜ Z ˜ T#
H2z Z -# " B B ˜z Z
0
0
1
1
1
A A ˜z Z
H2z Zx
Zmax Zmin ˜ ( 100)
1
B ˜z Z
HF
2
2
1
A ˜z Z
2
1
B ˜z Z
+ 3
3
2
A ˜z Z
3
§ H2z Zx˜ 2 · 35.1586 - " HF ;
¸
© H2z Zx ¹
20˜ log¨
238
B ˜z Z
4
4
3
A ˜z Z
4
4
.
1.5
H2z ( Z )
1
0.707
1
0.5
60
70
80
90
100
110
Z ˜ ( 2˜ S )
120
130
140
1
. 6. < CA ! ,D
( % CH 1 )
2.6.6. U ] * 1
Nmax floor fx
pi 0 3
i 0 Nmax
y
pi
˜ F#˜ 10
- & &$
Nmax 400
0
- &$
&$ # ;
j 4 Nmax
w 2˜ S˜ ( fx˜ 1) Ux 1
- # $ # x ( Ux˜ 1˜ sin ( w˜ T#˜ i) Ux˜ 0) - & $ # i
4
§ 4
·
¨
B ˜x A ˜y ¸
y j ¨
t j t
t j t ¸
t
0
t
1
©
¹
¦
yi
1˜ xi
¦
- & &$ # - & ;
2
1.6
1.2
0.8
0.4
0.4 0
0.8
1.2
1.6
2
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
i˜ T#
. 7. ,D ! !
(fx=100 <)
2.6.7. U ] +$ *
= #
$,* , ] $ # "#* "# #>@ " x
i
1 if i t 2
0 otherwise
239
.
.
yi
1˜ xi
1.5
1.25
1
0.75
0.5
0.25
0.25 0
0.5
0.75
1
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
i˜ T#
. 8. # ,D
2.6.8. U $? ]
U E
' & " # * ' ; (' A), % # + > ;. E $ # + # # E
' ' ( + " # * ' ; E
' & '& A
–1
> * z ).
Na rows ( A ) 1 jk 0 Na
AA
jk
A
Na jk
O2 polyroots ( AA )
jk 0 rows O2 1
§ 0.9663 ·
¨
¸
§ 0.9764 0.168i ·
¨
¸
¨ 3.85 ¸
0.9764 0.168i ¸
¨
¨ 5.8008 ¸ O2
¨ 0.9819 0.1427i ¸
¨ 3.9165¸
¨ 0.9819 0.1427i¸
¨
¸
©
¹
© 1 ¹
AA
O2 jk
0.9908
0.9908
0.9922
0.9922
# > ; +< 1, ; * &*. # > % % # # , # + , ; * &*.
2.7. !" +, $ ]
2.7.1. &* % (&) (D&E^ 2 $)
E
' &
+ & > %, " &< =; H&< 1 # (;=?H 2 #), $. 2.6,
> + - #> & % V cos ª«ª«
1
¬¬ 2
2
O V \
2
2˜ k 1 º
-
P1 V i˜ \
P1
1 2˜ k 1 º º
\ sin ª«ª« . » ˜ S»
¬¬ 2 ( 2˜ N) ¼ ¼
˜ S»º
»
( 2˜ N) ¼ ¼
0.7071 0.7071i
>@ * E
P2 V i˜ \
P2
' - > ;-
0.7071 0.7071i
240
+ O
1
2.7.2. E^ ^"'4 1 (D&E^ 2 $)
C >
+ " + H&< 1 # (;=?H 2 #), $. 2.6.
=
$ # ;=?H ;= +"
" s Z i˜ Z
E
s1 Z s Z
- " ;-
;?H "#& Z1
' &
+ & > #>@ " :
1
B 0
B 2˜ B
1
2
D # , # '
# + , +< # * ' ;
H2z Z 1
1
A A ˜z Z
0
2
j
0
B ˜z Z
2
2
1
1
pi 0 2
y A 1
§ 2˜ V˜ 2˜ F# · ( 1)»º ˜ B
¨
¸
© O˜ Z1 ¹
¼ 0
A ˜z Z
2
2 .
,
% &$ &$ #&$ & '
+ .
.
0
+ E 2. A&$ "-
B B ˜z Z
0
B B
0
2˜ F# ·
§ 2˜ V˜ 2˜ F# · ( 1)
˜ §¨
¸ ¨
¸
O © Z1 ¹
© O˜ Z1 ¹
2
ª 2 2˜ F# 2
ª
º
· ( 2)» ˜ B A « 1 ˜ § 2˜ F# · A « ˜ §¨
¸
¨
¸
1
¬ O © Z1 ¹
¼ 0 2 ¬ O © Z1 ¹
1
y
pi
# -
0
2
·
§ 2
¨
B ˜x A ˜y ¸
t j t
t jt ¸
¨
t
0
t
1
©
¹.
¦
¦
3.
=CDCKK?D DA=H?
=
& * &
Mathcad 2000 &<.
4.
+" -
=CDCKK \DC!DC?D³ CD!µ
4.1. & + " ;- ,
"+ + " > PP * P0, + "
+ HF ;- (;=).
241
4.2. C + E
' & # * ' ;, %
" > ;. = "
+ % >
* * Z- .
4.3. C + "
+ HF ;, + HF "#& .
4.4. ?* + # + – $ #> $ + .
4.5. ?* + & "# % , ' + " +&
* + .
5.
D?!CD\²?µ D=CDAµ
5.1. H + $ # ' ;?
5.2. * # > ' > ; " >?
5.3. # $ ;?
5.4. H # ; "& " "'
+ ?
5.5. H > # * ' ;?
5.6. # + *
+ ; " *
> ?
5.7. * " * > # " E
' ?
5.8. H * ">@ ' ? "> & '
+
* " ?
5.9. #> + - # * " ?
5.10. & >@ $ ' *, +"&$ " ;? " # " ; # >@* ' ?
5.11. " &* ;?H- '
*
=;, ;?H, ;H, C;?
5.12. ' Mathcad " + > ; E
' ? # + *
+ ; >?
5.13. U + & % # #
$ # * $ ;.
5.14. U + & ; 3 # Mathcad.
5.15. # # ' + Mathcad?
242
6.
=DCD µ=D\?? \DC!DC?DD U?
6.1. = # +
$ #& #& ($. 2.6.1)
"#& ( +>), $ # & # " E^: ' – $ ^"'4+ 1 ($. 2.7.2); " F; E
' K0; # + - N=2, +'
– 1#.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
=
$ # #&% & " F
# '
% , *& " .
= E " + - F1.
6.2. & + > ;= " $ % * ($. 2.6.2).
6.3. & + # * '
+ HF + - ($. 2.6.3).
6.4. & + E
' ; ($. 2.6.4).
6.5. & + > ; " $ % * ($. 2.6.8).
6.6. = + HF ; ($. 2.6.5). = HF + "#& . U + " HF
$ " "# % (2˜Fc).
6.7. = + $ #> $ '
+ # + ($. 2.6.7).
6.8. D # + ; $ # * * ($.
2.6.6) * Fx=Fc # * # *. = +
+ + " HF.
6.9. D # + ; $ # * * ($.
2.6.6) * Fx=2˜Fc # * # *. = +
+ + " HF.
6.10. '$% ($.$. 6.1 – 6.9) '
+ (=;) ' * 2 #, 'F=0.1˜Fc. H " Fc %*.
243
7.
A=AD \!C!Cµ
1. C \., # . !
'
* . /= . . # #. °.?. # . – K.:
K , 1978. – 848 .
2. +# \.K. # . . – 2-
"#., . # . – K.: C#
"+, 1990. – 256 .
3. .. C# $ + +> +Mathcad. – K.: – ! , 2001. – 416 .
4. .A. : . 2 . H.1. – : "#- !, 2001. – 199 .
5. A .. . – A=.: = ,
2003. – 604 .
244
5 6 / / 1
7
5 // MATHCAD
K # " * ¢ 5
«
»
A + * +
245
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
! " -! I
# " "G MATLAB
K # " & > * & ¢ 6
«
»
!DKA 2008
246
C" " ‹ 6
& H-% "* $" $ $ MATLAB
1.
\² CD!µ
1.1. " + " F- +
# * " MATLAB;
1.2. " '
+ # * " ;
1.3. # $ "
'
+ .
2.
C! =DA?? \DC!DC?D³ CD!
2.1. V "* $"
K # * " .
= # * " " ; &* &*
+ - (;=) # * ' * ?(s) * $ * H(j˜¡), # " "& # * ' * H(z) * $ * H(j˜q) ;:
;=
;
;=
;
s f (z)
H(s)
 
o
z f 1 (s )
m  
H ( j ˜ :)
H (z)
: f (Z)
 o
Z f 1 (:)
m  
H( j ˜ Z)
A "+ E # * s=f(z)
* z=f–1(s) ">@ ' >@ s=j˜¡ z=ej˜qT# " ¡=f(q), q=f–1(¡) '
+ .
A @+> E $ " * #> ;=,
& $ < " & # " # ' H(s), " "
> # >
' > ; H(z).
* " , # #>@ " :
s=f(z)=(2/T)[(1–z–1)/(1+z–1)]
(1)
K % % * < z–1=[(2–s˜T)/(2+s˜T)]
(2)
" * '# & $ # * " #, + S- % # >
% + Z- (# |z|=1)
247
Im[z]
Im[s]
Re[s]
. 2.
Re[z]
" ! * " – # " ' . J ",
%# * Z- # s . " E * # " #, ++ K $ * * '# % .
K # '
&$
+
# * " > $ %# #$ #@* # * ' ?(s) + * * " # # *
'
H(z)
'
+ H(z) H(s) |s (2/T)(1- z -1 )/(1 z -1 )
(3)
= E " # $ + & $ , * * + . D# E ", & $ '
+ # &, # + $ «
». ? , # $ + # 0 < : < f, >@ * '
* + , &* @+>
< (3), # #+ #>@* HF 0 < Z < f,.
! +, HF + k #G
# 0 < : < f, # - $ >@
'
+ # #+ k #G # .
"+ $ # & ; &
" > #
:
F #
" . 3.
'
Z˜ T
2
)
˜ tg (
2
T
248
* " (4)
-
. 3. # CA ! ! DGC CA ! DGC
Zc 1 #/ $ # #
;?H – : : c
+
T
2
˜ tg ( ) .
2
T
* " > '# $ # &$ '
&
+ $ # &$
$ " . J ", < &
& + & * $ # * +> %> < & '
&
+ & " K . E "> @ E # > # + * $ . ?# * " , * + < %# ' * * Z * * ¡ # ? ', , &$
+ . , E " , $+% ,.
2.2. & U] $ + $$+
" %& # # ; .
# + - (;=) $ %# >@ + " $ (;=?H). #+*< +" #$ #@ $" # # E " $ &* ;=. ? ', $+' " E &*
+ " %&*
'
* F- + ( + * + * $ *), &* # #G & . = +> E '# " . 3..
249
V "* $" ( "-" * < %# '
* * Z * * :) # $ < "+& + # $ &$ $ + , & # > * - "> ' >.
J ", $+ " ( . 3.) $ < $ #
+
$ $ , " %#>@ $
&$ &$ + .
C + " $ ( * :=1 #/), # >@ "#&
$ .
C + " $ ( * :=1 #/), # >@ "#&
$ .
;=?H
;=?H
" # # ;=?H >@ * &* + - (;=).
* " ;=?H '
* + - " $ (;=?H).
;=
;=?H
* " ;= '
*
+ , # >@ * #G & .
"
;, #
#G
.
;=?H
>@ *
& -
;
;
)
)
. 3. #" %
> E $ # +" # * '
&$ F- + . ! * " % E $+ " # # & '
& " $ . &* #$ # $ %#
#$ #@
" $ . &* %
250
#$ # . 3..
+ '
-
*
+ - " $ (]&E^). ? ', +"
$" # $ # '
" $ + , . . '
+ #$ #@ $ "# % # >@ #G & .
2.3. E^-$$ (D&E^)
A " ;=?H > & >@* ' , # #
+ m, " * * s0i > spi # * ' "#& & ¡ = 1, ¡" # < ' ~1, ~2 (A, A").
?
> "
;=?H +> #>
# > ' > H(s):
m1
H(s)
C˜
– (s s 0 i )
i 1
m
(5)
– (s s pi )
i 1
# A – >@ * % +; m1 – &$ * (m1 < m).
A# +, > ;=?H > @ &
- %& ( " # + * +>), & & .
A " ;=?H "> ' "# * # " * HF @+> >@ $ >@ $ ' *. ! & &$ $ " ;=?H + * # * ' #& . 4.
&$ $ & +' $ "& >@ & * > ¡pi, ¡0i =;.
% .
' ;=?H + >
#> HF.
= # + # "# > U * :U.
n
lg(A 2" 1)
2 ˜ lg(: " )
(6)
% ^"'4 1.
' ;=?H H&< 1 % + >
& &* $ # " & " %# "#&$ % $ .
251
= # + H&< 1 # "# H.
> U * :U +'
n
lg(g g 2 1)
lg(: " : 2" 1)
,g
A 2" 1
H2
.
(7)
. 4. < ! D#GC,
"+ "+ " % ^"'4 2 ('*).
' ;=?H H&< 2 ( ) +
>, & &* $ # " &
" %# "#&$ % $ " %# .
= # + H&< 2 % # "# > U * :U +'
( & % 7).
2.4. &, D&E^ ] $
&*
+ - " $ (;=?H) " + - (;=) @+>
#>@ $ &$ " *:
252
s
( + " $ );
:u
:
D&E^-D ^: s o u ( + & $ );
s
2
s : u :l
D&E^-D&: s o
( * + );
s(: u : l )
s(: : l )
D&E^-DU: s o 2 u
( % &* + ).
s : u :l
D&E^-DE^: s o
:u – $ ", :l – % ".
= &* ;= " &* ; @+> * " (1, 3).
;=?H % &+ " ;=?H * " (1, 3). & > & " # ;:
>Z Z @
sin( c u ˜ T)
z 1 D
1
2
]&E^-]E^: z o
,D
;
>Z Z @
1
1- D ˜ z
]&E^-] ^:
]&E^-]&:
k
ctg(
>Z u Zl @
2
tg (
>Z u Zl @
2
c
u
˜ T)
2
>Z Z @
cos( c u ˜ T)
z 1 D
1
2
,D z o
1
>
Zc Zu @
1 D ˜ z
cos(
˜ T)
2
z 2 2˜D ˜ k ˜ z 1 k 1
1
k 1
k 1 ,
z o
k 1 ˜ z 2 2 ˜ D ˜ k ˜ z 1 1
k 1
k 1
>
˜ T) ˜ tg(
Zc
2
˜ T) ˜ tg (
>
@
@
Z0
2
;
D
cos(
>Z u Zl @
cos(
>Z u Zl @
˜ T)
2
>Z u Zl @ ,
cos(
˜ T)
2
˜ T) ;
>k 1@ 1 k ,
z 1 o
1 k ˜ z 2 >2˜D @˜ z 1 1
1 k
k 1
z 2 2˜D ˜ z 1 1 k
]&E^-]U:
k
sin(
D
˜ T)
2
>Z u Zl @ ,
cos(
˜ T)
2
˜ T) .
Zu – $ ", Zl – % ", Z0 – ' +
# # "' .
=; C;, Z – " ;=?H, T – 2.5. + Simulink $ ', H–
% "* $"
C MATLAB @ @+> &
+ Simulink. U Simulink
% " " # MATLAB, % & > #+ ( ).
253
= " Simulink & > # : untitled
( # "# –# & # )
Library Simulink
( ) &$ "# .
& < untitled $ # # + , # >@ , " +&$ &$ .
" $ " $ # & + # * * @ . = E # % &+ * Block Parameters.
2.5.1. %
#
& '
#>@> > $ ( #+),
+ (;) . 5.
-
. 5. " " ! %
K #+ '
+ "# @+> Digital Filter
Design, . 6 (DSP Blockset/Filtering/Filter Design/ Digital Filter Design).
. 6. Digital Filter Design
$ #& #& ; "#> Parameteters: Digital Filter Design ( . 7).
254
+ Block
. 7. ? Digital Filter Design
'
+ E& * & 6 :
x Current Filter Information – % ' " '
+ ( # – Order, * + – Stable/Unstable, – Sections, & + – Filter structure);
x Filter Type – "# + :
x Lowpass – ;?H;
x Highpass – ;H;
x Bandpass – * + =;;
x Bandstop – % &* + C;;
x Differentiator – #
' &;
x % # & + ;
x Design Method – "# # ' :
x IIR – F- + &:
x Butterworth – + ;
x Chebyshev Type I – + H&< 1 #;
x Chebyshev Type II – + H&< 2 #;
x Elliptic – + E * (U -E );
x FIR – F- + & ( % #
# $ " $ * ¢ 7 «= '
F- + MATLAB»):
255
x
x
x
x
x
x
x
x
x
x
x
x
Filter Order – "# # + - (Specify order)
& % + #
+ (Minimum order);
Frequency Specifications – "#> & &
+ ( % "+
" & + ):
Units – # '& " & (Hz – ', Normalized (0 to 1) –
" &* + ( +&$ # '$);
Fs – # "' ;
Fstop1 – % & " %# ( * "$ Astop1, #);
Fpass1 – % & ( * "$ Apass, #);
Fpass2 – $ & ( * "$ Apass, #);
Fstop2 – $ & " %# ( * "$ Astop2, #);
Magnitude Specifications – "#> E
' & "$ + :
Units – # '& " E
' "$ (dB – #,
Squared – +& # '&);
Apass, Epass – E
' & "$ ;
Astop, Estop – E
' & "$ " %# .
% "+
,
& # " &$ #* * Digital Filter Design + , # %@> & #>@ " :
"#+ &* * &+ * $ + * + # % ;;
;;
;;
;
# # + # +> # % + # #* ;
+ < "#;
# % ;
+< # % ;
256
;
& #
#+ Filter Visualization Tool "
+ .
"+ +
D Filter Visualization Tool " & + , :
HF + ;
;HF
#
+ ;
# + $ HF
;HF
+ ;
;
' + "#* ( $ # $ );
* >
+ * Z- ;
" E
' # * '
+ (Numerator –
' & ").
E
' & , Denominator – E
2.5.2. Gain (+%)
= + Digital Filter Design " & + + & + &, . . # & , # E
' # , >@ $ # '&, $ # +" + # +&* Gain (Simulink/ Math/ Gain) ( . 8).
. 8. 257
Gain
E
' "#
Block Parameters: Gain ( . 9).
*
. 9. Gain
2.5.3. Signal Generator (+%'* )
, & #+ $ #
+ , +">
+&* Signal Generator (Simulink/
Sources/Signal Generator) ( . 10).
. 10. 258
Signal Generator
* ( . 11) Signal Generator "#> #>@ &:
x Wave form –
:
x sine– #+&* ;
x square – +&* ;
x saw tooth – "&* ;
x random – *&* (<);
x Amplitude Frequency – # ;
x Units – # ' " & (Hertz – '& rad/sec –
#/).
. 11. Signal Generator
2.5.4. Zero-Order Hold (+* '"-,,
H)
H & $ # ; #+ '
* , +" F, " &* &$ # (Signal Generator) # & & . F +"
Zero-Order Hold (Simulink/ Discrete/ Zero-Order Hold) ( . 12).
* Zero-Order Hold "# # # "' Sample time ( . 13).
, " . 13, # # "'
# * # "' , . . 4000 '. A# +, # "' , & Zero-Order
Hold, # % &+ # "' Fs, " * '
+ ($. 2.5.1).
259
. 12. Zero-Order Hold
. 13. Zero-Order Hold
2.5.5. Step
Step (Simulink/ Sources/ Step) ( . 14), +" #
" # "#* .
=
&
* ( . 14), Step time "# "#* , $ Initial
value Final value – + " #& "#* , Sample time – # # "'
&$ # ( # >, & &).
260
)
. 14. )
Step ( ) ! ()
H & * + # "#* ($,+? ,+), % + #>@>
> $ ( . 15).
. 15. " " %
2.5.6. Scope ()
"+ +"> , &
#
> + &$ ; % Scope( ' ) (Simulink /Sinks/ Scope) ( . 16).
Scope # $ # " ' #
>#+ >@ +" '&. D & ' $ # (. . %&$ , # % %+ # 30 ). " ' %
261
+ + E . J ' # $ #
# , " . 17 ( &# . 16. Scope
. 17. ' ! Scope " 262
&).
# > *
?% &
Scope (Scope parameters) ( . 18).
Number of axes "# $ #
' ,
Time range – $ * # , % ' ,
Tick labels – % * # (all – , none – *,
bottom axis only – + " + +). C # +" + * , & & >.
. 18. Scope
2.6. U' $ Simulink (?
Simulation)
? , > Simulation ( #
) # % + # ( . 19), > > +
#
# * # . = # E $ # " " % + + # + #
, "+ %*< & # , , , " #+ ,
# "+ #
.
C # # #+> #
, & # # > Simulation Parameters ( & #
) ( . 20). J&
# Solver & &.
Simulation time ( #
) – &
#
# " + (Start time) (Stop time) " * #+ .
Solver options ( & ) – &
# "'
( ) # .
263
. 19. I+ Simulation
. 20. " Output options ( & & #) – & & # &$ #&$ # * & ( #
& < ).
= # & # "' # # #>@. # * &
# –# &,
" % & + # % $ # #
.
A @+> # $ #& >@ $ Type (! ) %
&+ " #>@ $
$:
x # & # & $ # "
# # ;
264
x
x
x
x
# & & & $ #;
& & # & $ # ;
& & & & $ # .
= &* ( ) " & + " #+ :
x Variable – step ( &* <) – #
&
< ;
x Fixed – step ( &* <) – #
& < .
* ( ) " & + # &. = &* (discrete) # &$ * &. D+& & >
& # # & &$ . J
#& " > # (Variable – step) #
(Fixed – step) < , & # * # –
< & &$ #
' +&$ *(ode).
? % # $ & >@ $ Type $ # , " " " & " #+ ( # + & >).
= & # $ # % % +" + >.
3.
=CDCKK?D DA=H?
=
& * &
MATLAB 6.0
&<.
+" 4.
=CDCKK \DC!DC?D³ CD!µ
4.1. " + " F- + # * " MATLAB.
4.2. & + " F- + , "
+ % >
* + * Z- ,
+ E
' & # * ' ;, + HF "#& .
4.3. ?* $ #> $ + .
4.4. ?* + & "# % , ' + " +&
* + .
5.
D?!CD\²?µ D=CDAµ
5.1. H + $ # ' ;?
5.2. H # ; "& " "'
+ ?
265
5.3. H > # * ' ;?
5.4. # + *
+ ; " *
> ?
5.5. H * ">@ ' ? "> & '
+
* " ?
5.6. #> + # * " ?
5.7. & >@ $ ' *, +"&$ " ;? " # " ; # >@* ' ?
5.8. &
+ " "+ +
Filter Visualization Tool Digital Filter
Design?
5.9. +" Gain #
& ;?
5.10. " Zero-Order Hold #
& ;?
5.11. " "# # # "'
ZeroOrder Hold # % &+ ?
5.12. & $ # +, & &$ #
Step + & /# "#* ?
6.
=DCD µ=D\?? \DC!DC?DD U?
6.1. A "#+ #+
+ ($. 2.5.1)
Simulink.
= # +
$ #& #& ($. 2.5.1)
"#& ( +>), $ # & # " E^: ' – $ ^"'4+ 1 ($. 2.7.2); " F; E
' K0; # + - N=2, +'
– 1#.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
H # "' + * 4 '.
6.2. =
" "
+ . = + "
+
#>@ &
+ : % >
*
+ Z- , E
' & # *
' , HF.
266
6.3. A + "+& + , & " ; Mathcad ( ¢ 5 «= '
+ # * " Mathcad»).
6.4. = #+ $ # ; # "#* ($. 2.5.5) & + $ #> $ &.
6.5. A + & "+& #& , &
" ; Mathcad.
6.6. = #+ $ # ; * ($. 2.5.3) *
Fx * "
+ Fc # * # *.
= + $ # &$ # . D' +
" +& * + .
A + "+& #& , & #
& Mathcad.
6.7. = + $.6.5 # *
Fx=2˜Fc.
6.8. &% $+' 6.1 – 6.6 # '
+ (=;) ' * 2 #: ' + & F; E
' K0, 'F=0.1˜Fc.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
H # "' + * 4 '.
6.9. &% $+' 6.1 – 6.6 # '
% + (C;) ' * 2 #: ' + & " %# F; E
' K0, " %# 'F=0.1˜Fc.
F
K0
1
100 '
10
2
200 '
20
H # "'
7.
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
+ * 4 '.
A=AD \!C!Cµ
1. .A. : . 2 . H.1. – : "#- !, 2001. – 199 .
2. + .. "+ #
# MatLab.
. . – A=.: = , 2000. – 480 .
267
3.
4.
5.
6.
+ .. MatLab. ' #
#
Windows: . – A=.: DCD? = , 1999. – 288 .
+# \.K. # . . – 2-
"#., . # . – K.: C#
"+, 1990. – 256 .
C \., # . !
'
* . / = . . # #. °.?. # . – K.:
K , 1978. – 848 .
A .. . – A=.: = ,
2003.– 604 .
268
5 6 4- / / 1
7
5 // MATHCAD
K # " * ¢ 6
«
»
A :
* + + 269
;C\²?D ?!A!D =D DCUD?°
# " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!»
«!C °»
J;;
____________ < .A.
«_____» ____________ 2008 .
! -! I
MATHCAD MATLAB
K # " & > * & ¢ 7
«
»
!DKA 2008
270
C" " ‹ 7
& H-%
$, $ Mathcad MATLAB
1.
\² CD!µ
1.1. " + "
Mathcad MATLAB;
1.2. " F- + 1.3. " F- + # 1.4. " F- + # < ;
1.5. # $ F-
+
$ -
# ;
&$ ( &$) ' *;
+ # # "
&$
+
.
2.
C! =DA?? \DC!DC?D³ CD!
2.1. V' H-%
A # % $/ ' &$ #
F- +
# &# + # &$ #:
x # &$ ' *;
x # * & .
, " % &$ #
, # &$ &#> #>@ :
x * + # # < ( + AD);
x * % .
+< # " F- +
" MATLAB, " $ & % *. D# > , # % &
& + " *< $ +
Mathcad.
2.2. U +?@ %
? & F- + % + #>@ *
+ , &* & #
" N :
N 1
y(n )
1
˜ x (n k )
N
k 0
¦
N 1
¦ h (k ) ˜ x (n k ) .
k 0
E
' &
+ > h(k).
= # ' + N 1
H ( z)
1 k
˜z
N
k 0
¦
271
(1)
+ * $ -
N 1
¦ h (k ) ˜ z k .
k 0
(2)
H $ & # z e j˜Z˜T#
H( j ˜ Z)
&*
N 1
N 1
1 j˜Z˜k˜T#
˜e
N
k 0
¦ h(k) ˜ e j˜Z˜k˜T
¦
(3)
k 0
+ # * '
" +
.
#
* ;?H, & & # "'
1
T#
F#
#
-
+ N.
" "& &, % # + "
;?H. &
+ E + "# %.
# " '
% , (E^) +?@ $ * Fc=100 [.
2.2.1. ,', ',
3
F# 8 ˜ 10 - H # "'
T# ( F#)
1
4
1.25 u 10
T#
;, '
- # # "'
;, 2.2.2. U K ]
N 20
-
# ;
ik 0 N 1
B ik
1
-" E
' ;
N
2.2.3. U D^H ]
Zmin 0
Zmax 2˜ S˜ F#
dZ Z Zmin Zmin d Z Zmax
zZ e
i˜ Z ˜ T#
Zmax Zmin ˜ ( 1000)
- # " N 1
H2z Z ¦
k
B ˜z Z
k
k
1
HF
- $ + + 0
1
.
H2z ( Z )
1
2
0.5
0.1
1
10
100
Z ˜ ( 2˜ S )
1
1 10
3
. 1. " % CA ! %
272
1 10
4
2.2.4. & D^H ] "+* Fc 100 - "
H2z 2˜ S˜ Fc
+ 1
- " HF "
0.9005
0.7071
2
# , " HF * " " 0.7071.
A# + , $ # " + # + N, &*
& "+ 20.
2.2.5. &" $ % N "$ "+* '
K % # +, "
N=35 +< E
' # " " 0.7071.
N 35
- # ;
Fc 100 - "
H2z 2˜ S˜ Fc
U E
+ 1
- " HF "
0.7138
' '
1
N
1
35
+ 0.7071
2
E &
0.0286 .
2.3. U H-% ', +*
2.3.1. !" ', +*
A " &$ '
&$
+
(?C; F+ ) % &+ & "# * # "
* * $ + Hd(j˜q) & ""#& # & < ' .
& , $ + $ "& * " * ; +, @+> " ; + % &+ *# + $ hd(n), "# * # "
* * $ :
h d (n )
T#
˜
2˜ S
Z# / 2
³ H d ( j ˜ Z) ˜ e
j˜ Z˜ n ˜ T#
˜ dZ .
(4)
Z# / 2
D# + $ #+ + > # +? * +:
n < 0 hd(n) v 0 – + % $ # "#* .
= E % &+ # +" + * $ ?C;.
273
? , # '
;?H ( . 2)
H d ( j ˜ Z)
h d (n )
T#
2˜S
Z
³ H d ( jZ)e
* ± q#/2
­1, Zc d Z d Zc ;
®
¯0, # # $ Z ;
j˜Z˜n˜T#
dZ
Z
ZT# sin(Z nT# )
S
Z ˜n˜T#
+&$ $ #+&$ ; #& . 2.3.4.
O sin( O n )
S
On
# $ hd(n)
Zc˜T# /S
S /Zc˜T#
. 2. @" % n
%! DGC
= + + * $ (4) " "&* F- + * $ *, " * "# *,
% # hd(n) (N – 1)/2 " # n < 0 n  N. = E $ + & # ; + E
' hd[n – (N –1)/2]:
H( j ˜ Z)
N 1
¦ h d [n ( N 1) / 2] ˜ e j˜Z˜n˜T# .
(5)
n 0
" , # ; + %# " ["", " >@ '
" & &$ ' *.
< '
# &$ ' * +> $ ?C; > # & + * $ hd[n – (N – 1)/2] @+> ' +&$ ', +* w(n) * # & N:
h (n ) h d [n ( N 1) / 2] ˜ w (n ) .
(6)
? , E % > $+%+? +? +? wR(n)=1, n=0,…N–1.
274
= * " + * $ $ + -
N 1
¦ h[n] ˜ e j˜Z˜n˜T# ,
H( j ˜ Z)
(7)
n 0
# * * "# * * $ Hd(j˜q) * $ * (; +z " ) * ' W(j˜q):
H ( j ˜ Z)
W ( j ˜ Z) * H d ( j ˜ Z)
T#
˜
2˜S
Z# / 2
³ W( j ˜ T) ˜ H d [ j ˜ (Z T)] ˜ dT ,
Z# / 2
# * – , £ – W ( j ˜ Z)
,
N 1
¦ w[n] ˜ e j˜Z˜n˜T
#
– $ * '
.
n 0
& " * * >
> . 3, # # %>@ ' "# * *
$ & # ; +.
|Hd(j˜Z)|
1
hd(n)
O/S
S/O
Z
n
Zc
-Zc
|W(j˜Z)|
wR(n)
1
G.max
Z
n
'Z
|H(j˜Z)|
N–1
1+G1max
h(n)
G2max
Z
n
N–1
2
'Z
N–1
. 3. < + G,D " ( % DGC "! % " )
H $ * '
<
* ¤q & , 275
. 3 &*
+ &$ $ -
" +& #> " ~.max @#+> # & . A * @ @ #$ ± q#/2 " + % * * $ * '
& @#
& "# * * $ * Hd(j˜q).
" #, $ # * $ + H(j˜q) # <
* * $ * ' : 'Z | 'Z , < ' (+' ) "# % ~1, ~2
"& &$ . J # * ' , # % +:
5. +> <
¤q;
6. +&* + &$ ~.max
+>
@#+ # & ;
7. +> # N.
! E # &. !, # & '
> +< * + &$ , +<> <
, +<>@> # &
* ' N. J G " +"&$ &$ ' *.
A# +, # &$ ' * > * + ;HF ""#& + # * * * E # + * $ :
h(n)=h(Nz1zn).
2.3.2. '" * + $ . 1 #& +"& " ; & &$ ' *: + *, + *, F, FE E.
" * <
& ¤q=D˜q#/N, # D z
"& &* D- , + &$ ~.max >> % ' & " < ' * $ "# % ( +& +' * $ ) |~2max|, #, &
# '
;?H * " O c Zc ˜ T# S / 4 . ! % < > " ;H.
; # " (==;, =U;, K=;) " &$ #&$ < + ' %
&+ +< ' " , 6 #.
276
! ' 1
# " ! = +
! +
F
FE E
¤q=D˜q#/N
2˜q#/N
4˜q#/N
4˜q#/N
4˜q#/N
6˜q#/N
~.max, #
z13,6
z27
z31
z41
z57
~2max, #
z21
z26
z44
z53
z74
` 1. C # + #& . 1, "$ >
* $ "# % ", % #+
& * ' .
` 2. & * * '
"# * $ # *
& * $ + 'f f " f min -
%& < ¤f=¤f =D˜f#/N $ # $ # # * '
# > # + *
$ + :
N t D ˜ f # / 'f ,
# D – E
' , " @ * * ' (D- ),
. .1,2.
U N %*< ' , &
.
` 3. " "# * * $ +"> $ & " f , @& "# % $ # * & + ¤f J " * & # # "& ' $ # & + "# % ( . 3). ? , # =;: f 1 | f 1 'f / 2 ; f 2 | f 2 'f / 2 .
` 4. ?$ # + $ + @ * (Nz1)/2 + * $ hd(m):
h (m) h d [m ( N 1) / 2] ˜ w (m), m 0,1,..., N - 1 .
` 5. C & HF
H( j ˜ Z)
+ N 1
¦ h[k] ˜ e j˜Z˜k ˜T
#
k 0
$ #& #& * $ A "$ > "# % A".
277
` 6. ! #&* # $ #&$
&$ #&$ ( '), $ # > " &$ " f1 , f2
# & + N
& >.
2.3.3. ' ', +*
&*4 + – $+% z +> <
+&* + &$
.
wR(n) = 1, n = 0,..N – 1.
(8)
;+% + * # $ +&$ &$ ' * # * N/2:
w T (n )
­° 2˜ n ,
w R (n ) * w R (n ) ® N 21˜ n
°̄2 N 1 ,
0 d n d N 1
N 1 n d
2
2
N 1
(9)
# +< <
# +< &$ .
& > <
¤q=2˜q#/N ¤Œ=4˜Ž/N.
!""@ + HK & & % w H (n ) D (1 D) ˜ cos( 2˜ S˜ n ) .
(10)
N 1
= “=0.5 * + H, * + HK.
+ &$ * ' FE & # $ % * ?C;.
& * $ >
¤q=q#/N ¤Œ=2˜Ž/N. = @#+ # & 0.04 % @# # * $ ' .
+ K #
w B (n ) 0.42 0.5 ˜ cos( 2˜ S˜ n ) 0.08 ˜ cos( 4˜ S˜ n ) .
N 1
N 1
“=0.54 –
"& <
*
(11)
= > * ' * FE < *
&* ( 1.5 ") + &$ .
¥
&$ E * * ' ¤q=q#/N ¤Œ=2˜Ž/N.
=
" ?C; +"> % E & '
+ C4, %-^"'4, $$,
# . [7, 8],
# &$ " &$ ' * *" .
278
' + *.
# $ &$ ' *, $ ">@ $ & " &$ ~.max
< D
'f f#
˜N
'f f#
˜ N (D- ), &$
' * *" E -
& <
+
+ @+> K _, $ #@ & % E * ' :
> @
2
w A (n ) I 0 (E ˜ 1 2˜ n / I 0 (E) ,
N 1
(12)
# I0(x) z ' #.
# E < # # #
" ' "# * * $ +< * # + "# ' .
*" ' (. 2) & E
&, & " > # "# "$ > "=|~2max| (#) *
$ H(j˜q), >@* #+&* ;?H, & +
+ " D- E
' & ¦ [5]:
D|
A " 7.95
,
14.36
A " ! 21 #; D 0.9222, ­0,
°
0.4
E ®0.5842 ˜ (A " 21) 0.07886 ˜ (A " 21), °0.1102 ˜ (A 8.7),
"
¯
A " 21 #;
A " d 21 #
21 A " 50 #
A " t 50 #
= & " " '& " > D # $ # &* # + N§D˜f#/¤f , &* " # %*< +< .
# # $ &$ ' *, '
#+&$
+
==;, =U;, K=; "$ * $ "# % % &+ +< " , 6 #.
! ' 2
A", #
25
30
35
40
45
50
55
60
¦
1.333
2.117
2.783
3.395
3.975
4.551
5.102
5.653
D
1.187
1.536
1.884
2.232
2.580
2.928
3.261
3.625
", #
65
70
75
80
85
90
95
100
279
¦
6.204
6.755
7.306
7.857
8.408
8.959
9.501
10.061
D
3.973
4.321
4.669
5.017
5.366
5.714
6.062
6.410
. 3 #& % & " +' *
* $ , >@ " & " "$ "# % [5].
! ' 3
A", #
30
40
50
60
1 ±~1max, #
±0.27
±0.086
±0.027
±0.0086
A", #
70
80
90
100
1 ±~1max, #
±0.0027
±0.00086
±0.00027
±0.000086
2.3.4. $+%' , %', ]
+&$ $ ; " >
@ & " ; + $ # "
&$ &$ $ HF Hd(j˜q).
% E^, " &<, +
$ # & % Z c ˜ T#
S
h d (0)
Oc
S
; h d (n )
O c sin(O c ˜ n )
˜
,
S
O c ˜n
n=r1, r2, …,
(13)
% $$+?@ % (=;) &$ # # $ #:
y(n)=x(n); hd(0)=1; hd(n)=0 nz0; H d ( j ˜ Z) 1 Z d Z# / 2 .
(14)
+& $ ; ^, & ( ),
U ( % ) V& ( ) &+ & %&
" +& $ '
E^
&:
H d ( j ˜ Z) ;H H d ( j ˜ Z) =; H d ( j ˜ Z) ;?H ,
(15)
H d ( j ˜ Z) =;
H d ( j ˜ Z) C;
H d ( j ˜ Z) ;?H 2 H d ( j ˜ Z) ;?H1 ,
(16)
H d ( j ˜ Z) =; H d ( j ˜ Z) ;?H 2 H d ( j ˜ Z) ;?H1 ,
(17)
Hd(j˜q);?H2 – & $ # Hd(j˜q);?H, Hd(j˜q);?H1
#+&$ ;?H " Œc, Œc1, Œc2, (Œc2> Œc1), >@ " ;H, =; C;.
! % "+ # # +&$ $ , " # " + >@ & % :
h d (0) ;H
1
Oc
S
, h d (n ) ;H 280
O c sin( O c ˜ n )
˜
,
S
O c ˜n
n=r1, r2, …
(18)
h d (0) =;
h d (0) C;
O c 2 O c1
, h d (n ) =;
S
S
1
O c2
O
c1
S
S
, h d (n ) C;
sin(O c 2 ˜ n ) sin(O c1 ˜ n )
S˜ n
S˜ n
,
sin(O c1 ˜ n ) sin(O c 2 ˜n )
.
S˜ n
S˜ n
(19)
(20)
& " $ # < # K=;.
2.4. U H-% * '"
2.4.1. !" * '"
# * & + $ + h(n)N $ # # "'
"# * *
& # $ Hd(j˜q)
" ; + (D=;).
"' * $ Hd(j˜q) @ 0 … q# $ # & &$ " * &
q # &: qk=¤q˜k, # k=0, 1, …, Nz1; ¤q=q#/N z < # "' ; k z * & ; N z # "' .
` ¤q & " ¤qu¤q /(L+1), # Lz'& , L = 0, 1, 2, …; ¤q z $ #
+ .
"+ # "
$ + (HF) H d ( j ˜ Zk ) H d ( j ˜ Z) Z Z ( . 4). ! "#
k
$ " " + & ""#& , # ; "&
HF # "
$ %# # $ # "
* HF.
"' * $ . 4 & < ¤q=¤q /2 (L=1).
. 4. E CA ! % HF " , & 1 (Hd(j˜qk)=1),
$ # * – "# % z > (Hd(j˜qk)=0)
281
& % & + & ( " &) " Hd(j˜qk)=H1=var, &$ " ' "# *
* $ .
HF Hd(j˜qk) % + > +> $ hp(n), #> @+> # " ; + (D=;):
h p (n )
1
N
N 1
¦ H d ( jZk ) ˜ e j˜Z k ˜n ˜T# .
k 0
= + $ ( . 5.) * # * # Np=N, . . # "'
# "' * .
+ * $ " # * & ?C; & # # + * $ hp(n), # &* (Nz1)/2 (# " * " ) &* + * *
' * (# F- + ) ( . 5.):
h (n )
h p (n N 1), n
2
0,1,...N - 1 .
)
)
. 5. @" % , "+ ECA ( )
" % G,D,
! ()
= + * $ h(n) $ # $ + H(j˜q), >@ "#> Hd(j˜q):
H( j ˜ Z)
N 1
¦ h(n) ˜ e j˜Z˜n ˜T#
n 0
HF + $ q=qk: H(qk)=Hd(qk) # & & HF, $ qvqk H(q)vHd(q) z "# * < ' . ;HF + * # + * $ .
$$ '" * , $,* $ L
$ " *
Hi. (i=1,2,…,L), #>@ $ > ' > # *.
282
C" & " L > #>@ + &$ :
L = 0: ~2$ § z20 #;
& "-
L = 1: ~2$ § z40 #;
L = 2: ~2$ § z (50 z 60) #;
L = 3: ~2$ § z (80 z 100) #.
C+ # * & % "
+ ?C; +& "$ "# % # (90z120) #.
! " , "' + ">
& L z
& $ # * $ +&$ " *
Hi. , " >@ $ < ' . D # , + &$ & @ %
'# "' . D # E " JK # * .
2.4.2. & * '"
` 1. = " > "# "$ "# % " & + &$ L * $ $ # * . ? , " u 40 #, L = 1.
H % HF + , +< "$ # " L.
` 2. " L "# * $ # * &
'f f " f $ # < # "'
* $ : 'f
'f L 1
# "'
: N
f#
'f
L 1 ˜
f#
'f .
=
N %*< ' , & .
` 3. " "#> > $ Hd(j˜q)
< ¤f, "+ HF Hd(j˜qk), k = 0, 1, …, Nz1.
D # k # &$, &$
+ &$ &$ & .
U# +& " Hi. " &$ &$
& %# * $ # * , , * * ' HF %# & " "# % .
` 4. C & > $ ?(j˜q) $ # " Hi. , &$ $ # "#& .
? , # ;?H
L = 1, N = 33 " H1 =0.3904, ~2max= z40 #;
283
L = 2, N = 65 H1 = 0.588, H2 = 0.1065, ~2max < z60 #.
` 5. C & +> $ ?C; * $ :
h (n )
H d ( 0)
N
( N 1) / 2
¦ 2 ˜ H d ( jZk ) ˜ cos> n N21 ˜ Zk ˜ T# @
1
N
k 0
n = 0, 1, 2, …, Nz1.
2.5. ^' ' ', %
H & +& #& " ; "> JK @+> '# # * ' "#&$
&$ $ + #&
"'
< ' . = E &
$ + + " +>
. D &
'
F F- +
> + 4" (AD) +4 "'4
$" ('* *).
* ! #>@> ' > ' >
M
E
¦ > H( j ˜ Zk ) H d ( j ˜ Zk ) @2 ,
(21)
k 1
# H d ( j ˜ Zk ) , H( j ˜ Z k ) – "# >@ & $ + , & & # % qk. J ' * + E
' + .
V'* * "> "' % +&$ " * " < ' < :
E (Z)
W (Z) ˜ H ( j ˜ Z) H d ( j ˜ Z) ,
(22)
# W(q) – % + ' .
= +&$ " * E
' + * '
@ # +< $ # ,
* , * * "'
(
; -=E # F- + ) * "& C"
(#
+
&< * ' * F F- ). $ > E & +> & &, , K " +&$ > H&< F+ , +& & " ; FDAS2K, DFDP, Signal & MatLAB # .
284
2.6. + Simulink $ ',
H–%
C MATLAB @ @+> &
+ Simulink. U Simulink %
" " # MATLAB, %
& > #+ ( ).
= " Simulink & > # : untitled
( # "# –# & # )
Library Simulink
( ) &$ "# .
& < untitled $ # # + , # >@ , " +&$ &$ .
" $ " $ # & + # * * @ . = E # % &+ * Block Parameters.
2.6.1. %
#
& '
+ (;) #>@> > $ ( #+) ( . 6).
. 6. " " ! %
K #+ '
+ "# @+> Digital Filter
Design ( . 7), (DSP Blockset/Filtering/Filter Design/ Digital Filter Design).
. 7. 285
Digital Filter Design
$ #& #& ; "#> Parameteters: Digital Filter Design ( . 8).
+ Block
. 8. ? Digital Filter Design
'
+ E& * & 6 :
x Current Filter Information – % ' " '
+ ( # – Order, * + –
Stable/Unstable, – Sections, &
+ – Filter structure);
x Filter Type – "# + :
- Lowpass – ;?H;
- Highpass – ;H;
- Bandpass – * + =;;
- Bandstop – % &* + C;;
- Differentiator – #
' &;
- % # & + ;
x Design Method – "# # ' :
- IIR – F- + &:
- Butterworth – + ;
286
x
x
x
- Chebyshev Type I – + H&< 1 #;
- Chebyshev Type II – + H&< 2 #;
- Elliptic – + E * (U -E );
FIR – F- + &, . $. 2.3–2.5:
- Equiripple – &* * ( &*),
$. 2.5;
- Least-squares – * + AD, $. 2.5;
- Window – # &$ ( &$) ' *, $. 2.3;
- Filter Order – "# # + - (Specify
& % + order) # + - (Minimum order);
Frequency Specifications – "#> & & + ( % "+ " & + ):
- Units – # '& " & (Hz – ', Normalized (0 to
1) – " &* + ( +&$ # '$);
- Fs – # "' ;
- Fstop1 – % & " %# ( *
"$ Astop1, #);
- Fpass1 – % & ( *
"$ Apass, #);
- Fpass2 – $ & ( *
"$ Apass, #);
- Fstop2 – $ & " %# ( *
"$ Astop2, #);
Magnitude Specifications – "#> E
' & "$ + :
- Units – # '& " E
' "$ (dB – #,
Squared – +& # '&);
- Apass, Epass – E
' & "$ ;
- Astop, Estop – E
' & "$ " %# .
=
& Equiripple # ( &* *) $ # # + "#+
Options
( . 9) Density factor, > &* 16.
=
& Least-Squares + AD $ # # + "#+ Magnitude Specifications ( . 10)
& E
' & $ "# % Wstop1,
Wstop2, Wpass, > & 1.
287
. 9. * Options
. 10. * J
!" Magnitude Specifications
=
& Window # &$ ' * $ # "#+
Options ( . 11) * ' Window, % # &$ ' * # +& &, Beta
# * ' *" Kaiser.
. 11. $ " Window
D & & ' :
x Bartlett – ' ;
x Blackman – ' E;
288
x
x
x
x
x
Hamming – ' FE ;
Hann – ' F;
Kaiser – ' *" ;
Rectangular – + ' ;
Triangular – + ' ;
% "+
,
& # " &$ #* * Digital Filter Design + , # %@> & #>@ " :
"#+ &* * &+ * $ + * + # % ;;
;;
;;
;
# # + # +> # % + # #*
+ < "#;
;
;
# % ;
+< # % ;
& #
#+ Filter Visualization Tool "
+ .
D Filter Visualization Tool " "+ +
& + , :
HF
+ ;
;HF
+ ;
#
# + $ ' );
HF
+ ;
;
+ *
;HF
>
"#*
( $ # $ -
+ * Z- ;
" E
' # * '
+ (Numerator –
' & ").
E
' & , Denominator – E
289
2.6.2. Gain (+%)
= + Digital Filter Design " & + + & + &, . . # & , # E
' # , >@ $ # '&, $ # +" + # +&* Gain (Simulink/ Math/ Gain) ( . 12).
. 12. E
' "#
Block Parameters: Gain ( . 13).
Gain
*
. 13. 290
Gain
2.6.3. Signal Generator (+%'* )
, & #+ $ #
+ , +">
+&* Signal Generator (Simulink/
Sources/Signal Generator) ( . 14).
. 14. Signal Generator
. 15. 291
Signal Generator
* ( . 15) Signal Generator "#> #>@ &:
x Wave form –
:
- sine– #+&* ;
- square – +&* ;
- saw tooth – "&* ;
- random – *&* (<);
x Amplitude Frequency – # ;
x Units – # ' " & (Hertz – '& rad/sec –
#/).
2.6.4. Zero-Order Hold (+* '"-,,
H)
H & $ # ; #+ '
* , +" F, " &* &$ # (Signal Generator) # & & . F +"
Zero-Order Hold (Simulink/ Discrete/ Zero-Order Hold) ( . 16).
. 16. Zero-Order Hold
* Zero-Order Hold "# "' Sample time ( . 17).
292
# # -
. 17. Zero-Order Hold
, " . 17, # # "'
# * # "' , . . 4000 '. A# +, # "' , & Zero-Order
Hold, # % &+ # "' Fs, " * '
+ ($. 2.6.1).
2.5.5. Step
Step (Simulink/ Sources/ Step) ( . 18.), +" #
" # "#* .
)
. 18. )
Step ( ) ! ()
=
&
* ( . 18.),
Step time "# "#* , $ Initial value Final value – + " #& "#* , Sample time – # # 293
"'
&$ # ( # >, & &).
H & * + # "#* ($,+? ,+), % + #>@>
> $ ( . 19).
. 19. " " %
2.6.6. Scope ()
"+ +"> , &
#
> + &$ ; % Scope( ' ) (Simulink /Sinks/ Scope) ( . 20).
. 20. Scope
>#+ ' %&$ Scope
# $ # " ' #
>@ +" '&. D & $ # (. . , # % %+ # 30 294
). " ' + + E . J ' # $ #
%
&-
# , " ).
. 21 ( &# . 21. ' ! Scope " ?% &
# > *
Scope (Scope parameters) ( . 22).
. 22. 295
Scope
Number of axes "# $ #
' ,
Time range – $ * # , % ' ,
Tick labels – % * # (all – , none – *,
bottom axis only – + " + +). C # +" + * , & & >.
2.7. U' $ Simulink (?
Simulation)
? , > Simulation ( #
) # % + # ( . 23), > > +
#
# * # . = # E $ # " " % + + # + #
, "+ %*< & # , , , " #+ ,
# "+ #
.
. 23. I+ Simulation
C # # #+> #
, & # # > Simulation Parameters ( & #
) ( . 24). J&
# Solver & &.
Simulation time ( #
) – &
#
# " + (Start time) (Stop time) " * #+ .
Solver options ( & ) – &
# "'
( ) # .
296
. 24. " Output options ( & & #) – & & # &$ #&$ # * & ( #
& < ).
= # & # "' # # #>@. # * &
# –# &,
" % & + # % $ # #
.
A @+> # $ #& >@ $ Type (! ) %
&+ " #>@ $
$:
# & $ # "
x # & # # ;
x # & & & $ #;
# & $ # ;
x & & & & $ # .
x & & = &* ( ) " & + " #+ :
x Variable – step ( &* <) – #
&
< ;
x Fixed – step ( &* <) – #
& < .
* ( ) " & + # &. = &* (discrete) # &$ * &. D+& & >
& # # & &$ . J
#& " > # (Variable – step) #
297
(Fixed – step) < , & # * # –
< & &$ #
' +&$ *(ode).
? % # $ & >@ $ Type $ # , " " " & " #+ ( # + & >).
= & # $ # % % +" + >.
3.
=CDCKK?D DA=H?
=
& * & +"> &
MATLAB 6.0
&<, % Mathcad 2000 &<.
4.
=CDCKK \DC!DC?D³ CD!µ
4.1. " + " F- +
# &$
' *, * & , % & # .
4.2. & + Mathcad " F- + # , + E
' & # *
' ;, + & " "#&
. ?* $ #> $ + .
4.3. & +
MATLAB " F+
# &$ ' * *" , >
+ AD
>. C +
E
' & # * '
;, + HF "#& . ?* $ #> $ + . ?* + & "# % ,
' + " +& * + .
5.
D?!CD\²?µ D=CDAµ
5.1. H + $ # ' ;?
5.2. H # ; "& " "'
+ ?
5.3. D $ " $ ;
# ? " + &
+ ?
5.4. # F- + # &$ ' *?
5.5. & % & > +& $ #+&$ ;: ;?H, =;?
5.6. " " & * #
# < (AD) ; & # ?
298
5.7. & #&
" # #
+"> MATLAB # F- + ?
5.8. & + " "+ + Filter Visualization Tool Digital Filter Design?
5.9. +" Gain #
&
;?
5.10. " Zero-Order Hold #
& ;?
5.11. " "# # # "'
ZeroOrder Hold # % &+ ?
5.12. & $ # +, & &$ #
Step + & /# "#* ?
6.
=DCD µ=D\?? \DC!DC?DD U?
6.1. = # +
$ #& #& ($. 2.2.1)
"#& ( +> ),
$ # & # " E^: – + $ N- ($. 2.2); " F; E
' K0; # "' F#=16 '.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
= # + # + N # * &
" E
' ($. 2.2.2–2.2.5).
D' + & " + "# *.
= "+ E
' & # * '
HF.
6.2. A "#+ #+ + ($. 2.6.1) Simulink.
= # +
$ #& #& ($. 2.6.1) "#& ( +> ), $ # &
# " $ % (&): # – ' + * ($. 2.3.3, 2.6.1); ' + &
F; E
' K0, – 3 #; 'F=0.1˜Fc; +'
Fstop1=0.5˜ F 60 #; Fstop2=2˜ F – 80 #.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
299
4
400 '
40
5
500 '
50
6
600 '
60
H # "' Fs + * 16 '.
; + # % + +&* # .
6.3. =
" "
+ . = + "
+
#>@ &
+ : E
' & # *
' , HF.
6.4. = #+ $ # ; # "#* ($.
2.6.5)
& + $ #> $ &.
6.5. = #+ $ # ; * ($. 2.6.3) *
Fx * Fc
# * # *. = +
$ # &$ # . D' + " +& * + .
6.6. = + $.6.5 # *
Fx=1.5˜Fc.
6.7. &% $+' 6.2 – 6.6 # '
+ (=;), > Equiripple ($. 2.6.1, 2.5): ' + & F;
E
' K0, 'F=0.1˜Fc;
+'
– 3 #; Fstop1=0.5˜ F 60 #; Fstop2=2˜ F – 80 #.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
H # "' Fs + * 16 '.
= # + # % &+ #
+ , # &$ ' * *" , $. 6.2–6.6.
6.8. &% $+' 6.2 – 6.6 # '
+ (=;), > + AD Least-squares ($. 2.6.1, 2.5): ' + & F; E
' K0, – 3 #;
'F=0.1˜Fc; +'
Fstop1=0.5˜ F 60 #; Fstop2=2˜ F – 80 #.
F
K0
1
100 '
10
2
200 '
20
3
300 '
30
4
400 '
40
5
500 '
50
6
600 '
60
H # "' Fs + * 16 '.
= # + # % &+ #
+ , # &$ ' * *" , $. 6.2–6.6.
300
7.
A=AD \!C!Cµ
1. .A. : . 2 . H.1. – : "#- !, 2001. – 199 .
2. + .. "+ #
# MatLab.
. . – A=.: = , 2000. – 480 .
3. + .. MatLab. ' #
# Windows: . – A=.: DCD? = , 1999. – 288 .
4. +# \.K. # . . – 2-
"#., . # . – K.: C#
"+, 1990. – 256 .
5. C \., # . !
'
* . / = . . # #. °.?. # . – K.:
K , 1978. – 848 .
6. A .. . – A=.: = ,
2003. – 604 .
7. ., # ., J =. &
+ &
$ . – K.: J "#, 1983.
8. FE C.. & + &. – K.: ?# , 1987.
301
! -! I
5 // MATHCAD
K # " * ¢ 7
«
»
A :
* + + 302
# O ? ............................................................................................................. 3
1. ?\DDµ A?\µ AA!Kµ .................................................... 4
1.1.
1.2.
1.3.
1.4.
1.5.
D & &
# .......................................................... 4
& & .................................................................. 9
= $ #& # & ................................................ 14
& *& & ............................................................. 16
+& & ............................................................................ 19
2. ;CDµ A?\µ AA!Kµ ....................................................... 20
2.1. C & '
* ............................ 20
2.2. K # # &$ ................................... 22
2.3. A # .................................................................. 23
2.3.1. A "+ %# # , % ............. 24
2.4. D # ' # &$ ............................ 29
2.5. K #& *&$ # &$ * & '
* + '
$ ............................................................................................. 30
2.6. K #& # &$ * ( * ) ............................... 33
2.7. ! & # + # &$ ............................. 37
2.8. = # ' $ # * & ................................................................................ 41
2.9. = # & '
&$ '
&$ + .
" * " ..................................................... 45
2.10. H & $ &$ + .
*
............................................................................ 49
2.11. ; & "'
&$ +
......................................... 51
2.12. = "' &$ +
......................... 58
2.13. = # ' $ + ......................................................................... 60
303
2.14. ? & + & * * " *
$ * ...................................................................................... 60
2.15. = & < "# '
&$ .................... 62
2.16. +& & ............................................................................ 67
3. =DC¥?DA! ?!D? A?\D ....................................... 68
3.1. A $ < .............. 68
3.2. = < + " &$ " $ # ............................................ 70
3.3. = < + " # # # " * & ........................ 74
3.4. D # < ## * < +> " ............ 76
3.5. +& & ............................................................................ 77
4. =DC¥?DA! AC!U A?\D ................................... 78
4.1. # # "
,
# "' ....................... 78
4.2. & " # "
..... 80
4.3. ! .. + ................................................................... 83
4.4. & ,
< ' ................................................................. 84
4.5. = # * # "'
" &$ # '
.................................... 88
4.6. +& & ............................................................................ 89
5. ;CDµ F-;\²!Cµ ........................................................................ 90
5.1. U#
#& " '
&$ +
..................................... 90
5.2. A " &$ +
............... 92
5.3. K # * " .................................................... 93
5.3.1. D@ # ............................................................... 93
5.3.2. * " ........................................................ 94
5.3.3. K # " C; .................. 96
5.3.4. C " ;?H- (;=?H) ........................ 98
5.3.5. = $ # ;=?H ; "# ............................... 100
5.3.6. = " + # * " .................................................... 101
5.4. +& & .......................................................................... 104
6. ;CDµ F-;\²!Cµ ..................................................................... 105
6.1. A " &$ +
# &$ ' * ......... 105
6.1.1. D # ......................................................................... 105
304
6.1.2. A * &$ ' * ........................................................ 108
6.1.3. & ' *" ......................................................... 110
6.1.4. +& $ #+&$ ; " ................................................ 112
6.1.5. K # " ?C; # &$ ' * ............. 113
6.2. A " &$ +
# * & ...... 114
6.2.1. D # ......................................................................... 114
6.2.2. K # " ?C; # * & .......... 118
6.3. +& & .......................................................................... 119
7. HA\??µ K!Dµ A?!U ;CDµF ;\²!CD ............ 120
7.1. " '
&$ +
.......................... 120
7.2. +& & .......................................................................... 121
8. µA!CD =CDCUD? ;C² .................................................... 122
8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
D # * =; ............................................................. 122
; + ' =; ................................................ 126
A +&* " : "# , #&, & .......... 128
A +&* " =; ................................ 129
D # ' =; .............................. 131
=; > 2 % ....... 132
=; > 2 % ......... 138
& D=; =; ............................... 141
+& & .......................................................................... 142
9. A!CD³A! ;CDD³ DCD! A?\D ........................ 143
9.1.
9.2.
9.3.
9.4.
A & "' DA ............................................... 143
D DA, >@ E> " ..... 145
D & * =DA ................................................................... 148
D@ ' & $ =DA ........................ 150
9.4.1. = $ ' ......................................... 150
9.4.2. $ ?* # $ .......... 151
9.4.3. A ' =DA .................................................... 152
9.4.4. D & '
=DA ............................ 155
9.5. D & & =DA ......................................................................... 159
9.5.1. ' '
=DA ......................................... 159
9.5.2. A# & ' & =DA (Conventional DSP) ............. 159
9.5.3. <& # & ' & =DA
(Enhanced-conventional DSP) ...................................................... 162
9.5.4. = ' & =DA $ * VLIW ............................... 163
9.5.5. A & ' & ..................................................... 163
9.5.6. #& ' & .............................................................. 164
305
9.6. $ & " % ' .......................... 165
9.7. +& & .......................................................................... 165
U\°H? .................................................................................................. 166
\DC;HA³ A=AD ............................................................... 167
=C\D ? .................................................................................................. 169
\ ¢ 1
K #
*&$ Mathcad ................ 171
\ ¢ 2
A +&* " Mathcad .................................... 180
\ ¢ 3
K #
*&$ MatLab ................. 193
\ ¢ 4
A +&* " MATLAB .................................. 207
\ ¢ 5
= '
+ # * " Mathcad ....................... 226
\ ¢ 6
= '
F- + # * " MATLAB .................... 247
\ ¢ 7
= '
F- + $ Mathcad MATLAB .................................................... 271
306
!
" #$ %
.%.., !&
.. ' %
.. %
.. ( )
.. .. * ! ! % 15.12.2008. +- % 60/84/16. #- «7# ».
* % XEROX. . !. . 17,86. .- . . 16,15.
; 808. < ) 200 = .
<- !%/ #%%
7%- - )-% %
<- !%/ #%% %&> NATIONAL QUALITY ASSURANCE ! % %# ISO 9001:2000
. 634050, . <-, !. , 30.
307
Скачать