!" #$% &'( )*%!" %+ « » .. , .. , .. ! "" - !" ,-( )!%.%#-( %% 2008 621.372.037(075.8) 32.811.173 45 . . 45 : / .. , .. , .. . – ! : "#- ! $ , 2008. – 307 . ISBN 5-98298-326-6 " %& & ' * , #& " ' &$ + , # " ; +, #& ' < * ' &$ , * "' ' * ' " ' . = " $ "' ' * " + * & != > «? " <>@ * +» #" # , >@ $ « ' " + $ $ " <>@ ». 621.372.037(075.8) 32.811.173 $ $ , , " . # * ' - " + * $ !AC .. ISBN 5-98298-326-6 © .., .., .., 2008 © ! * $ * , 2008 ©D . "#+ ! $ , 2008 2 # @ < +" # ' * (DA) # < " &$ "# ( " + &<&$ $, , # ' # ' , # " % * . #.). D# C @ # ' % , &$ +" + & ' * . D# * " % * # # , " " # # ' +&$ # ' , # # +> . = + " " & >@* &. , +< ' * " % + + # * +" % * @ * . D# + " # ' & E % &" + # . " + +> # # * « ' " + $ $ " <>@ » # ' « ». " %& & ' &$ , # " ' &$ F- F- + , & # " ; + + ' + ", % & * "' ' * ' " &$ ' DA. #& & " ' &$ , +& &, " >@ ' + %&$ $. % #& # " & > &$ , " " + & " ' &$ . 3 1. $ $ $ = # "# +" & #>@ : [1, 4, 6, 16]. 1.1. %&&'( )(*&' +*(-((&/ – * , @ &$ E $ * , >@ # %+ * $ * . + * , ' % + . ( ) – E * , @ < % G # #+ < %# " $. H « » > « », # " * '. – $ %# " " * & && @+> ' +&$ $ $ # ( ). ! ' 1.1 = " #& ; @ & J = # * ' & = = & ; A , A * @ !A, # E $ ' + J $- ? % , , @ +, E ' HF, ;HF, ' A * , %>' , &, @ # " , $ +& # ' ' +& " 4 . 1.1. = " #& ; = = & K$ = J & #% " & ! & " $ - ' A & " * >@ $ "- = & ; , +, A , # , " +, # + ? % , , T, E , E ' # E ' "$ , A , @ + = @ # ", # # ! ' 1.1 ( ) = " = * " # $ # * & = > " #& ; D & ( " &) = " #& ( " &) C" & ( >&) " " & ( +&) = ;, $ #@ & " &$ # $ ; ;, #& " & ; & = & ; # , , , , , , @ A d2x , dt 2 A – , x – # , t – . ;, " &$ $ & # " &$ ; "# +, > > D < # * E ' ; # *, , * + + * # 5 – +&* + ' . A & &+ # $ # : x # " ' ( ' "> " ); x # &* # &* ( ' E , $ % ). ' " %# G $ # # " #* , "+ " # ' $ $ # . ; * % "#* + # " . !"# – $ # * # " X(t), $ ">@ * # ">@ $ ($ ). &$ ' " $ # $, # * . 1.1, # &$ – . 1.2. !$ # "#* DG C' . 1.1. !$ # "#* ( ) . 1.2. DG ! ' 1.2 = " = > # + " = > " = & #& " * ? # & A # +& " >& D +& D# & = ? , * * >@ K & 6 . 1.2 = " #& " * XN=CNX A – ' # NX – # * < YN=f(X1N, X2N) A * # $ %# # &$ $ A * # $ %# " %# " & = & = $ " & A & A & = < > %# " &$ * " = @ "& = "&"& & "& & K & K +& A / = $ " " & / A*& % $" (&) – ' " $ # &$ # * , #>@ * $ , &$ " % #>@ " , ' + " & $ # . x x x x x #& =: " " # (E * E *); ' + " ( & "' <&); &$ # $ # # " ( +&$ % * " ); > (< " ); * # ( &* # " , , # + + " ). 7 %'* – , #>@ * # %@ * ' > $ " . A & = #% " & " $ ' & K$ J & = " " ! & A & = & " >@ $ " * = & ?' & A*& A' & & ?E # J & A %& = J # # ? A #+&* # = " # # &* + ? +&* C &* C * = # " # ? # ( $ #&) J ' +& = +& J ' +&* " & = = +& . 1.3. ! X (t) X(t) t t ) ) . 1.4. ! : – " ; – " 8 x x x x C" > & & : & & " X(t) ( . 1.4); & & & " X (t) ( . 1.4); # & & & " X#(t) ( . 1.5); # & & " X#. (t) ( . 1.5). X#. (t) X#(t) t t ) ) . 1.5. ! : – " ; – " 1.2. #()(*&*&&'( %0&' & & # "#> E & %&. E & &* , #+&* # &* +, #+&* . &'* . X(t)=X0=const, t>t0 %'* '* $+%. #+&* # &* + & #+- ' *, #>@ * : ­0 , t z t0; G(t t0) ® (1.1) ¯ f , t t0. f ³ G (t t0) dt 1(t–t0)=1 ttt0, (1.2) 0 # 1(t–t0)# ' . d 1(t t0) dt G(t t0) . 9 (1.3) X(t) X0 t t0 . 1.6. # ! X(t) t t0 G-" . 1.7. ! = +" #+ # " % " " . X X ³ t0 ' X d dt t0 t0 . 1.8. $ G-" " # G- ' X(t) " > X(t0) f ³ X(t) G(t t0) dt X( t 0) . (1.4) 0 = E , G- ' # + >@ >@ * . * +" # # # # # "' T# N X # (t) ¦ X(i T# ) G(t i T# ) . i 1 10 (1.5) +%'* (*) . X(t)=Xmsin(Z0t+M), # Xm – #; M – "; Z0 – ; ! – (1.6) # ( Z0 2 S ). T T X(t) Xm S(Z) t Z0 M ) Z ) . 1.9. " % ! ( ) ! () &* . X(t)=X(t+kT), (1.7) # k – ' , ! – # . # $ ($,) $, . . &$ $ >@ $, & % " % + . A & % &* ( +&*) , . . # #& "& . = * % &+ # ' +% (' $): X(t)= # Z0 2 S , a 0 T f a0 ¦ a k cos( 2S k t ) b k sin( 2 S k t ) , T T 2 k 1 T 2 X(t) dt , a k T ³ 0 bk (1.8) T 2 X(t) cos( 2 S k t) dt , T ³ T 0 T 2 X(t) sin( 2 S k t) dt . T ³ T 0 X(t)= c 0 f ¦ c k cos( 2TS k t Mk ) , k 1 11 (1.9) a0 – # " , c k 2 a 2k b 2k , M k ' $' . Xmax – + " ; # c 0 1 T X X . & bk ). ak t T ³ X(t) dt – # " ( >@); t 1 T 1 T X " arctg( t T ³ X(t) dt – # & " ; t t T ³ X 2 (t) dt = t f a 02 1 ¦ a 2k b 2k – #* >@ "4 2 k 1 (AU); X " Xm ,K X " Ka X . & – E ' & #& &. &+%'* $+%. a 2 Xm W S( k W ) , bk=0, 0 ak T T sin( S x ) . S x – AU, S( x ) 2 2 Xm W – #, X " T Xm 2 W T S(Z) X(t) Xm Z t W T Z0 ) 2Z0 4Z0 6Z0 8Z0 ) . 1.10. #"! % " % ( ) ! () A + # %&$ * : > & % x Q= T ( . 1.10, Q=4, . . > 4, 8, . #.); W ' + # + x < + ( , 4 $). 12 ;+%'* $+% ('*). ak W k W Xm T S 2 ( 2 T ) , bk=0, 2 Xm W – #, X " 2T a0 2 Xm 2 W – 3T AU. S(Z) X(t) Xm Z t W T Z0 2Z0 4Z0 ) ) . 1.11. &"! % " % () ( ) ! () ;$%'* $+% ('*). ak k ( W0 W1) k ( W0 W1) ) S( ), T 2 T 2T Xm 2 2W0 W1 – AU. 3T Xm W0 W1 S( 2 #, X " a0 2 bk=0, Xm W0 W1 – 2T S(Z) X(t) Xm Z t W1/2 W0 W1/2 Z0 T 2Z0 ) 4Z0 ) . 1.12. & % " % () ( ) ! () ;+%'* $+% ($"'*). bk a Xm 1 , k=0, 0 S k 2 2 Xm 1 – #, X " 2 13 Xm 2 1 – AU. 3 S(Z) X(t) Xm Z t T Z0 2Z0 4Z0 ) ) . 1.13. &"! % " % ( ) ( ) ! () &++. ak > @ a Xm W S( 1 ( 2k W 1)) S( 1 ( 2k W 1)) , bk=0, 0 T 2 #, X " 2 2 T 2 T 2 Xm W 2 – T S Xm W – AU. 2 T S(Z) X(t) Xm t W T Z Z0 2Z0 ) 4Z0 ) . 1.14. # "" ( ) () 1.3. (*(4-&'( &(+(*-(%( %0&' D $ #&$ # $ , $ +" # + * , + # # . D# & % # + # $' $, " ; +: S(j Z) f ³ X(t) e jZt dt S(Z) e jM(Z) . 0 & S(j Z) A(Z) j B(Z) e jZt & % # 14 cos(Z t ) j sin(Z t ) , (1.10) S(j Z) f f 0 0 ³ X(t) cos(Z t ) dt -j ³ X(t) sin(Z t ) dt . D " ; + " X(t) 1 2 S f ³ S(j Z) e jZ t + dZ . (1.11) -f <$%'* $+%. ­°Xm e - a t , t t 0; X(t) ® °̄0 , t 0. (1.12) S(Z) X(t) Xm Z t ) ) . 1.15. ' % " % ( ) ! () >+,?@ ". ­°Xm e - a t cos(Z t) X(t) ® °̄ 0 , t t 0; , t 0. (1.13) S(Z) X(t) Xm t Z ) ) . 1.16. * " + ( ) () 15 &+%'* $+%. ­Xm X(t) ® ¯0 , 0 d t d W; (1.14) , t 0; t ! W. S(Z) X(t) Xm W t Z ) ) . 1.17. #"! % " % ( ) ! () sin(t)/t. X(t) Xm Xm sin( S t ) T S t T (1.15) X(t) S(Z) XmT t T Z 2S/T ) . 1.18. ! ) sin(t)/t ( ) ! () ! " , # , +&* +&* . # sin(t)/t #- 1.4. &0'( &(6&'( %%)(' A "+ %# $ #& X(t) &$ #& Y(t) * & & & % * Y(t)=F>X(t)@. (1.16) \ *& "& > &, # &$ & $$ +$$: ' *> ' > 16 * * ' #+ . ' * E &, #& $ # - F>X1(t)+X2(t)@=F>X1(t)@+F>X2(t)@; (1.17) F>CX(t)@=CF>X(t)@, (1.18) # A=const. C' G-$+% "& $+%* ,* ' – h(t). ; " "& & # > : f h(t)=0 ³ h(t) dt f . t<0 0 C' & # "#* "& $,* ,* h1(t). = $ # $ " + * $ * " +> h1 ( t ) ³ h(t) dt . + $ # $ & " > # + ' > & " +&* $ # * ( ?) # * " & $ : t Y( t ) X(0) h1 ( t ) ³ Xc(W) h1 (t - W) dW ; (1.19) 0 t Y( t ) X(0) h1 ( t ) ³ Xc(t - W) h1 (W) dW ; (1.20) 0 t Y( t ) X( t ) h1 (0) ³ X(W) h(t - W) dW ; (1.21) 0 t Y( t ) X( t ) h1 (0) ³ X(t - W) h(W) dW . (1.22) 0 " ' & $ #& "#* > % $" C$ $" +%: * Y (s) f ³ Y(t) e 0 st f dt ³e 0 s t t dt ³ X(W) h(t - W) dW ; 0 Y* (s) H(s) X* (s) ; 17 (1.23) (1.24) f H(s) ³ h(W) e sW dW , (1.25) 0 * * # Y (s), X (s) – " % H(s) – $ + &. * Y ( j Z) f ³ Y(t) e ($" C$), jZ t dt ; (1.26) dW ; (1.27) Y* ( j Z) H( j Z) X* ( j Z) , (1.28) -f H( j Z) f ³ h(W) e jZW -f ($" +%), # Y*(jZ), X*(jZ) – & H(jZ) – , &. H( j Z) H(Z) e jM(Z) , (1.29) # H(Z), M(Z) – # - " - $ . * * & & ' " ' : (1.30) Y*(s)=H(s)X1*(s)+H(s)X2*(s)= H(s)>X1*(s)+X2*(s) @; Y*(s)=CH(s)X*(s)=H(s)CX*(s). (1.31) = # + # *&$ @ * E ' # " # > E ' # E $ : * (1.32) H (s)=H1(s)H2(s), = + # *&$ @ * E ' # E ' # E $ : * H (s)=H1(s)+H2(s), (1.33) $ $ E ' # & H(s) % &+ # # - ' + * H(s) B( s ) A (s ) b 0 b1 s b 2 s 2 ... b m s m a 0 a 1 s a 2 s 2 ... a n s n , (1.34) m<n E ' & ai, bi – #* +& . & " A(s), . . $? spi, % #+ E ' # #: H(s) B( s ) A (s ) b 0 b1 s b 2 s 2 ... b m s m a n (s sp 0 ) k 0 (s sp1 ) k1 ...(s sp n 1 ) k n 1 # ki – + *. 18 , (1.35) , > & (ki=1), + $ & # & % : n 1 ¦ A / (spi ) e t sp i , t > 0. h(t) B(sp ) - (1.36) i i 0 = $ # $ # E & % : h1 ( t ) B( 0 ) A ( 0) n 1 ¦ sp A / (isp ) e t sp i , t > 0. i 0 B(sp ) i (1.37) i &. H(s) B( s ) A (s ) 1 2s s 5s 4 2 1 2s , (s ( 4))(s ( 1)) ! # + $ ( h(t) 1 2sp1 t sp1 1 2sp 2 e e t sp 2 2sp 2 5 2sp1 5 sp1=–4, sp2=–1. & % > (1.36)) 1 2( 4) 4 t 1 2( 1) 1 t e e 2( 4) 5 2( 1) 5 7 e 4 t 1 e t . 3 3 = $ # $ h(t) 1 2sp 2 1 1 2sp1 e t sp1 e t sp 2 ( 2sp 2 5)sp 2 4 ( 2sp1 5)sp1 1 7 e 4 t 1 e t . 4 12 3 1.5. &)*8&'( +*%' 1. 2. 3. 4. 5. 6. 7. 8. 9. D # * , , " , " + " , ' . ' . D # # &$, &$ & &$ . #& # &$ $ & &. D # # , # # , # & " *, E ' #& & . D # « » & *< $ # &$ . ? # & $ . = " ; + # ; + # " . + $ &, "+ * $ *. D # * $ . A & %&$ " +&$ " *, $ & $ . 19 2. !$ $ $ = # [2, 3, 4, 5, 6, 7]. "# +" & #>@ : 2.1. C)*)* %%)(' 9:*6 *) %0& A & DA # > # + ' &$ # , & "& > ' . ! & & > ' DA, # >@ ' & + # &. &$ ' & # # $ # + " ' > , $ & &$ # – "' * & >. D@* * $ & ' * &$ ( . 2.1) ' ' +&$ " * #: /././././ (« / », « /' », «' /' », «' / », « / »), "&$ & + % $ (;?H1), ' & " (=), ' & ' (=DA), ' - & " (=) & + % $ (;?H2). x $(t) x(t) ;?H1 x'(nT#) = y'(nT#) =DA y(t) = y &$(t) ;?H2 f# . 2.1. " " , ,* & DA x $(t) = " &* + % $ ;?H1 * " Zc. ; + $ # ( > >@ <& $ ) + * * Zm|Zc, # >@* >: Zm<Z#/2, # Z#=2Sf# – # 20 "' . D % % # "' & "& $'. -' " > # "' > , > ' # ( . 2.2). x(t) x(nT#) "' x (nT#) > # x'(nT#) f# . 2.2. # %% !- ! ! "+ "> '* $(n!#), >@ * & x(t) # & @ & n!#, (!#=1/f# – # # "' ), '* '* $ (n!#), >@ * & % &$ " * * $'(n!#) # # + ' &$ # &$ # " # , >@ " # =. = ' =DA "#& * "" ( ) &$ # * ' * $ # * ' * $'(n!#) " & y'(n!#)=;[$'(n!#)]. D'* ',* & y &$(t) ( ) " ' y'(n!#) @+> =, '* $ +? '* ">@ l(t) * & ;?H2, & &* # > & & & &$ # . J + * " Z < Z#/2 "& > % ?@. A + E ;?H1, =, = ;?H2 & ' * &$ , & >@ $ " # /, / /, "> $+ -' -* *. A " ' * "& $4, & " >@ $ " *. D' & $ & > , , $, DA. 21 2.2. )()(%( -( -%*()&'4 %0& = # ' > & ' , @ >@ # &$, , @ $ " $ . K & " # "& > , '". K # &* #>: x ' * # nT#: x(nT#)=x(t)|t=nT#, n=0,1,2,…, >@* & # & # >@ & ; ' * & n: x(n)=x(nT#)|T#=1, @ x " * ; ' * & t: x x # ( t ) x ( t ) f G ( t n T# ) x ( t ) f ¦ G( t n T# ) n f (2.1) f ¦ x (n T# ) G( t n T# ), n f * % @+? +? f G ( t ) + + x(t) +?- f ¦ G( t n T# ) # # * # - n f # , & T#: ­f, t n T# . G( t n T# ) ® z 0 , t n T # ¯ # & & # > ' * # > & n # nT# ( . 2.3). = $ ' > & %# > & x(t), >@ # $(nT#), * * >@* # * # + x(n), # %>@* ' +> " +. $(n!#) "& *& < A & $#(t) x (n T# ) ( n 0.5) / T# ³ x # ( t ) dt > # & * ( "& "- ( n 0.5) / T# ). = E &< #& # # > ': x(nT#), x(n), x#(t). = & " $ (x(nT#) x(n)) # +"> " # &$ ' &$ . A &, # & ' * 22 & n, "& > % ', ' $%. D # # ' * & (2.1) E "* + " < > @# # #>@ $ G- + fG(t) # " & $(t) & $(n!#) ( . 2.4). J # " @+> " &$ # &$ + + * >@ $ # &$ . x(t) x(nT#) t nT# 0 1 2 3 n T# . 2.3. < ! (t) ! (nT) ! x(t) x#(t) ³ fG(t) x(nT#) nT# -1 0 . 2.4. ' 1 2 3 ! # & & "& &$ 4', +* ', . 2.3. +()* -%*()&0 %0& $%+? $% # X(jZ), # @ "& > #+*< $, % * , # " " ; + >@ X a ( j Z) f ³ x(t) e f 23 jZ t dt . U t n!#, X( j Z) T# dt !#, f ¦ x (n T# ) e jZ n T# n f (2.2) A # * &, % &+ *# & " ; + # , # ' * & (2.1): X # ( j Z) f ³ x # (t) e jZ t f ¦ x (n T# ) e dt jZn T# n f f f f ¦ ³ x ( t ) G(t n T# ) e jZt dt (2.3) n f f & # +" + >@ * G- ' . & % (2.2) (2.3) > + <& ( "# * &) % !#, &* & > # * E & jZn T# j(Z k Z # )n T# . $ e e # Z#: $ $ F(jZ)=X[j(Z+kZ#)], k = 0, ±1, ±2,…( . 2.5). & $ "+ * $ . A # %# # # & ( *&) . D E * > #+ % > $ * * ". D #> # * $ (0 ± Z#/2). 2.3.1. , A "+ %# # # # (2.1), # " >@ ' fG(t) # " >@ # ; + f G ( t ) x # (t ) x(t) E f ¦ Ck e j k Z # t . k f f ¦ Ck e k f ' & # 24 j k Z # t (2.4) Ck 1 T# n T# T# / 2 ³ G( t n T# ) e 1 e jk Z # n T# T# jk Z # t n T# T# / 2 1 T# # % #+, > # ( * ) E * # * ' . ! * % &+ % & & " ; + @+> * # " >@* ' FG ( j Z) 1 T# f ¦ G(Z k Z # ) . k f = " ; + (2.4) 1 T# X # ( j Z) f Ak =1/!# f ¦ ³ x(t) e jk Z # t e jZ t dt k f f 1 T# # & % > f ¦ X [ j (Z k Z# )] k f (2.5) J % "+ # * # " >@* ' , >@ " # > (2.1) * : X ( j Z) f 1 2S ³ X a ( j - ) FG ( j (Z - )) df 1 T f ¦ f ³ X a ( j - ) G (Z k Z - ) d- k f f 1 T f ¦X [ j (Z k Z )] k f " (2.5) #, # +> # % F(jZ), @&$ kZ#. = F(jZ) & kZ# &" % % jk Z t # , >@ $ # " &$ E e >@* ' fG(t) (. (2.4) . 2.4). D " G # "' # "' . & % (2.5) % &+ > # " &$ # "' &$ & ( &) & , & * > > > # + . = &* * & , & + * * Zm, >@* - 25 >: Zm<Z#/2. = E ( . 2.5) # * ±Z#/2 ( |Z|dZ#/2) # (# % !#) : !#F#(jZ)=F(jZ). "' %# "#+ % . Zm<Z#/2 + . E $ ' '" @+> #+ ;?H + * * $ * =(j Z), * !# |Z|dZ#/2 * > |Z|>Z#/2 ( . 2.5). T#|X#(jZ)| |=(jZ)| |X(jZ)| Z –Z# –Zm Zm 0 Z# D Z#/2 –Z#/2 . 2.5. % ! ! ! " ˶ ุ 2˶ m A &$ # ;?H " > ; + # # " # =(jZ)F#(jZ) x(t ) T# 2S Z# / 2 ³ 3 ( j Z) X # ( j Z) e jZ t dZ Z# / 2 f ¦ n f (2.6) x (n T# ) sin[Z # ( t n T# ) / 2] Z # ( t n T# ) / 2 & % (2.6) " % x(t) # " & >@ ' sinx/x & E ' x(nT#) ( %), & @ . % &+ # % * # $#(t) + * $ 26 * #+ ;?H h(t), " * & " ; + * $ *: h(t) T# 2S Z# / 2 ³ sin[Z # t / 2] Z# t / 2 3 ( j Z) e jZ t dZ Z# / 2 (2.7) f = # (2.7) x(t) ³ x # (W) h ( t W) dW f & # ' # (2.6). H , # q#=2qm, " " % * " ' E*. +, # & # " * q#<2qm ( . 2.6) # * |q|uq#/2 # "' F(jq) "#+ # : T#F#(jq) v F(jq). = & > > # @& F[j(q–kq#)] ( . 2.6 k=±1). < '? $ $ . A "& < # "' % "& > < . = % # & & . T#|X#(jZ)| |=(jZ)| |X(jZ)| Z –Z# –Zm -Z1 -Zc1 Zc1 0 Z1 Zm Z# D –Z#/2 Z#/2 . 2.6. % ! ! ! " ˶ <2˶ m ;* +* x(t) * # + T & , "$>@ . 27 ! * % # + " # >@ * # + xw(t) + * * ' =!(t) * # & T: x(t)=xw(t)=!(t) ( "& &* * + ). * E Xaw(jq) xw(t) * $ * Xa(jq)=Xaw(jq)=!(jq), =!(jq)=sin(qT/2)/(qT/2) * ' # "& > * # + . J , , >, * # &. ? % # ( . 2.7) > " & # "' , @&$ , & >@ * , +<> & # "' . T#|X#(jZ)| |=(jZ)| |X(jZ)| Z –Z# –Zm Zm 0 Z# D Z#/2 –Z#/2 . 2.7. % ! ! ! % &* @+> #+ ;?H # + x * ( t ) N 1 ¦ n 0 x (n T# ) ' sin[Z( t n T# ) / 2] Z( t n T# ) / 2 x(t) > # + +. H # "' * # + f#=2fm & N=f#Tc=2fmTc, "& " * x(t), "& > # * * fm, * " +>. D * * >@ x*(t), #>@ # $(nT#) * ±f#/2. 28 A % # "' +&$ " % #& , "+ &* # * ±f#/2 % + * % . J , & & >@ , % < <& $ q > q#/2 # "' > "> > # , "# $ % $ Zc Z k Z# d Z# / 2 . @ & >@ > $ # , #& > @ >@ , % $ #&* . ? , F1 . 2.6 " Fc1=FGF1. , # Fc1 * $ # &+. # Fc1, " fA # fA " . 2.8. fA f#/2 fc1 fA 0 f#/2 f# f1 3f#/2 2f# . 2.8. < ! D + + $ % % , + # " , # * # "' . E "> + ;?H1 $ # & DA, " – $'*. 2.4. +*(-((&( %%:9/ -%*()&'4 %%)( * # > "& , @ >@ # &$ . & > E & # "' , +"> # ' * & ' * " # +> +> . , , +> # $, >@ "+ %# &$ #& $ #& # + : 29 y(n)=;[x(n)]. (2.8) D &, "&* & & # , "& > &. = # # & & ' > *& *&, & & . \ *& # & & & ( E ' ) # > ' " ' : (2.9) y(n)=;[a1x1(n)+a2x2(n)]=a1;[x1(n)]+a2;[x2(n)] ( & "#* * %# "#* ) # , . . " % "#* : y(nzm)=;[x(nzm)], (2.10) # x(nzm), y(nzm) z # + , "# %& ( # & ) + x(n) y(n) m # # "' !#. 2.5. ()-' )()(%0 +%&/ &(6&'4 -%*()&'4 %%)( *((&&6 %) 0*)' 9:*6 :8)*9 & 4 %&( & *& & * & > # ' +& : M ª d k y( t ) º a ¦ k « dt k » ¬ ¼ k 0 y (t ) N ª d l x(t) º b ¦ l « dt l » ¬ ¼ l 0 f f f f ³ h(W ) x(t W ) dW ³ h(t W ) x(W ) dW , , (2.11) (2.12) # h(t) – + $ , >@ ' * * & #+- +: h(t)=;[~(t)]. # &$ $ # ' + (2.11) +: M ¦ a k y( n k ) k 0 N ¦ b i x (n i) (2.13) i 0 , # ' + (2.11), M " # (M N), ak, bi – & E ' &; x(n z i), y(n z k) z $ # * &$ # * & &, "# %& i k # # "' . 30 C" % &+ , , # "' * # ' + @+> " #: dxx(n)zx(nz1) – " + . #. # #: = a0 = 1 " (2.13) N y( n ) M ¦ b i x ( n i ) ¦ a k y( n k ) i 0 (2.14) k 1 * , ">@ " (2.14) (. . & >@ " & ), "& > # & ' % (;). A &$ # ' + @ $ # x(n) #&#@ $ (N M) $ # &$ # x(nzi), y(nzk), " <&$ ( "&$) &"+ ' E ' ak, bi z ( . 2.9). " &, , # + , @* * % . = " $ E ' akv0 ; "& +' (C;). C " + "* , . . " &$ # y(n) #&#@ $ y(nzk) ( . 2.9). x(n) bN … 0 1 n-N b2 b1 b0 n n-2 n-1 n y(n) a2 a1 a0 aM … 0 1 n-M n n-2 n-1 n . 2.9. < + ! " C" > (2.14) E ' ak=0 +'* * % (?C;): 31 N ¦ b i x (n i) y( n ) (2.15) i 0 J + " * " , &$ # * # N #&#@ $ " < * bi * @ $ # ( . 2.9, $ * ). (2.15) "& > % %@ + ( >@ " >@ % # " &). (2.2) # &$ $ (A). & % > @+> ": t n!#, m!#, d 1, , . . # "' * (2.12): f ¦ h (m) x ( n m) y( n ) m f f ¦ h ( n m) x ( m) (2.16) m f $ #@ (2.16) # ' h(m) ( h(n)) "& $+%* ,* * '. D # # * & '* $+% u0(m)=1, m=0 u0(m)=0 m>0: h(m)=;[u0(m)]. " " * & h(m)=0 m<0 ( % %+ "#*); E A & # > #: y( n ) f ¦ h ( m) x ( n m ) (2.17) m 0 " %& # # +&$ $ * % ( . 2.10). u0(m) h(m) ;: "* h(m) 1 m 0 1 2 ) m m 0 1 2 … 0 1 2 … ) ) N-1 . 2.10. > " % ( ) " % % ?@A- () @A- ( ) > +> $ > +' %', E $ "& > % H-%. = + * $ % # + * C;. * 32 C; "$>@ + $ & % , f ¦ h ( m) f . m 0 E+' ' %' H%, . . + * + * $ *. &% A (2.17) # ?; & #& , #& # * + * $ N: y( n ) N 1 N 1 m 0 m 0 ¦ h ( m) x ( n m) ¦ h ( n m) x ( m) (2.18) J ", BC % # +" + "' ?; , " % # C; # $ + * $ " E +< G & *. " (2.15) (2.18) #, " + * $ & % A (2.18) %# & E ' bl " ?C; (2.15): h(m)=bl|m=l >, " , E ' ?C;. = E , & +< " + # &$ , +, ?C; "> * % BC (2.18), C; – " @* (2.14). 2.6. ()-' )()(%0 +%&/ %0& -%*()&'4 %%)( & +(%&6 +%%) ( %))&6 %)) ? @ # &$ $'* $ * : f X a (s) ³ x(t) e st dt , (2.19) 0 # s = +jq z &* \ . = " > \ * jq ( ) " ; + , #>@ : X a ( j Z) X a (s) s jZ f ³ x(t) e jZ t dt . (2.20) 0 # &$ " \ " (2.19) @+> ": t nT#, , dt 1, . . # "' * (2.19) : 33 X(s) f ¦ x (n ) e s n T# . (2.21) n 0 D# &$ " (2.19) # ' +& ' # &$ * S- . J %*< > Z-$" ', , # < f ¦ x (n ) z n . Z{x (n )} X(z) (2.22) n 0 Z (2.22) " * S ( - s T V T jZT # \): z e # a j b e # e . J "+ > % " * S > Z- + ( . 2.11). D + E $ % * "> $ ' * q, - * # +> * E & e z e VT# e j[Z k Z# ]T# jZT# k=0; r1; r2 S- + # q#: . #. Z- + jZ jb 3Z#/2 Z#/2 -V1 Z1 0 e V Z#/2 Z1T# -1 -Z#/2 -Z#/2 +Z Z1 V T 1 # 1 a 0 –Z -3Z#/2 . 2.11. S- Z- % 34 !, * jF S- (=0) ' % + # # Z- ; %# * < * q# E # $ # E * % . D# " % * ±q#/2. \ S- + ( < 0) & + # # Z- , S- + ( > 0) % " #&. Z- " , & # * % , # $"? +% (2.2), #>@ : X(z) z e jZT# f ¦ x (n ) e X( j Z) jZ n T# . (2.23) n 0 A# +, Z- " , " \, % &+ – # # + * x(n) = 0 n < 0, +, x(n) v 0 n < 0; E #& n zf # +f. A * Z- " : *%: (2.24) Z{a1 x1 (n ) a 2 x 2 (n )} a1 X1 (z) a 2 X 2 (z) (Z- " & Z- " *); : Z{x (n m)} f ¦ x ( n m) z ( n m ) z m X(z) z m (2.25) n 0 (Z- " "# % m # x (n m) " # > Z- " X(z) "# % $(n) % + "# % z m . J G +" z m # " E "# % &$ $$ DA: , E "# % # x(n) x(n-m) –m , . . # # "' , "z -m 1 X(z) z X(z) z : Z{x (n 1)} X(z) z 1 c: y( n ) f ¦ x1 ( m ) x 2 ( n m ) . x1 (n ) * x 2 (n ) m 0 Y(z) f f ¦ ¦ x1 ( m ) x 2 ( n m ) z ( n m ) z m ) n 0m 0 35 X1 (z) X 2 (z) (2.26) (Z- " # $ # + * > Z- " * E $ # + *); $: 1 X (-) X (-) dy(n ) x1 (n ) x 2 (n ); Y(z) 2 ³ 1 2 S j - C " #- (2.27) (Z- " " # # $ # + * * Z- " E $ # + *, # - – , A – , $ & >@ * & #& + * ' ). ? * (2.27) Z- " " # # &$ # + * # "& % # &, >@ % &, # &$ : f ¦ x (n T# ) 2 n 0 1 X ( z) X (z 1 ) z 1 dz 2 S j ³ C T# S Z# / 2 ³ 2 X( j Z) dZ . (2.28) 0 D " % * * K . & * # " ; + # . D & Z ; + " #> & % : x(n) T# 2S x (n ) Z# / 2 ³ X( j Z) e jZ n T# dZ Z# / 2 1 X ( z) z n 1 dz 2 S j ³ C 1 2S S ³ X( j O) e jO n dO (2.29) . (2.30) S ¦ resi [X(z) z n 1 ] z i z pi U#+ "&: =q#=2f/f# – + , "& % ' * *; res – && #& + * n–1 ' F(z)=X(z)z &$ $, $ & &$ A, # . # - ' +&$ ' * X(z)=P(z)/Q(z) & > Q(z), "& & > zpi ' X(z). = >& &+ @& , - %& , & & . && >$ $ # @+> & % *: # > resi >F(z)@z z lim z o z pi (z z pi ) F(z) , (2.31) > pi # > +> r resi >F(z)@z z pi @ > @ d r 1 ( z z ) r F( z) . 1 lim z o z pi r 1 pi ( r 1)! dz 36 (2.32) = n=0 res 0 >X(z) / z @z 0 + 1 / z z n 1 (2.30) # # +&* & lim z o 0 >X(z)@ > zp0=0, &* # % - n 0 . A@ > ' +& '& &$ Z- " * # < # &$ ' *. P(z) # - ' + * ' , & >@* X(z) (P(z)=0), "& > . D % # * > * Z- +" * ' Z- " # &$ . 2.7. (%)'( +%(-)(8&%) -%*()&'4 %%)( = # & # & # + +"> $ DA, $ &+&$ . ­1, n 0 1. '* $+%: u 0 (n ) ® ¯0, n z 0 &* &* U0(jq)=1. Z- " U0(z)=1 # &$ % " , #+- + # &$. D $+% , # * &. 2. '* $+%, '* m : ­1, n m; u 0 ( n m) ® ¯0, n z m. A * "# % Z F (; +)- "& - jZ m T # Z{u 0 (n m)} z m ; F{u 0 (n m)} e . A @+> u0(n – m) > # # + + % &+ # # # * : f x (n ) ¦ x ( m) u 0 ( n m) . m f ­1, n t 0; 3. '* : u1 (n ) ® ( ' > ). ¯0, n 0, Z- " U1 (z) f ¦ zn n 0 1 1 z 1 - * . A # > zp=1 + z0=1 # ( . 2.12, ). 37 & % # # $ # #>@ " : 1 U1 ( j Z) U1 (z) z e jZT# 1 e jZT# e jZT# / 2 1 [e jZT# / 2 e jZT# / 2 ] j( ZT S ) / 2 # e 2sin(ZT# / 2) ( J* : e r jD & # +" 1 2 sin(ZT# / 2) U1 ( j Z) # cos(D) r j sin(D) " . 2.13,. D u1(n) $, , # * &. 4. &+%'* $+% * %: ­1, 0 d n d N 1; u N (n ) ® ¯0, n 0, n t N. Z- " U N (z) N 1 ¦ 1 z N 1 z 1 zn n 0 * * , # uN(n) Z- ": . E % "+ % # uN(n)=u1(n) – u1(n – N), N U N (z) U1 (z) z N U1 (z) 1 z 1 . 1 z A # > zp=1 , i=0, 1,…N–1, (1 z ) 0, z 0i n 1 e # * % ( . 2.12,). A + # & % N U N ( jZ) 1 e j Z N T# 1 e e N *: "@&$ j2Si / N e j Z N T# / 2 j Z T# e [e j Z T# / 2 j Z N T# / 2 [e j Z T# / 2 e e j Z N T# / 2 j Z T# / 2 ] ] jZ( N 1)T# / 2 sin(ZNT# / 2) sin(ZT# / 2) # U N ( j Z) sin(Z N T# / 2) sin(ZT# / 2) . 2.13,. D # * ' #>@ " $ &$ $: ­ N, Z 0; U N ( j Z) ® ¯0, Z 2 S i / N T# i Z# / N, 38 sinc " - i 1,2,...N - 1 jb jb Z02 Z01 Z0 -1 Zp 1 0 2S/N Z00 a 0 -1 a Zp 1 Z0(N-1) ) ) jb jb Zp Zp1 Z a Z0 -1 Z ZT# a Z01 1 0 ZT# -1 Z02 1 0 Zp2 ) !) . 2.12. " + ! ( ), " % % (), ( ) (!) 4 # " $ #&$ ' # $ # &$ $. - 5. $'* * " qc: x (n ) e jZc n T# Z- " , X(z) cos(Zc n T# ) j sin(Zc n T# ), n t 0 . @ , # * * : f ¦e jZc n T# zn n 0 A zp e jZc T# # + z0=0 qc ( 1 jZ T 1 e c # z 1 . # &* > . 2.12, ). A & & % X( j Z) X(z) z e jZT# 1 1 e jZc T# 39 e jZT# e j[( ZZc )T# S ] / 2 2sin( ( ZZc )T# ) 2 . |UN(jZ)| |U1(jZ)| 1/2 Z Z Z# Z#/2 0 -Z#/2 -Z#/2 ) |X(jZ)| 1/2 Z Z 1/2 Z#/2 Z#-Zc Z# Zc 0 Z#/2 ) |X(jZ)| -Z#/2 -Zc 0 Z#/N 2Z#/N -2Z#/N -Z#/N -Z#/2 -Zc 0 ) Zc Z#/2 Z# !) . 2.13. < " ! ( ), " % % (), ( ) (!) K #+ 1 X( j Z) ( ZZc )T# 2 sin( ) 2 # qc= q#/4 " . 2.13, . 6. @'* * " qc: e x (n ) cos(Zc n T# ) jZc nT# e 2 jZc nT# , nt0 Z- " X(z) 1/ 2 1 cos(Zc T# ) z 1 1/ 2 1 2cos(Zc T# ) z 1 z 2 r jZc T# - %&$ > z p1,2 e 1 e * z 01 0 jZc T# z 02 z 1 1 e z 1 cos(Zc T# ) ( A X( j Z) jZc T# . 2.12, ). X(z) z e jZT# , "&* #>, " . 2.13, # qc= q#/4. 40 ' 5,6 +"> # " $ #&$ " + &$ # &$ . ' 7. $'* $+% * # + NT#: x (n ) e jZ0 n T# Z- " cos(Z0 n T# ) j sin(Z0 n T# ), 0 d n d N - 1. f ¦e X(z) jZ0 n T# jZ NT 1 e 0 # z N jZ T 1 e 0 # z 1 zn n 0 ; +- " X ( j Z) 1 e j (@ @0 ) N T # 1 e j (@ @0 ) T # e j 0 2 (N 1 )T sin ( 0 N T ) 2 0 sin ( 2 T ) . A # + # + 4, @ q0 ( " " & q0). > 8. @'* $+% * # + NT#: x (n ) cos(Z0 n T# ), 0 d n d N - 1 . Z- " ; +- " &+ # & - * Z- " N 1 X(z) ¦ n 0 X( j Z) e # jZ 0 nT# jZ nT [e 0 # e ] n z 2 j Z Z0 ( N 1) T# 2 2 + e jZ0 n T# e jZ0 n T# ª 1 e jZ 0 NT# z N 1 e jZ0 NT# z N º « jZ T 1 jZ T 1 » ¬ 2[1 e 0 # z ] 2[1 e 0 # z ] ¼ Z Z0 NT# ) 2 Z Z0 sin( T# ) 2 sin( Z Z0 ( N 1) T# 2 e j 2 Z Z0 NT# ) 2 Z Z0 sin( T# ) 2 sin( . # % + @ @&$ # + + q0 – q0 . 2.8. (*(-)&/ :&9/ %))&/ 4*)(*%) -%*()&6 %%)(' = # ' * & # < " * \ &$ # $ # : H(s)=Y(s)/X(s). D # & >@ & # ' + (2.11) (2.12) # @ & % # # &$ ' * &$ # # - ' + * ' * * S 41 N H(s) B( s ) A (s ) ¦ b i s i ¦ a k s k i 0 M (2.33) k 0 # " \ + * $ & h(t) f H(s) ³ h(t ) e s t dt . (2.34) 0 (s)=0 " (s)=0 # * ' (2.34) > s0i > spi &, " & # ' # "& * +- > * : M H(s) C i 1 s s 0i , s s pi # C – >@ . = # * ' $ # $ H( j Z) (2.35) * & # Y ( jZ) X ( jZ) H(s) s jZ , (2.35) & % ; +- " + * $ H( j Z) H(s) s jZ f ³ h(t) e jZ t dt . 0 = # * ' * # * & "& < Z- " &$ # $ # & Y(z) . X(z) H(z) & & % , & Z- " " &$ * (2.13), (2.14) (2.15), > # # # - ' + * ' * ' + * ' *. "+ < " # * & " & < $ *, & >@ $ # > ' > ( # < # ' +&$ * # &$ ). " Z- " &$ &$ * A (2.16) f Y(z) f ¦ ¦ h ( m) x ( n m) z n n 0m 0 42 H(z)X(z) #, # ' # * & Z- " + * $ f H(z) ¦ h ( m) z m . m 0 + $ & , #+, Z- " > # * ' h (n ) > - 1 H ( z) z n 1dz . 2Sj C ³ H $ # * &, # < ; +- " &$ # $ # , " %# Z ; +- " (2.12) $ # # * ' & H(z) * " * z e H( j Z) H(z) z e jZT# jZT# : Y ( jZ) . X ( jZ) \ " +, ; +- "& # &$ , & $ # * & # > * ' + * * & =qT#=2f/f#, "& * % ' * *. U * & q * #$ (0..q#) (zq#/2..q#/2) > " ' & #$ (0..2 ) (z..). H $ # * & ' ' * & # & % : H( j O) H(z) z e jO H( j O) Y ( jO ) , X ( jO ) f ¦ h (n ) e jOn . n 0 U# " $ " " & # "' q#, >@ * + $ # # "' !#=1. = " @ # " % # * $ # < &$ " * &$ # $ # &$ $ & < % : H( j Z) Y(n ) X(n ) X(n) e jZ n T# . K #+ * $ # * & #> * * * 43 "& > # - * (HF) " * (;HF) $ &. J % + * * * * $ , " &$ * ' * &, – *. " # * $ # * & " ; + + * $ # % *# q# 2 ( . 2.14). D # @ ; +- " >&$ # &$ # + *, # &$ . K E G # +> * E & e jZn T# H( j Z) e j(Z k Z # )n T# f ¦ h (n ) e e j(O 2Sk )n j(Z k Z # )n T# H[ j (Z k Z# )] n 0 H( j O) H[ j (O 2 S k )] , # k= 0, ±1, ±2,… . |H(jZ)| 1 0.5 Z Z0 Z#/2 Z#-Z0 Z# Z#+Z0 . 2.14. # CA ! ! % = " " ' &$ + & # # $ * $ * 0 # ±q#/2. ! ' & + $ $ $ #, # &$ + , + # +&$ % +&$ , # # " 0..q#/2. U + * $ ' + & # "' , %# * * # "' + * $ + , @ # * % * # +> &$ * $ + . " & # "' q# q'# " < * $ 44 H(j q) = q'#/ q# ", ' + % > $ ' + (E # " * " ; +). H * $ H(j q')=H(j q) > & " &$ ' +&$ ' + q'i, "& $ $ #& " qi ( , q0 . 2.14) < q'i= qi. A# + , " & # "' $ ' + " > & # "' . ! " , $%, % ' '* ,* $ * ', '* F/2, ' + > & $ ' &$ + # &$ &$. 2.9. (*(-)&'( :&9 *(*%&'4 9:*'4 :8)*. %( :A(%6 *(A(%) C &* + (C;) " , &&* " & (2.14). & Z- " &$ &$ * (2.14), & * * "# % Z- " (2.24), (2.25): Y(z) N ¦ bi z i i 0 M X(z) ¦ a k z k Y(z) . k 1 = $ # < > Y(z)/X(z), @ & % # # * ' + : N H(z) Y(z) X(z) 1 B( z ) 1 A(z ) ¦ b i z i 0 M i 1 ¦ a k z k . (2.36) k 1 D # < # $ + % " * * z–1. % –1 # # $ # &$ ' *: H?(z)=B(z ) – * + , . . + HP(z)=1/A(z–1) – * H(z)=HH(z)HP(z). & % # * ' (2.36) + –1 # * z , , &< " , % "# % # # "' , # , % + + + >@ # * ' ', #>@ . 45 ? , # * ' H(z)=b0/(1+a1z–1+a2z–2) " y(n)=b0x(n)Ga1y(nG1)Ga2y(nG2). D # , + % +& , " (2.14) # * ' (2.36), % # " + & % # # * ' & " " >, , &<, Z- " >. & % (2.36) # * ' , " (2.14), # , # N B(z–1) &< # M A(z–1), #>@ # ' + K, . . & + N P M. N > M # ' (2.36), " > (2.14), # "+ # # $ # &$ ' *, " &$ ( ) # * ' + (N z M)- #, ( # ) # * ' + , # * # +< K. " ' &$ + # > ' > (2.36) = & %> % # < B(z) A(z) % +& * Z. E # + "+ (2.36) % + zM N H(z) B( z ) A(z) zM N ¦ b i z i 0 M N i 1 ¦ a k z M k . (2.37) k 1 K % + zM–N N < M " (M z N) &$ * ( N < M (N z M) &$ * "), &, , > * " (. . * > ). D# # ' + % &+ + " Z- " " , # < # $ # "# " % +& * Z: N H(z) ¦ b i z N i ¦ a k z M k i 0 M . (2.38) k 0 # & N u M "+&. H & # + E , # + "+ M (2.38) z 46 H(z) b 0 z N M b1 z N M 1 ... b N M z 0 b N M 1 z 1 ... b N z M 1 a 1 z 1 ... a M z M . (2.39) & % > (2.39) #>@ " : y(n ) b 0 x (n ( N M )) b1 x (n ( N M 1)) ... b N M x (n ) b N M 1 x (n 1) ... b N x (n M ) >a1 y(n 1) a 2 y(n 2) ... a M y(n M )@ . = E > @ * &$ # y(n) & + @ x(n) #&#@ x(nzi) $ # , (NzM) #@ , . . ' x(n+NzM), x(n+NzMz1), … x(n+1), " % . ! + # * " , + NPM, ' , "# * (2.38), &< + ", # " + * + # * & ( &$ # * # % %+ $ # *). & % (2.38) N < M, >@ " # + #: y(n ) b 0 x (n (M N)) b1 x (n (M N 1)) ... b M N x (n ) b M N 1 x (n 1) ... b N x (n M ) >a1 y(n 1) a 2 y(n 2) ... a M y(n M )@ . U#+ & $ # x(n), x(n z 1), … x(n z M+N+1) +"> & y(n), " ""#& > + (M z N) . ! " , # & ' + (2.37), (2.38) &+ @ # & < # $ B(z) A(z) # # N=M: N H(z) ¦ b i z N i ¦ a k z N k i 0 N B( z ) A(z) (2.40) k 0 = # & ' (2.37), (2.38) N < M # (2.40) > E ' bi N < i uM. #&$ &< $ + * & # * ' E ' & b0 a0 ( i=k=0) > < >@> + " @ &+ %& & # '. = # * ' (2.40) $ # >, >@ > + " " &$ + . 47 E+ # * ' > (2.40), . . " * Z, @>@ + B(z): B(z)=0 z=z0i. &? > " # * ' : A(z)= 0 z=zPi. & + & @ & E ' ak, bi > @ & ( &) / %& >. ? > &+ & & . # # * ' N +< # " K, * + (M z N) *, &$ >, . . "@&$ # * Z- . U >& # * ' , % # + "& * +- > * , +" " % " E & % : N H(z) i 1 N ( z z 0i ) ( z z pi ) (1 z 0i z 1 ) (1 z i 1 1 pi z ) . (2.41) & % (2.41) % + >@ * % ' & b0 a0 # * ' + C=b0/a0, E & # '. & % # # * ' (2.41) +" "' &$ + . , @ $ & % * +&$ $ &$ + $ # & ' . # ' "# # & E &$ # * (2.42) H(z) r D( z ) r ( z z pr ) ( z z p ( r 1) )...( z z pM ) Bu ¦ (z z u 1 pr ) u M ¦ i r 1 Bi B0 , ( z z pi ) $', $? & % # + * $ E # (2.42) M h (n ) ¦ Bi z npi i , n>0; h(0)=B0. (2.43) i 1 $? r & % # + * = $ E # > E ' & h r (n ) Br (n 1) (n 2) ... (n (r 1)) z npr r , hr(0)=0. ( r 1)! 48 (2.44) ! " , & % (2.43), (2.44) # E &$ # * & & > " > # # + +> $ + # * ' , "# * (2.42). 2.10. %))&'( 4*)(*%) *(*%&'4 :8)*. %( %)6%) H > $ C; % + > " & % * # * ' H(z) – # + (2.40), (2.36), +- > (2.41) " % jZT #. E & # (2.42), +" " z e = # * ' (2.36) $ C; # N ¦ b i e H( j Z) i 0 M - jZT# i 1 ¦ a k e jZT# k . (2.45) k 1 = # * ' C; +- > * (2.41) & % # HF, "& >@ & : H( j Z) M e j Z T# z e j Z 0i T# 0i i 1e j Z T# z pi e M R ( jZ) R 0pii ( jZ) . i 1 j Z pi T# (2.46) H + "+ (2.46) # > & R0i, Rpi # * % * # * qT# # * z0i > zpi C;. = $ # #> (2.46) # & % # HF ;HF C; # H( j Z) M R ( jZ) 0i R i 1 M(Z) pi ( j Z) , (2.47) M ¦ \ 0i \ pi , (2.48) i 1 R0i(j q), Rpi(j q), 0i, pi – &, # |R0i|, |Rpi| z # & "& +> ' . C % > * Z- ( . 2.15) " # & , # >@ $ $ * # * % , >@* "# * qT# (49 , * + HF ;HF # " (0..q#/2). . 2.15), @+> (2.47), (2.48) % &+ # >&$ " * & jb Rp1 Zp1 Z02 -1 A(Z1) R01 R02 Z01 1 0 a Rp2 Zp2 . 2.15. " + ,D ! * * + # # * ' # * $ &$ * C; " * > . (2.47) . 2.15 q=qpi + # > Rpi.min > +& " HF E ' # C;, q=q0i + # * R0i.min – +& " E ' # + . ! " , $ +* $ $+ $$+ * $ + , $ $? – $+ . . 2.1 #& " HF C; 2- #, & & * > ( . 2.15) # # &$ ' &$ . D %& # > > " z01=1, z02=z1, zp1=0.4+j0.6, zp2=0.4–j0.6. = HF * + % - >@ + . ! ' 2.1 * CA ,D 2-! , " + =qT# () 0 0 1.5 p1 4.82 /2 2.24 0 C # %& " > * Z- " $ " , % " + C; "# * * $ *, " + #. 50 A @+> *, "@&$ # * % , E > & "$ HF. ?, &<>@ #> # ', > C; + - " , +"& #&$ " &$ . = * > * # % * C;. * +*. = > * C;, &<>@ #> # ' (|zpi|<1), $ # # # . * + > $ # * S- , ( . 2.11) Z- " % + # # . 2.11. !*' *(A9 *(*%&'4 :8)* C & + & @ > " & . D & $ "' > x ; x ; x #; x +. C" & >> & +& ' % , "# % . ? &$ $$ * "' ; > E& ' * "# % (Zz1), % (F) & (). C; # &< ( > # K @ " (2.14)) ">, , # + + # " &$ " + #, # * ( # + *) + * $ "' . " & # & " + C; & > * * "' C;. H # +&$ +&$ " + L # + M $ # L=K/2, – L=(M+1)/2, E # " + " # (" # @ & > ). 51 ++. = # ' # " C; ( . 2.16) # " # # &$ ' * " + : L H(z) C 0 H J (z) . (2.49) J 1 1 b1J z 1 b 2 J z 2 H J (z) 1 a 1J z 1 a 2J z 2 z 2 b1J z b 2 J 2 z a 1J z a 2 J ( z z 01J ) ( z z 02 J ) , ( z z p1J ) ( z z p 2 J ) # HJ(z) z # ' J- # " " E ' b0J= 1; A0 – >@ * < >@ * % +. x(n) H1(z) H2(z) HL(z) … y(n) . 2.16. " " ,D " # E ' & b2J a2J (2.49) & >. $ #& J- " xJ(n) * &$ # * yJ–1(n) #&#@ (J z 1)- " : xJ(n)=yJ–1(n). E ' & " + $ >, "& < : z 01,2J b1J b1J r b12J 4 b 2 J , z p1,2J 2 (z 01J z 02J ) , a1J b 2J z 01J z 02J , a 2J E (z p1J z p 2J ) , z p1J z p 2J . # a1 z p1 , b1 , " * > " ? a 1J r a 12J 4 a 2 J , 2 z 01 . z01=1, z02=z1, zp1=0.4+j0.6, zp2=0.4zj0.6, %& . 2.15, > #>@ "' " 2- #: b0=1, b1=0, b2=z1, a1=z 0.8, a2= 0.7211. &% ++. = # ' + " C; ( . 2.17) # * # &$ ' * " + HJ(z), % & A: 52 H(z) C L b 0 J b1J z 1 ¦ H J ( z) , H J ( z) 1 a 1J z 1 a 2 J z 2 J 1 (2.50) " # E ' & b1J a2J (2.50) & >. &$ # * + &$ #&$ " + : y( n ) C x (n ) L ¦ y J (n ) . J 1 x(n) y(n) H1(z) … H2(z) HL(z) C . 2.17. # % " " ,D = # ' , >@ + * C;, " % & # # * ' + , # * + * +- > * . = E # # * ' " + + * & HJ (2.50) # ' +< # " # * ' . + E ' & a1J a2J (2.50) #> > @+> $ % < *, # # " C;. E ' A & % # # * ' " > + < M C z z 0pii . i 1 E ' & A, b0J, b1J % & " + % " E ' & # * & C;, & "& > , + * " +>. & ($ 1) "' # " ( . 2.18) & " & # 53 y( n ) b 0 x (n ) b1 x (n 1) b 2 x (n 2) [a1 y(n 1) a 2 y(n 2)] (2.51) x(n) y(n) b0 z-1 z-1 b1 x(n-1) -a1 z-1 y(n-1) z-1 b2 x(n-2) -a2 y(n-2) . 2.18. " " ! ( 1) A Z–1 $ " E "# % " # # # "' !#. > " (2.51) E % " &$ * # w (n ) b 0 x (n ) b1 x (n 1) b 2 x (n 2), y(n ) w (n ) a1 y(n 1) a 2 y(n 2)], & "#+ & > > > " * "' . * "' " $ # & & E , 5 $ # 5 % * ( b0 = 1 % * 4). = * "' % & + 5 ( 4) ' * % 4 ' % 1 . ($ 2) "' " 2- # # # * ' #>@ #: H(z) B( z ) A(z) 1 B(z ) A(z) W (z) Y(z) X(z) W (z) H P (z) H H (z) , (2.52) # W(z) – + ; 1 H P (z) – # ' * " ; 1 2 1 a 1 z a 2 z 54 H H (z) b 0 b1 z 1 b 2 z 2 – # ' * " . A " ( . 2.19) 2 " +< E Z–1. w(n) x(n) b0 y(n) z-1 w(n-1) -a1 b1 z-1 -a2 w(n-2) b2 . 2.19. " " ! ! ( 2) ! " & # " & : y(n ) b 0 w (n ) b1 w (n 1) b 2 w (n 2), w (n ) x (n ) a1 w (n 1) a 2 w (n 2)], (2.53) " &$ " > *, – * " * . J # & # * &< " &$ * " * , + > > " . D # , ($ 2) "' " + &+ @& C;, # &$ &< 2. D# # + & "' > #& @ " #+ & +<* + > * " # . = E +" * # "' ' C;, " E + +<* $ # # +>, . . +> " . ? . 2.20, 2.21 #& -$& (A) * "' C; # + # # &$ " + . = & ; > ' > . 55 ' * J @ # + @ # & " + + $ " * ' *. " ' > " & " (2.53) & ( # ) + * W2(J)=W1(J), W1(J)=W, & #< > #>@ < ' A. ? D &$ E ' B0(J), B1(J), B2(J), A1(J), A2(J), W1(J), W2(J) # L, B0(J), B1(J), B2(J), A1(J), A2(J) J=1 # X=x(n) W=M(J)X–A1(J)W1(J)–A2(J)W2(J); Y=B0(J)W+B1(J)W1(J)+B2(J)W2(J); W2(J)=W1(J); W1(J)=W; X=Y J=J+1 J>L 0 1 & # y(n)=Y . 2.20. < - ! ! D ( ) ? A . 2.20, 2.21 +" & & & ( # &): B0(J), B1(J), B2(J), A1(J), A2(J) – # E ' 56 " + b0J, b1J, b2J, a1J, a2J X, Y, W, W1(J), W2(J) – # ' M(J) @x(n), y(n), wJ(n z 1), wJ(n z 2). C @+> E < $ #&$ " + . ? D &$ E B0(J), B1(J), A1(J), A2(J), C ' # L, B0(J), B1(J), A1(J), A2(J), C # X=x(n) J=1 Y=CX W=M(J)X+A1(J)W1(J)+A2(J)W2(J); Y=Y+B0(J)W+B1(J)W1(J); W2(J)=W1(J); W1(J)=W; J=J+1 J>L 0 1 & # y(n)=Y . 2.21. < - ! ! ,D ( % ) = $ # * "' " + " ' (2.51) " # X=M(J)X; 57 Y=B0(J)X+B1(J)X1(J)+B2(J)X2(J)zA1(J)Y1(J)zA2(J)Y2(J); X2(J)=X1(J); X1(J)=X; Y2(J)=Y1(J); X=Y. # X1(J), X2(J), Y1(J), Y2(J) > "#+ & xJ(nz1), xJ(nz2), yJ(nz1), yJ(nz2). " # $ C; , " "' , # +% "@ ++ # " ( . 2.22). = #+&$ $ #& "> &$ # , & " , "& . y(n) x(n) z-1 b1 -a1 z-1 b2 . 2.22. E" % -a2 " " ! " ' @ * & " > #>@ &: X=M(J)X; Y=X+W1(J); W1(J)=B1(J)XzA1(J)Y+W2(J); W2(J)=B2(J)zA2(J). &$ +&$ * & + &, #>@ # % + * , # %& &+ & $ . J & W1(J), W2(J) # * & " + X1(J), X2(J), Y1(J), Y2(J) – # *. " & % ' 4' ++' C;, +"& $', ,. 2.12. *// :* *(A9 &(*(*%&'4 :8)* ? + , & A, $ . 2.23. * "' ?C; $ # & (N z 1) E , N % * N $ # . 58 x(n) z-1 h(0) z-1 z-1 h(1) z-1 … h(2) h(3) h(N-1) y(n) . 2.23. " " " ! % E$ ? D &$ H(k), X(I) E ' # N, H(k) I=0 # S=x(n) X(I)=S k=0, Y=0 Y=Y+H(k)X(I) k=k+1 0 k=N 0 I=I+1 I=N 1 I=0 1 & # y(n)=Y . 2.24. < - ! ! G,D ! E$ 59 -$ * "' ?C; # . 2.24. # «< &$» &$ Yy(n), H(k)h(m), X(I)x(nzm). ; + " " > ' > Y=Y+H(k)X(I). = & X(I) # %& &+ & $ . ! &* G & * * "' (N z 1) ' * % N ' * % %#&* &$ # . 2.13. (*(-)&/ :&9/ %))&/ 4*)(*%) &(*(*%&0 :8)* = # ' ?(z) $ ?(jq) ?C; #> Z- " " ; + + * $ : N 1 H(z) ¦ h (n ) z n , H( j Z) N 1 ¦ h (n ) e jZn T# (2.54) n 0 n 0 = +< * " " HF & + & > # # & +& $ , >@ +< G & *. % * & > * + " % + * * ;HF ""#& (U). * ;HF + * $ + : h(n)=h(Nz1zn). D >@ # > ?C; ""#& t"=z[(Nz1)/2]T#. > ;HF: M(q)=zqT#(Nz1)/2 2.14. (*(*%&'( :8)*' % &(6&6 :A%))&6 4*)(*%)6 = # > ' > > $ ?C; (2.54) + * $ *, >@* > h(n)=h(Nz1zn) ( . 2.25), N % # H(z) ­ ® °̄ ( N 1 ) ° z 2 h ( N 1) 2 ­ H( jZ) e jZT# ( N 1) ° 2 N 3 2 ½ ( n N21 ) º ° ª ( n N21 ) ¦ h (n ) «z z »¼ ¾ ¬ °¿ n 0 N 1 ®h ( 2 ) ° ¯ N 3 2 ¦ n 0 60 > (2.55) ½ @ ° 2 h (n ) cos ZT# (n N 1) ¾ 2 ° ¿ (2.56) h(n) n (N-1)/2 0 1 2 … N-1 … . 2.25. # " % G,D = N h((Nz1)/2) $ & % $ , $ * # " (N/2)z1. " & % # HF #, ;HF + M(q)=–qT#(Nz1)/2 z *, ""#& t"=z[(Nz1)/2]T# – " &. = # * ' (2.55) % + ?C;, >@> # +< ' * % ( . 2.26). x(n) x(n-1) z-1 z-1 h(0) z-1 x(n-2) … z-1 z-1 z-1 … z-1 z-1 h(1) x(n-(N-1)/2) h((N-3)/2) h((N-1)/2) y(n) . 2.26. " " G,D " % ! " y(n ) h ( N 1) x (n N 1) 2 2 N 3 2 ¦ h (m) >x (n m) x (n ( N 1) m)@ m 0 > % + # N. A# +, N |H(j q#/2)|=0 M(q#/2)=0. 61 ?C;, C;, % @ > #+ ( . 2.27) < &. x(n) @- … h(N-1) h(N-2) z-1 h(N-3) z-1 w(N-1) … h(1) z-1 h(0) y(n) z-1 w(N-2) w(1) w(0) . 2.27. E" % " " G,D E$ D @ * @ " * ' *: Y=H(0)X+W(0); W(k)=H(k)X+W(k+1), k=0, 1…Nz1. = & W(k), k= 0, 1…N, # %& &+ & $ . 2.15. *(*' *(D(&/ A- + )(* 9:*'4 %0& > 1. & ' * & y(n ) x (n ) b1 x (n 1) , b1=2. D # + ' > & +&* # ­1, n 0, 1; x (n ) ® ¯0, n ! 1. U4 = &$ +&$ $ x(–1)=0 & #> # &. y(0) x (0) b1 x (1) 1 2 0 1, y(1) x (1) b1 x (0) 1 2 1 3 , y ( 2) x (2) b1 x (1) # , 0 2 1 2 , y(3) x (3) b1 x (2) &$ #& & y(n ) > 2. & ' 0 * & y(n ) 0 20 0. nt3 & >. x (n 2) . D # + ' > & # x (n ) a n , a 1 . D # + Z- " $ # &$ # . U4 1. = &$ +&$ $ x (1) 0 , x (2) 0 & # > # . 62 , n 0, 1; ­0 ! # &$ # * # y(n ) ® n 2 , n ! 1. ¯a 2. Z- " $ # * * (& >@* a 1 ). f f X(z) ¦ x (k ) z k f k 0 k 0 3. Z- " &$ # k ¦ a z 1 ¦ a k zk 1 1 a z 1 k 0 - #, +" * Z^x (n m)` z m Z^x (n )`: Y(z) z 2 X(z) z2 1 . 1 (a z 1 ) > 3. * Z- " X(z) 1 . 1 5 z 6 z 2 1 D # + # # + x(n). U4 1. D Z- " % &+ & X(z) z n 1 : ' ¦ Re s>X(z) z n 1 @ ¦ x (n ) > zoz n 1 lim (z z k ) X(z) z x (n ) 1 1 a z 1 > z oa N X(z) # X(z) Ek ¦ 1 D k 1 2. = k z " % 1 1 5z 6z 2 1 @ > @ z oa n lim z an . Z- " , , x (n ) 1 N ¦ Ek - Dk n . k 1 # * + & # > z=a. n 1 z lim (z a ) z a z & * * Z- " # @ , k zk – > ' X(z). ' # X(z) & # ' X(z) 1 , 1 5 z 6 z 2 1 > (zp1=2, zp2=3) &. 3 3 , x (n ) 1 1 2z 1 3 z 1 63 (3) (2) n (3) (3) n . > 4. " & $ # * &$ # * ' * &: x (n ) ^1, 0, 1, 2`, y(n ) ^0, 1, 2, 1`. D # + Z- " $ # &$ # , % # > ' > &. U4 f 1. Z- " # & % X(z) ¦ x (k ) z k . k 0 D# # " & + & 4 # + * ( +& & >). A# + , X(z) 1 z 0 0 z 1 1 z 2 2 z 3 , Y(z) 1 z 1 2 z 2 1 z 3 . 2. = # ' & # < H(z) Y(z) X(z) 1z 1 2z 2 1z 3 11z 2 2z 3 1 2 z 1 1 2z2 1z 3 . 11z 2 z > 5. & ' * & y(n ) a y(n 1) x (n ) . D # + # > ' > &. U4 & +> # y(n ) o Y(z) , x (n ) o X(z) , & * y(n 1) o z 1 Y(z) . = Y(z) a z 1 Y(z) X(z) . # # & & > @ Y(z) 1 a z 1 X(z) = # ' & # < H(z) Y(z) X(z) 1 . 1 a z 1 > 6. & ' * & y(n ) a y(n 1) b x (n ) . D # + +> $ &. U4 + $ & # ' > ­1, n 0 & # &* + u 0 (n ) ® . ! 0 , n 0 ¯ 64 = &$ > # h ( 0) h (1) h ( 2) … +&$ $ y(1) 0 & # &. y(0) a y(1) b x (0) a 0 b 1 b , y(1) a y(0) b x (1) a b b 0 a b , y(2) a y(1) b x (2) a a b b 0 a 2 b , h (n ) a n b . > 7. = # ' ' * & H(z) b 0 b1 z 1 b 2 z 2 b 3 z 3 . D # + +> $ &, % + * $ (F F). U4 + $ & # ' > ­1, n 0 & # &* + x (n ) u 0 (n ) ® . ! 0 , n 0 ¯ & # > # &, &* # y(n ) b 0 x (n ) b1 x (n 1) b 2 x (n 2) b 3 x (n 3) . h (0) y(0) b 0 x (0) b 0 , h (1) y(1) b 0 x (1) b1 x (0) b 0 0 b1 1 b1 , h (2) y(2) b 0 x (2) b1 x (1) b 2 x (0) b 0 0 b1 0 b 2 1 b 2 , h (3) y(3) b 0 x (3) b1 x (2) b 2 x (1) b 3 x (0) b 3 , h (4) y(4) 0 . # , n>3 & + * $ & >, # + , + F- . " # # %, & + * $ + & E ' . > 8. 5 * & H(z) 1 z 1 . = # ' ' 1 z D # + + * $ & (F F). U4 +" " % # * ' & H(z) 1 z 5 1 z 1 1 z 5 . 1 z 1 1 z 1 65 D Z- " 1 1 z 1 ' # - ­1, n t 0 u1 (n ) ® . ¯0, n 0 + $ # Z- " # * ' &. A * "# % h (n ) u1 (n ) u1 (n 5) . & # > # & h (0) u1 (0) u1 (5) 1, h (1) u1 (1) u1 (4) 1 , h (2) u1 (2) u1 (3) 1 , h (3) u1 (3) u1 (2) 1, h (4) u1 (4) u1 (1) 1 , h (5) u1 (5) u1 (0) 1 1 0 . & + * $ # + , + F- . > 9. = # ' ' n>4 & >, - * & H(z) 1 . 1 a z 1 D # + + * $ & (F F). U4 + $ # Z- " # * ' &. # + $ h (n ) a n . = + "+ ' > + nof (|a|<1), + F- . > 10. U# # ' ' 1. H(z) 1 z 1 ; 2. H ( z) 1 0.2 z 1 * &. 1 z 3 ; 3. H(z) 1 0.6 z 1 0.25z 2 1 . 11.2z 1 D # + * + &. U4 ' &$ % &+ +" #>@ * * +*: > # * ' # %& $ * Z- # # ? & + & # * # # * z p 1. ;' * # > z p . 66 # + z p 1. &, + $ > $ f. 0.2 . = + z p 0.2 1 2. ;' z p1,2 # > z p1,2 0.5 1 * 0.3 r j 0.4 . = + . # > z p * . 3. ;' 1.2 . = + z p 1. 2 ! 1 2.16. &)*8&'( +*%' 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. K ' &$ # + *, + $ &, * . C" & , "' ' + *< $ E . A "+ %# & # " , % . Z- " # ' &$ . D# Z- " . D Z- " . = Z- " ' &$ . A & $& ' &$ + . " % "' &$ + # * * ? # + $ ' + , ' & + & "& > + F F? @ & ' & + ? * & > E ' & &$ ' &$ + ? # Z- " # &$ # + *, & & * > + ' &$ + ? # # ' + " >? * # +- > # * ' + " ? %> > ' + * Z- > ' > + % + * > ? * * "' &$ " + #? + A? * G & +&$ ' * & + $ # ? 67 3. E = # "# +" & #>@ : [1]. 3.1. ))%)(%( 4*)(*%) +0*(D&%) &)&/ i N/2 xmax x (n) e(n) 'x k 4 3 2 1 0 1 2 3 4 -N/2 nT# 1T# 2T# 3T# xmin . 3.1. ! " + = " < + # " , "& < +> . K % # # E * < # " + " # , * N, " ',. C $ < * " # (,) ( . 3.2) ',, " ,, >@ # # * , ,. K % # < ' %# " * * ' M ('x k ) x k 0.5 ³ (x x k ) p( x ) dx . x k 0.5 68 (3.1) p(x) 'xk x xk-0.5 xk xk+0.5 xm . 3.2. + !H " ! ! () x k 0.5 ³ D('x k ) ( x x k ) 2 p( x ) dx . (3.2) x k 0.5 = +< * % # % +, " * # * (xk) – " > ,=,. ! # M ('x k ) p( x k ) x k 0.5 ³ ( x x k ) dx x k 0.5 > 1 p( x ) ( x x k ) 2 ( x k 0.5 x k ) 2 k k 0 . 5 2 @ , # , V('xk)=0. < D('x k ) p( x k ) x k 0.5 ³ ( x x k ) 2 dx x k 0.5 > @ 1 p( x ) ( x x k ) 3 ( x k 0 .5 x k ) 3 . k k 0 . 5 3 = , ,k # D('x k ) 1 p( x ) 'x 3 . k k 12 + , " # (,k) 'xk $ %# * # 'xk, D('x k ) 1 >p( x ) 'x @ 'x 2 . k k k 12 69 < " * # " " * 0 ,m 1 12 D('x k ) N ¦ p(x k ) 'x 3k . k 1 & 'xk ='xi = const (izk) 'x 2k 12 D('x k ) N = + ¦ p( x k ) 'x k N ¦ p ( x k ) 'x k . k 1 'x 2k . 12 1, D('x k ) k 1 ! " , & % # # < # +< * # > " (,). A # # < V('x k ) D('x k ) 'x k 12 xm N 12 . # # < "# , % # + $ # + * : N xm xm 'x k V( 'x k ) 12 . A# + , $ # +< < # & >@ + * . 3.2. 0*(D&%)8 *&(*&0 &)&/ +* *A&'4 A&4 (( *%+*(-((&/ " & , % + % " * " , # & " *, & &$ <& # ' &$ ' * . = E # " , # # " %*< $ &$ " * n x 'x k n x r 1 'x k . "+ "-" " $ " + " ## < + . 70 x x x x D # " < # & $ " # < (',): #$ ±'xk; ; #$ ±0.5'xk; + " A . p('x) p('x) 'x –'xk 0 'x +'xk +'xk 0 ) ) p('x) p('x) 'x –0.5'xk 0 'T +0.5'xk –'Tk–T0 ) +'Tk+T0 0 !) . 3.3. + !H # & $ " # < ('$) U'* '* # #$ ±'xk ( . 3.3,) &$ ' &$ " +&$ $ $, . K + " < 'x max = r 'x k . # < + Jk r 71 'x k xm . A # " < M ('x ) 0 . A # # < "+ " n x 'x k , . . # ( . 3.3,) V('x ) 2 'x k ³ < > < > - p('x ) 'x 2 d'x 0 'x k . 3 U'* '* # ( . 3.3,) ' &$ " +&$ $ '?@ +4, &$ #$ # @ # * &, + &$ " * # " n x 'x k # nx 1 'xk # "+ " n x 'x k . E + < + 'x max = r 'x k . # < + Jk r 'x k xm . A # " < M ('x ) 'x k . 2 A # # < "+ " n x 'x k , . . # ( . 3.3,) V('x ) 'x k ³ < > < > - p('x ) 'x 2 d'x 0 'x k . 3 U'* '* # ('x) #$ ±0.5'xk ( . 3.3, ) ' &$ $ '?@ +4 # #$ # $ $+?@+? + $* $$, * 0.5'xk. + &$ " * , " # " (n x 0.5) 'x k # 72 n x 0.5 'x k # "+ " n x 'x k . J % " # $ + +% " . E + < + 'x max = r 'x k . 2 # < + Jk r 'x k 2 x m . A # " < M ('x ) 0 . A # # < "+ " n x 'x k , . . # ( . 3.2, ) V('x ) 2 0.5'x k ³ < > < > - p('x ) 'x 2 d'x 0 'x k . 12 ;+%'* '* # ( . 3.2,) $ +?@ $+% # ;0. ! +&* " # " # $ &$ &$ " # – T0 0 0 +T0. E + < + 'T max rT0 . = # < + Jk r T0 Tm . A # " < M ('T) 0 . A # # < "+ " n x T0 , . . # ( . 3.3,) V('T ) 2 T0 ³ p('T) 'T 2 d'T T0 ³ 0 73 < > < > 2 0 1 (1 'T ) 'T 2 d'T T0 T0 T0 6 - . 3.3. 0*(D&%)8 ) &)&/ +* A(*(& %*(-&(-*)&0 %*(-&(0 A&(&6 (&' # " # > & " " * &, # # # & " " #&* % . J & #, # $ # ' > & " &, # # # & " "#&* % . ? , < $& E # & " #+&$ &$ , # # & " " #&* % . E * "# * < " &$ " * " * & #+ ' " . U# # * " > " # # " & " % # * ' &$ , " >@ $, , #* >@ " # $ , ">@ $ " * *. $ $ " # "+ " &$ " *. D # #* >@ # " * " &$ " $ $ # " # + @+> ' &$ . D # * "# * < " # # # " * "+ " &$ " *. A , ' * &# ' ' ' > # # " . = # +$+? $$? " +& & . & < # # # " *# # # & " ,(t) % ;=ti+1 – ti (%# &# # $ # &$ / " *) $ x x . ; – # + + – " "& ,(t) # . A # # " & ,(t) # $ # "+ " &$ " *: T# / 2 x 1 T# 2 ³ >N 'x k @ dt N 'x k , T# / 2 ;. # N – ' A # # " ,(t) # : 74 T# / 2 / x 1 T# 2 'x º ª ³ «¬ N 'x k t T#k »¼ dt T / 2 >N 'x k @ 2 'x 2k . 12 # = < + # # # " # ;: / x x / x J " N 'x k >N 'x k @ 2 'x 2 k 12 N 'x k 1 . 24 N 2 | " # # &$ H < N " * , ,(t) + $ +< $ #$ " ,, N| 1 . 24 J " "# J " 0.1% , N=7. ?*# $ # < , ,(t) 4 $ 0 , $ + +%. / ! # # # " x T / x 2 ª 'x k º ³ «¬ N T »¼ dt 0 '. 1 T # ! – # + + N 'x k 3 , A # # " x $ x 1 T N ¦ (k ) T N ³ T k 1 ( k 1) N ª ( k 1) T ( k ) T N N « 2 « ¬ 2 º 2 ' N x ª º k » dt » «¬ T »¼ ¼ ! # < + " ,(t) J " / x x / x N 'x k 3 (1 1 2 ) . 8 N # # # &$ $ N'x k N'x k (1 1 2 ) 3 3 8N N'x k 3 12. 8 N H < N " # # &$ " * , x(t) * $ 0 x N 1 . 8 J " 75 "# J " 0.1% , N=12. x(t) " $ + +', < + " # # &$ " * J " / x x / x 0.4 . N3 = J " 1% $ # , & N=10, J " 0.1% $ # , & N=50. A# + , &$ J " * " # # &$ " * & # "&$ " " ,(t) . D# "# " +& # " " , $ # +, < + J " +< , + & . = E $ # + * # "# " < %+ " # " , # * " ,. % "+, < + " ' " ,(t) " + J " ,(t) x x / x / 0.01 , N2 #+ " 0.084 . J 1.43 N = J " 1% $ # , & N=5, # , & N=23. J " 0.1% $ - 3.4. +*(-((&( +0*(D&%) ) &)&/ % () %*&/ % --)&6 +0*(D&%)8F +*(*A&/ & & " " +&$ " *, &$ " > < . H &$ " +$ " ## < + 'X ## , # " . = # E $ $ * < " %& # #$ #. & $ $, >, * 'x k < 'X ## . ! # " x # & %# *, " , x 'X ## # # (AD) * < 76 V6 #+ 'X 2 ## 'x 2k . 12 'X ## =0 V 6 'x k 12 , # * # < @ #$ # # > < . D# # % & + 'x k < 'X ## =0, # + , V 6 0 . & $, # >, &$ &< " $ # x 'X ## < + " + , x + 'X ## $ # " #& # * 'x k . ! #, 'x k < 'X ## < 2 'x k , AD < V6 = 'X ## 'x k 2 'x k 2 < 'X ## AD < . V6 $% + 'x k =0, . . AD * < V6 'X ## 12 'X 2## 2'x 2k 12 . Nof, & % # #$ #$ #> . $% + 'X ## =0 #$ # #$ # V 6 = 0, > #$ V6 0 , # 'X ## =0 $ # # * , , " , < + " + . 3.5. &)*8&'( +*%' 1. 2. 3. 4. 5. D # , < " # #&$, #& . = < + " &$ " $ # < . = < + " # " #+ . = < + " #* >@ " #+ . = < + ## * $ . 77 4. E # G = # 9, 10, 11, 12]. "# +" & #>@ : [1, 4.1. &)(%( +*(-%)(&( -%*()A*&&0 %0&, *&(*&/ &(*&(*&/ -%*()A9/ %0& "' & * * ' * % ' '* ( t ) : x # ( t ) x(t) x(t) ' > # "' x ( t ) '* ( t ) . ;' '* ( t ) # + +> # &$ + # !#, # + +>, * 0, @#+>, * # ', . . ' * : * ' (t ) f ¦ G( t k T# ) . k f &* x # ( t k ) # + +> + , @#+ &$ x (k T# ) # x ( t ) & k T# , % &+ # # " x # (k T# ) N ¦ x ( t k ) G( t k T# ) . (4.1) k 0 "' % " # + , . . & < T#=const , . . & < . A & & > -# " & # " & . -' , , > # + + % + E – # # " , + ' " # + + + . # " - &$ -# " * " < +" > 78 " &$ ' " + %# * '+> +" " , &$ ' + " * *, >@* # , * # + + . ? , E * ", + ' + * #' . x# x(t) (t) t t ) ) . 4.1. E ! : ) ! ; ) ! * # # " # " * & " %& ( -# " > +" " + @+> + "-" # & #*), ' " > " + & > , " " . ! & " > " & # &$ " * * $ &< " , &$ ' # + " E * . +-' > # + + , & "+ ' # "' . ; " # "' & x(t) " " > + &$ " * "#& & – & # "' . = * # "' &, ">@* , % *. = + * " " < + # "' . D# &* # $ # " # & # #+*< " +" . & '+> ' - &$ $ "# -# " &* # # + +79 #& " # . ! ", , E $ * @+> , &#>@ +& & $ # $ # " & " . J # # "' ' E $ * , & , < > &$ " +&$ " *, &$ " & & "> . D ' # "' x(t) # " % + +< & " &# + " +> ' > ' # : " > ( , # + " % + +" + ). $' $% %?: x & #&$ &$ " *, , E +&$; x < " * # & , , & +< $ ; x # ' & ' & ; x % &$ " $ + $ # . 4.2. %%)&(&( &(+*(*'&0 %0& A -%*()A*&&0 "' & % & " , # > # #>@ $ ' * ( # , < " * # & # .). " &* % % & "' ' " # "#& & #&. # " > % & " , & # % + & . $ #>@ $ ' *: , #, " # , ' + $ # & &* . = E # " &* $ $ $ # " + & &* + % & " . & «*» &$ # &$ " ' $ " * & tk > & " # " ; " "& % $+-$+%'. 80 & «*» &$ # ' &$ - > & " " * & N k 'x k >@ & . +> # & * ' x(t) ' * . E $ # + " % & " x(t). ! " , " > + & " # " : x " # " & & " ; x " & & " # " >@ & # "' tk. $ $ # % &+ " # "# * < +>. = " # " $ # " & & " " & & , #>@ * # "' " & & ;, # + % & " E $$* $+ $ K$, # &$, " , "# + < &* * . = ' E ' $ # , %# , # + # + # # ?@+? "+? +?. = E &* & &% * " &$ ' *: N x ( t ) ¦ a k C k (t ) , k 1 # Ck(t) – " &$ ' *, & + * *; ' & #. ak – E E ' & # " & ' & + " &$ , , # # * < > # " * & & " # " . # & " &$ ' * "+ < # " , , % ; – "' # + % # ;. , " & + $ # "' ' # >, %# , " * +<* & 81 $ "' , > #+ # # % + < * ' . + %, & # & "' ' E ' & # ak # + & ' *< # " , & " # " . $ + " & ' E ' & # & > $ ? + * $4, # "', +* '" * + *, E ' & # #> E ' & >@ # ; +: T ³ x ( t ) C k ( t ) dt . ak 0 = E & * T 2 min ³ x ( t ) x ( t ) dt . 0 # %# * " * ' E " # " "' . ? %& >@* ' .D. %, &* # # # . E # ' & # ak ( " & > + , E + % # * "' ) & >@ & " # " . J * & # * . + " & ' E ' & # & > $ ? $ * $' ' , $ & #> < & * x ( t k W) N M ¦ ¦ a i (t k W) Ci ( t k W) , (4.2) k 1i 1 # W t t k . & "' " &$ ' * E & > ' « ' »: Ci ( t k W) Pm (W) 3 (W / T# ) , (4.3) 82 # !# – ; Cm(W) – m- * # # "' ­1, 3 (W / T# ) ® ¯0, 0 W T# T# W W. . & $, < > E * "# ' $' $. J # < " + * $ , +<* # # &$ "+ " &$ " * # " , % , * "' # & * +>. 4.3. (*( .. )(8& ' ,(t), # >@ $ (. . , - & E ) #>@ * * f, # " ' , # T# d 1 , % &+ 2f c E * = &$ " * " < . +" % f x ( t ) ¦ k f x (k T# ) sin(Zc t k T# ) , Zc t k T# (4.4) " . . & &* ,(t) % &+ # * # * &$ " * ,(kT), "&$ T, > ' > , "& > +* S sin( Zc t k T# ) . Zc t k T# + " +?@ *: x & t= kT # , 1; x & t= (k+n)T, # n – > ' , >; x + . ! " , % # " @ +% " , K' ' ' ' ,(t) , # + , #> & . ;' # * ? % % , $ # "#* # # * + * ' . A# + , # " &* < 83 ; ,(t) #+ $ # #+ '* f, &$ # < * & &* x(t). + $* &* " - S 1 (k-1)T# kT# (k+1)T# t . 4.2. < " = +" & + " > # ' +&$ +. -$',, + #" # ' ' $, +& & x(t) # & E > &* &* . D# # * # +> % + * f ( , f > f " >) +, " , &< $ . = E " > < "+ & & * . -',, # " &* .. + +&* ' * " + & % $ % , %' %' " +? , #>@> * % +> # '+&$ " * t. D#" % @+> % $' $ , " #@ $ ' [9]. 4.4. %%)&(&( %0& %)(+(&&' +&, +0*(D&%) ++*%9 = # % &$ " * " x(t) & " & * ' . & x(t) $ # +, . . % # +, % & 84 " %# & , " & #& & . = ' x(t) %# %# " & " " *, ">@* # " ( , %* $* $ +$* $$, " * $* $ +-** $"' $ $"*). E"%4+? % %# & , . . %& , #* +& % & " x(t), "& > $4%? , ' * $4%? $$ 'x . = < + ' " " " ,(t). ,(t) – * ' , +&* " ' *&. & + $" $$ % % % $$+'. = < + ' # +<, +< < # "' ;. C < + ' " &$ " $ ' . +$ $$. +" &$ + $, . . * * * ' , & % (4.2) (4.3) m=0 a1 x ( t k ) , C1 ( t k W) 3 (W / T# ) , (4.5) # = – ' . ! # &* N M x ( t ) N ¦ ¦ a i ( t k W) Ci (t k W) ¦ x ( t k ) 3( TWk ) . k 1i 1 (4.6) k 1 = # % , "# < + ' ' , * & " x(t) ; %# " tk tk+1 "> " x(tk). K + " < ' 'x . max E # ' , # "# # +< " . , # #< >@ * " tk+1 < + ' 'x . max x k x k 1 x / T# , " # * . # x / – " * & +% " * f + # # "' # & % 85 2 S f , J f# # J – # < + ' . = f=1 [ J =0.01 (1 %) # "' # % &+ 628 [. +-* $$. = +" &$ $ $, . . - * * ' # & % (4.2) (4.3) m=1, a1 x ( t k ) , C1 ( t k W) 3 (W / T# ) , a2 ! # x ( t k T# ) x ( t k ) , C 2 ( t k W) T# (4.7) &* N x ( t ) W 3 (W / T# ) . ¦ ª«¬x ( t k ) 3 ( TWk ) k 1 x ( t k T# ) x ( t k ) W 3 ( W )º» . T# Tk ¼ (4.8) = - * * ' % %# # " & " " " *. = < + 'x E # +<* $ $ " ' , # +% * $* # +< " . C < + ' , &#>@ "+ " " # & % , # " &, ">@* $ +%+ + * f ( Z 2 S f ). = < + # +<* E " : 'x . max = x1 x max x max cos(Z # < + J = T# ) x max 2 T x max ª«cos(Z # ) 1º» . 2 ¬ ¼ ' >cos(S f T# ) 1@. 'x x max &$ S f T# cos(S f T# ) 1 1 sin 2 (S f T# ) | 1 (S f T# ) 2 . 2 2 A# + , < + ' #+ J 1 ( Sf ) 2 2 f# 2 1 ( 2 Sf ) . 8 f2 # 86 K + # # "' f # 2 Sf . 8 J ; # # < ' # ?"* + $ +-** $$ .?. F & [10]: x //max f #2 8 J , (4.9) // # x max – + " * " # *. = f=1 [ J =0.01 (1 %) # "' # #+ # % &+ f=22 [. * + & # f * * ' , % # +, f # % &+ " +<. !, , # ' f * ' # % &+ 30 " +<, - * *. - #+ * J f - * * ' H # "' % + % * # "' .. + f. < [9], - & x ( t ) x m e a t . E ' f #2 4a . , # E ' + * - * * J ! #, = 1 J =0.01 (1 %), f = 4 [. # "' .. + # * < J 'x , " @* < @ xm U @ & * # "' f #. a J 2 [9], . 2 S ln( J ) ! #, = 1 J =0.01 (1 %), f. = 222 '. A# + , - * ' # ' " *. &" $$. @ ' , $ # # "' 87 f #3 x /// max 15.53 J , (4.10) /// # x max – + " +* " # *. ? , # +%* + * ' , f=1 [ J = 1 %, f# 3 x max Z3 15.53 J | 11 [. A# + , * ' # "#&$ * # "' > - * * ' * % " + % &. 4.5. &/)( -+)&6 -%*()A9 %*&(&( *A&'4 - ++*%9 & < ' ', x /// , x // x/ "> $ #$, &$ &< $ * * # "' , # /// // / + " > x max , x max x max , " + + " &$ &$ " * xk " <* "#&$ $ < . A# + , $ $ "' '4 . J # % > #+&$ " " + * " " + ' . = E %&$ " + - ' &$ $ @ > " & & $* & < , " @ ">@ $ ', @ " >, " >@* # "' * . A @+> #&$ &< % # + $ # > # "' " "# * < + $ &$ $ – " &$ " $ *, * +* " # *. U# # $ # * & # "' @ " " ' "# * < < @+> ' * & + * < &. 88 = ' * " f # # * < ' J =5 %: x * ' $ # # "' f=21f; x * * ' f=5.9f. J =0.2 % x * ' $ # f=510f; x * * ' $ # # "' f=29f ( 17 " +<). "+ < " ' & & #+& + & $ .D. %, $ # + # "' "+ % * f=2f [11]. , # $ ' * & & * * ' "# " J =5 % # # "' f=8f, # J =0.2 % f=(30 – 40)f. E # f # " , * " % # +&$ >@ $. = #& #& "& >, & & # "' + , < ' &+ " +& #% + % * * * ' . + " +&* & &< +< $ # * & # "' $ # * ' * *. = * ' , " + % *, *, $ # # "' % " + . = E ' % *, *, & ' " . # $ # > + #+& &, , # " & " #&, # "' ' " & + > , # [12]. 4.6. &)*8&'( +*%' 1. 2. 3. 4. D # # "' . #& # "' . : @ * #$ #. ! + . A < * *, * * * ' . 89 5. !$ " -! I$ = # "# +" & #>@ : [2, 3, 5, 7]. 5.1. G- ()-' %&)(A 9:*'4 :8)* A " ; @ > " # * ' & + "# * * + * $ ' * " # # E ' + $ # , &$ # $ . $* + ] H(z) "# * * $ Hd(jq) "> $$ # K $* +. K #& " "#> : x ; x ' &; x &. D ' > < "# ' " * * . #& " &$ + (C;) #& %-$$ (D&) > #+ "* $". ' ', * &* #$ #&, #> # " &$ "#&$ $ >, , # >@ $ '# . ' & > ' ', +* * '", +"& # " &$ + (?C;). ^' ' & > # * ' "# * * $ + * < +> #& + . = # * * $ Hd(jq) " > ' & + & - " * # * $ * (HF) – + & % $ (;?H), $ $ (;H), - >@ & (==; =;), -" %#>@ % & (=U; C;), & (K=;) ( . 5.1) ; " + * * $ *. K &+ " & % ; * $ * ' # ' " + . 90 q= ! & $ ; # & # q# $ #+ (HF) (;HF) #> * * * + 0 q#/2, $ # "#+ (0– q#/2) (0–) &$ = qT# ( . 5.1). ) |Hd(jZ)| 1 1-G1 = $ # = G2 0 ) Z = "# % Zc Z" Z#/2 |Hd(jZ)| 1 = $ # 1-G1 = G2 0 Z = "# % Z" Zc Z#/2 |Hd(jZ)| ) 1 1-G1 G2 0 = $ # 1 = $ # 2 = "# % 1 = Z"1 Zc1 = "# % 2 Z0 Z Z#/2 Zc2 Z"2 |Hd(jZ)| ) 1 1-G1 G2 0 #) = $ # 1 = 1 = $ # 2 = "# % Zc1 Z"1 Z0 = 2 Z Z#/2 Z"2 Zc2 |Hd(jZ)| 1 1-G1 G2 0 Z Z"1 Zc1 Zc2 Z"2 Z"3 Zc3 Zc4 Z"4 Z#/2 . 5.1. # CA ,D: ) DGC; ) D$C; ) #D ( ##D); !) D ( #*D); ) I#D 91 $ #& #& # " ; "# * * $ ( . 5.1) >: 1) & ", "# % q, q", #>@ '& " , "# % $ #&$ + ; 2) # + HF + ( '$ & &$ HF) , #; 3) + "$ HF "# % ", #. = , ", #>@ # & < ' "# * # " * HF |Hd(jq)|, > . 5.1 # * HF |H(jq)| 1 (1–~1) "# % ~2: =20lg[1/(1–~1)], #; "=20lg(1/~2), #. &#& . 5.1 "> # < ' , & # % % + >@ HF |H(jq)|, " . 5.1 . 5.2. &)(A *(*%&'4 :8)* + &0 +*))+ A " C; " % " , ">>@ # "' # ' + * ' , . . $ # " #&$ & " , $+%', ,, # "' + * $ * ' , Z-$" # s s p(0)i o 1 z 1 e s p ( 0 ) i T# , # s (0)i z > - " * # * ' * ' , "* Z-$". V " . = # # "# & & " . "+ E # ' + ( & >@ &* + ) " " ( & >@ ' * + ). J ' # " * * S # * ' + > > Z # * ' ' + s=f(z). , " & #& # ' ## " & ' $ # < > s=f(z) , # + , " & "+ >@ ' & + &. ? * * – $$ <*. V <* " #> & * ' dy(t)/dt * " +> # 92 dy( t ) y(n ) y(n 1) , t nT dt T # T – # "' . * # (5.1) 1 z 1 s f (z) . (5.2) T > #+ (5.2) , z=1/(1–sT). V $+%* , "> '# $ # &$ + ' & + . J '# , + $ h(n) "+ >@ ' + # * & + * $ h(t) >@ + # #>@ " : h(n)=h(t)|t=nT, # ! – # "' . = # ' H(z) ' + $ # @+> Z- " + * $ #>@ " : H(z) f ¦ >h ( t ) |t nT @ z n , (5.3) n 0 # " "&$ + . D# # " &$ # # $ # &$ * ; . ! " ; - "& HF "* $" ( ', ,). 5.3. ()- &(6&0 +*(*A&/ 5.3.1. = # * " " ; &* &* + - (;=) # * ' * ?(s) * $ * H(j¡), # " "& # * ' * H(z) * $ * H(jq) ;: ;= ; ;= s f (z) H(s) o z f 1 (s ) m H ( j :) H(z) 93 ; : f (Z) o Z f 1 (:) m H( j Z) . A "+ E # * s=f(z) * z=f–1(s) ">@ ' >@ s=j¡ z=ejqT# " ¡=f(q), q=f–1(¡) ' +. A @+> E $ " * #> ;=, & $ < " & # " # ' H(s), " " > # > ' > ; H(z). = ">@ ' # %& # + #>@ : x S- + s=+j \, <0, * "@> > * ;=, # % # %+ + # # |z|<1, Z- "@> > * ;, . . * ;= # % + * &* ;; x + j¡ ;=, ¡=(0 ± w), # % # , . . # $ #, %+ % + # # jZT # , q=(0 ± q#/2), " + Z- e &$ $ $ + . J "* $". 5.3.2. * " # #>@ " : (5.4) s=f(z)=(2/T)[(1–z–1)/(1+z–1)]. K % % * < z–1=[(2–sT)/(2+sT)]. (5.5) " * '# & $ # * " #, + S- % # > % + Z- (# |z|=1) Im[z] Im[s] Re[s] Re[z] . 5.2. " ! 94 * " – # " ' . J ", %# * Z- # s- . " E * # " #, ++ K $ * * '# % . K # ' &$ + # * " > $ %# #$ #@* # * ' ?(s) + * * " # # * ' H(s) ' + H(z) H(s) |s (2/T)(1- z -1 )/(1 z -1 ) . (5.6) = E " # $ + & $ , * * + . D# E ", & $ ' + # &, # + $ « ». ? , # $ + # # 0 <:< f, >@ * ' * + , &* @+> < (5.6), # #+ #>@* HF 0 # p. HF + k #G # # 0 <:< f, # - $ >@ ' + # #+ k #G # . "+ $ # & ; & " > # 2 ZT ). (5.7) : tg ( T 2 F # ' * " " . 5.3. Zc 1 #/ $ # # 2 T + ;?H – : : c tg ( ) . T 2 * " > '# $ # &$ ' & + $ # &$ $ " . J ", < & & + & * $ # * +> %> < & ' & + & " K . E "> @ E # > # + * $ . ?# * " , * + < %# ' * * Z * * ¡ # ? 95 ', , &$ + . , " , $+% ,. E . 5.3. # CA ! ! DGC "+ " ! DGC 5.3.3. " %& # # ; . $ + - (;=) $ %# >@ + " $ (;=?H). #+*< +" #$ #@ " # # E " $ &* ;=. ? ', $+' " E &* + " %&* ' * F+ , &* # #G & . = +> E '# " . 5.3,. = '# & $ # # $+%* , <* > $ < $ # ' &$ + , + " . V "* $" ( "-" * < %# ' * * Z * * :) # < "+& + # $ &$ $ + , & # > * - "> ' >. J ", $+ " ( . 5.3,) $ < $ # + $ $ , " %#>@ $ &$ &$ + . 96 > E $ # +" # * #$ # ' &$ F- + . ! * " % . 5.3,. E $+ " # # & ' & " $ . A# + , & #&#@ $ # "#$ '# & $ # + $ < "+&. E #$ # $ %# #$ #@ + " $ . &* % ' * + - " $ (;=?H). ? ', +" ' " # $ # ' " $ + , . . ' + #$ #@ $ "# % # >@ #G & . C + " $ ( * :=1 #/), # >@ "#& $ . C + " $ ( * :=1 #/), # >@ "#& $ . ;=?H ;=?H " # # ;=?H >@ * &* + - (;=). * " ;=?H ' * + - " $ (;=?H). ;= ;=?H * " ;= ' * + , # >@ * #G & . " ;, # #G . ; ;=?H >@ * & - ; ) ) . 5.3. #" % 97 5.3.4. C !"- (#$!") A " ;=?H > & >@* ' , # # + m, " * * s0i > spi # * ' "#& & ¡ = 1, ¡" # < ' ~1, ~2 (A, A"). A " & @+> ' +&$ +> &$ . ? > " ;=?H +> #> # > ' > H(s): m1 H(s) C (s s 0 i ) i 1 m , (5.8) (s s pi ) i 1 # A – >@ * % +; m1 – &$ * (m1<m). A# +, > ;=?H > @ & - %& ( " # + * +>), & & . A " ;=?H "> ' "# * # " * HF @+> >@ $ >@ $ ' *. >@ $ ' * +"> & # . +& ' !* ( +& ), H&< , # & – E –U (E + &), H&< . = # & ' + + * ' * > &$ *, $ & $ & "# % . + # * ' * # & ' > &$ $ "# % , & $ – +' ( &) E * . ; + & H&< E > & +' . ! & &$ $ " ;=?H + * # * ' #& . 5.4. &$ $ & +' $ "& >@ & * > ¡pi, ¡0i =;. ; + & # * ' * > < $ "$ # # + +< " # "# "$ * $ . 98 . 5.4. < ! D#GC, "+ "+ " % . ' ;=?H H(s) C n # , (5.9) (s s k ) > j S 12 ( 2k 1) 2n k 1 @ # s k e , A – . ? # + # "# > " * :". n lg(A 2" 1) . 2lg(: " ) (5.10) % ^"'4 1. ' ;=?H H&< 1 H(s) C n # , (s s k ) k 1 # s k Vk j \ k , Vk sh (M) sin( 2k 1 S) , 2 n 99 + n # (5.11) \k J J 1 ch (M) 2 , ch (M) cos( 2k 1 S) sh (M) 2 n , J J 1 2 , 1/ n 2 º ª , H – +' + . J «1 1 H » H ¬ ¼ ? # + H&< 1 # "# > " * :" +' n lg(g g 2 1) lg(: " : 2" 1) ,g A 2" 1 H2 . (5.12) % ^"'4 2 ('*). ' ;=?H H&< 2 ( ) # n (s sn k ) H(s) C kn 1 , (5.13) (s sp k ) k 1 # sp k V k j \ k , sn k j :" cos( 2 k 1 S) 2 n sh (M) sin( 2k 1 S) E k 2 n , Dk , Vk : " D k D 2k E 2k , \k ch (M) cos( 2k 1 S) sh (M) 2 n , 1/ n : " E k D 2k E 2k , J J 1 2 , ª A A 2 1º " «¬ " »¼ . ? # + H&< 2 % # "# > " * :" +' , & % (5.12). ch (M) J J 1 J 2 , 5.3.5. $% #$!" &* + - " $ (;=?H) " + - (;=) @+> #>@ $ &$ " *: s D&E^-DE^: s o ( + " $ ); :u : D&E^-D ^: s o u ( + & $ ); s s 2 :u :l D&E^-D&: s o ( * + ); s(: u : l ) 100 D&E^-DU: s o s(: u : l ) s2 :u :l ( % &* + ). :u – $ ", :l – % ". = &* ;= " &* ; @+> * " (5.6). ;=?H % &+ " ;=?H * " (5.6). & > & " # ;: 1 z 1 D sin( >Zc Zu @ T) 2 ; > 1 Zc Z u @ 1- D z sin( T) 2 >Zc Zu @ 1 cos( T) z D 2 ]&E^-] ^: z 1 o ,D ; >Zc Zu @ 1 D z 1 cos( T) 2 z 2 2D k z 1 k 1 1 k 1 k 1 , ]&E^-]&: z o k 1 z 2 2D k z 1 1 k 1 k 1 >Z Z @ cos( u l T ) >Z Z @ Z 2 D , k ctg( u l T ) tg ( c T) ; >Z Z @ 2 2 cos( u l T) 2 >Z Z @ z 2 2D z 1 1k cos( u l T ) 1 1 k , D k 1 2 ]&E^-]U: z o , >Zu Zl @ 1 k z 2 2D z 1 1 cos( T) 1 k k 1 2 >Z Z @ Z k tg ( u l T) tg ( 0 T ) . 2 2 ]&E^-]E^: z o ,D > > @ @ > @ > @ Zu – $ ", Zl – % ", Z0 – ' + =; C;, Z – " ;=?H, T – # # "' . 5.3.6. $ & C + ' * + : + – =; ( *); ' – ; & " – 50 ', 150 '; # 300 ' – 20 #; # "' – 1 '. U4 1. C + & # n + " $ (;=?H) ' . 101 n lg(A 2" 1) , 2 lg(: " ) # :" – + "# % , " – E ' "# % . = "# > $ " F2=150 ', "# % F"=300 '. F A# + , + "# % :"= F " 2 300 150 2. E ' "# % "# # '$ # (20 #). & " +&$ # '$ ("=10). = " # # + n lg(10 2 1) 2lg(2) = 3.31. D +<> # n=4. 2. ;=?H 4 # &# #>@ " H(s) 1 , n (s s k ) > j S 1 ( 2k 1) k 1 @ V k j \ k – > # s k e 2 2n + . n + % " + 2 # H(s) 1 1 s 2 2V1 s V12 \12 s 2 2V 2 s V 22 \ 22 Vk V1 1 1 . s 2 2V1 s 1 s 2 2V 2 s 1 ( 2 k 1) º cos(S ª 1 ). 2 n »¼ «¬ 2 ( 211) º cos(S ª 1 ) 0.383 , V 2 2 4 »¼ «¬ 2 ( 2 2 1) º cos(S ª 1 ) 0.924 . 2 4 »¼ «¬ 2 3. = " # " ;=?H &* + (;=) "# ( # * + ). = " # * # > ' > H(s) s 2 :u :l , # :u – $ ", :l – % so s(: u : l ) ". ( : u 2 S Fc 2 , : l 2 S Fc1 , ': : u : l ). ' % * " & :l $ # # + Z12 Zc12 2 F# tg ( :l ) 2 F# 2 F# tg ( S Fc1 ) F# 2 H(s) k 2 103 tg ( S 50 103 ) =50.41. 1 2 >Zc12:u @2 1 2Zc12: 2V Zc12: 2V 2 1 s 2 ':k s (1 ': u ) k ': u 1s s ': ': 2 102 . 4. & * " ;= * + . ' "#&* s o (2F#)[(1–z–1)/(1+z–1)]. 2 B B z 1 B z 2 B z 3 B z 4 0,k 1,k 2,k 3,k 4,k A 0,k A1,k z 1 A 2,k z 2 A 3,k z 3 A 4,k z 4 . H(z) k 1 2 ª 2 F# 2 2 Vk 2 F# § 2 Zc12 Zc2 · ª 2 Vk Zc12 Zc2 º ª« Zc12 Zc2 º» »º · C0 « §¨ 1 » ¨ ¸ «¬ k « © dB ¸ dB 2 F# dB 2 ¹ ¼ «¬ ( 2 F#) 2 dB2 »¼ »¼ dB ¬ © ¹ B C0 A 2 ºº 2 ª ª « 4 § 2 F# · 2 §¨ 2 Vk 2 F# ¸· 2 ª« 2 Vk Zc12 Zc2 »º 4 « Zc12 Zc2 » » C0 k « ¨© dB ¸¹ « dB 2 F# dB 2 2 »» © ¹ ¬ ¼ ¬ ¬ ( 2 F#) dB ¼ ¼ 2 ºº ª 2 F# 2 ª · 2 ª 1 2 Zc12 Zc2 º 6 « Zc12 Zc2 » » C0 « 6 § « » k « ¨© dB ¸¹ « 2 2 2 »» dB ¬ ¬ ¼ ¬ ( 2 F#) dB ¼ ¼ 2 ª « 4 § 2 F# · « ¨© dB ¸¹ ¬ 2 ª 2 F# 2 § 2 Vk 2 F# · ª 2 Zc12 Zc2 º ª 2 Vk Zc12 Zc2 º ª« Zc12 Zc2 º» »º · ¨ «§ 1 C0 ¸ « » » «¬ k « ¨© dB ¸¹ © « dB 2 F# dB 2 2 2 »» ¹ ¼ dB ¬ ¬ ¼ ¬ ( 2 F#) dB ¼ ¼ 0 k A A A 1 k 2 k 3 k 4 k k B 1 k 0 B 2 k 2 C0 B 3 k k 0 B 4 k C0 1 A k 0 k 1 ª Zc12 Zc2 2 º º § 2 Vk 2 F# · ª 2 Vk Zc12 Zc2 º « » » C0 2 4 ¸ « » « »» k dB 2 F# dB 2 2 © ¹ ¬ ¼ ¬ ( 2 F#) dB ¼ ¼ 2 ¨ # ¢ 1 B 0 1 A 0 1 1 0.06527802 A 1 1 B 1 1 2.92520672 0 A B 2 1 0.13055603 B 3 1 3.66251757 2 1 A 0 B 4 1 2.33655434 3 1 0.06527802 A 4 1 0.65819494 ¢ 2 B 0 2 A 0 2 1 5. 0.0525718 A 1 2 B 1 2 0 2.69104173 A B 2 2 2 2 0.1051436 2.94961679 A B 3 2 3 2 0 B 4 2 1.54652942 0.0525718 A 4 2 0.33543104 & %# &# #>@ " y j k 4 § 4 · ¨ ¸ B y A y t k j t k1 t k jt k ¸ ¨ t 1 ©t 0 ¹, ¦ ¦ # yj,k – &$ # * k- , yj,k–1 – $ # * k- . $ #&* $ # * + " yj,0. 103 5.4. &)*8&'( +*%' 1. 2. 3. 4. 5. ' + . D & $ + . = F- + # * " : # # ". A & ' # ' * " . #& ' ;=?H. & + - . U + # * ' > ( @ * #$ #). & & " " # * " . 104 6. !$ -! I$ = # "# +" 3, 5, 7, 13, 17, 18]. & #>@ : [2, 6.1. &)(A &(*(*%&'4 :8)* ()- (%'4 :&96 6.1.1. A " ?C; (F- + ) & "# * # " * * $ + Hd(jq) & ""#& # & < ' ( . 6.1). D "> + * $ + h(n)N * # & N, >@* E ' # * ' N 1 ¦ H(z) h (m) z m . (6.1) m 0 & , $ + $ "& * " * ; +, @+> " ; + % &+ *# + $ hd(n), "# * # " * * $ : h d (n ) T# 2 S Z# / 2 ³ H d ( j Z) e jZn T# dZ . (6.2) Z# / 2 D# + $ (6.2) #+ + > # > " * " : n < 0 hd(n) v 0 – + % $ # "#* . = E % &+ # +" + * $ ?C;. ? , # ' ;?H * ± q#/2 ­1, Zc d Z d Zc ; H d ( j Z) ® ¯0, # # $ Z ; h d ( m) T# 2 S Z ³ H d ( jZ)e jZ m T# dZ Z 105 Z T# sin(Z mT# ) S Z m T# O sin(O m ) . S Om . 6.1. @" % %! DGC +&$ $ # $ ; #& . 6.1.4. = + + * $ (6.2) " "&* F- + * $ *, " * "# *, % # hd(n) (N – 1)/2 " # n < 0 n N. = E $ + & # ; + E ' hd[n – (N –1)/2]: H( j Z) N 1 ¦ h d [m ( N 1) / 2] e jZ m T# (6.3) m 0 " , # ; + %# " ["", " >@ ' " & &$ ' *. < ' # &$ ' * +> $ ?C; > # & + * $ hd[n – (N – 1)/2] @+> ' +&$ &$ ' * w(n) * # & N: h (n ) h d [n ( N 1) / 2] w (n ) . (6.4) = E % > $+%+? +? +? wR(n) = 1, n = 0,..N – 1. = * " + * $ $ + H( j Z) N 1 ¦ h[m] e jZm T# , m 0 # * * "# * * $ Hd(jq) * $ * (; +z " ) * ' W(jq): 106 H( j Z) W ( j Z) * H d ( j Z) T# 2 S Z# / 2 ³ W( j T) H d [ j (Z T)] dT , Z# / 2 # * – , £ – W ( j Z) N 1 ¦ w[m] e jZm T# (6.5) , – $ * m 0 ' . & " * * > > . 6.2, # # %>@ ' "# * * $ & # ; +. H $ * ' . 6.2 &* < * ¤q & , + &$ $ " +& #> " ~.max @#+> # & . A * @ @ #$ ± q#/2 " + % * * $ * ' & @# & "# * * $ * Hd(jq). . 6.2. < + G,D " 107 " #, $ # * $ + H(jq) # < * * $ * ' : 'Z | 'Z , < ' (+' ) "# % ~1, ~2 "& &$ . J # * ' , # % +: ¤q; x +> < x +&* + &$ ~.max +> @#+ # & ; x +> # N. ! E # &. !, # & ' > +< * + &$ , +<> < , +<>@> # & * ' N. J G " +"&$ &$ ' *. C & &$ " $. 6.1.2. '% & * . 6.1 #& +"& " ; & &$ ' *: + *, + *, F, FE E. " * < & ¤q=Dq#/N, # D z "& &* D- , + &$ ~.max >> % ' & " < ' * $ "# % ( +& +' * $ ) |~2max|, #, & # ' ;?H * " = /4 [14]. ! % < > " ;H. ; # " (==;, =U;, K=;) " &$ #&$ < + ' % &+ +< ' " , 6 #. ! ' 6.1 # " ! = + ! + F FE E ¤q 2q#/N 4q#/N 4q#/N 4q#/N 6q#/N 108 ~.max, # z13,6 z27 z31 z41 z57 ~2max, # z21 z26 z44 z53 z74 C # + #& . 6.1, % "$ > * $ "# % " #+ & * ' . &*4 + – $+% z +> < +&* + &$ . (6.6) wR(n) = 1, n = 0,..N – 1. H $ ( . 6.3,) # & % WR ( j Z) e jZ N21 T# sin( Z N2 T# ) sin( Z 12 T# ) . (6.7) & * ' > < ¤q = q#/N ¤ = 2 /N. = = 0 |WR(j )| = N. ;+% + * # $ +&$ &$ ' * # * N/2: w T (n ) 0 d n d N 1 ­ 2 n , ° w R (n ) * w R (n ) ® N 21n °̄2 N 1 , 2 N 1 n d N 1 2 (6.8) # +< < # +< &$ . H $ + * * ' # * $ + * * ' * # &: WT ( j Z) sin 2 (Z N4 T# ) sin 2 (Z 12 T# ) . (6.9) & > < ¤q=2q#/N ¤=4/N. !""@ + HK & & % w H (n ) D (1 D) cos( 2Sn ) . (6.10) N 1 = =0.5 * + H, =0.54 – * + HK ( . 6.3,). + &$ * ' FE "& & # $ % * ?C;. H > $ * ' FE ( . 6.3, ) % # + * $ &$ $ +&$ &$ ' * ' +& q0 = 0 q0 = ±q#/N: > @ > @ WH ( jZ) DWR ( jZ) 1D WR j(ZT# 2S ) 1D WR j(ZT# 2S ) . (6.11) ! ! 2 2 109 ) ) ) . 6.3. C "! % " ( ), " AJ! () ( ) & * $ > < ¤q=q#/N ¤=2/N. = @#+ # & 0.04 % @# # * $ * ' . + K # w B (n ) 0.42 0.5 cos( 2Sn ) 0.08 cos( 4Sn ) . N 1 N 1 (6.12) = > * ' * FE < * &* ( 1.5 ") + &$ . H $ * ' E > * ' * FE # % # # +&$ &$ 0.04WR[j(q±2q#/N)]. ¥ &$ E * * ' ¤q=q#/N ¤=2/N. = " ?C; +"> % E & & ' \' <, + -H&< , , # . [17, 18], # &$ " &$ ' * *" . 6.1.3. + ' & * , # $ &$ ' *, $ ">@ $ < & " &$ ~.max D 'f N f# 'f N (D- f# ), &$ ' * *" E - & < + + @+> K _, $ #@ & % E * ' : > @ 2 w A (n ) I 0 (E 1 2 n / I 0 (E) , N 1 # I0(x) z ' #. 110 (6.13) # E < # # # " ' "# * * $ +< * # + "# ' . *" ' (. 6.2) & E &, & " > # "# "$ > "=|~2max| (#) * $ H(jq), >@* #+&* ;?H, & + + " D- E ' & ¦ [2]: D| A " 7.95 , 14.36 A " ! 21 #; D 0.9222, A " 21 #; ­0, ° E ®0.5842 (A " 21) 0.4 0.07886 (A " 21), °0.1102 (A 8.7), " ¯ A " d 21 # 21 A " 50 # A " t 50 # ! ' 6.2 $ D- J L " " + A", # 25 30 35 40 45 50 55 60 ¦ 1.333 2.117 2.783 3.395 3.975 4.551 5.102 5.653 D 1.187 1.536 1.884 2.232 2.580 2.928 3.261 3.625 ", # 65 70 75 80 85 90 95 100 ¦ 6.204 6.755 7.306 7.857 8.408 8.959 9.501 10.061 D 3.973 4.321 4.669 5.017 5.366 5.714 6.062 6.410 ! ' 6.3 " " % " , "+ " [2] A", # 30 40 50 60 1 ±~1max, # ±0.27 ±0.086 ±0.027 ±0.0086 A", # 70 80 90 100 1 ±~1max, # ±0.0027 ±0.00086 ±0.00027 ±0.000086 = & " " '& " > D # $ # &* # + N§Df#/¤f , &* " # %*< +< . 111 # # $ &$ ' *, ' #+&$ + ==;, =U;, K=; "$ * $ "# % % &+ +< " , 6 #. 6.1.4. - ' % '% / +&$ $ ; " > @ & " ; + $ # " &$ &$ $ HF Hd(jq). % E^, " &<, + $ # & % Oc ; h d (n ) S h d ( 0) O c sin(O c n ) , n=r1, r2, … S O c n (6.14) % $$+?@ % (=;) &$ # # $ #: nz0; H d ( j Z) 1 Z d Z# / 2 . (6.15) +& $ ; ^, & ( ), U ( % ) V& ( ) &+ & %& " +& $ ' E^ &: H d ( j Z) ;H H d ( j Z) =; H d ( j Z) ;?H , (6.16) y(n)=x(n); hd(0)=1; hd(n)=0 H d ( j Z) =; H d ( j Z) C; H d ( j Z) ;?H 2 H d ( j Z) ;?H1 , (6.17) H d ( j Z) =; H d ( j Z) ;?H 2 H d ( j Z) ;?H1 , (6.18) # Hd(jq);?H, Hd(jq);?H1 Hd(jq);?H2 – & $ #+&$ ;?H " c, c1, c2, (c2> c1), >@ " ;H, =; C;. ! % "+ # # +&$ $ , " # " + >@ & % : h d (0) ;H h d (0) =; 1 Oc , h d (n ) ;H S O c sin(O c n ) , n=r1, r2, … (6.19) S O c n O c 2 O c1 , h d (n ) =; S S h d (0) C; 1 O c 2 O c1 , h d (n ) C; S S sin(O c 2 n ) sin(O c1 n ) , S n S n sin(O c1 n ) sin(O c 2 n ) . S n S n (6.20) (6.21) & " $ # < # K=;. 112 6.1.5. ! '% & * ` 1. = "# " > "$ * $ "# % " @+> . 6.1 & * ' , >@* > |~2max| ", #, + " < & , . . D. = +" * ' *" . 6.2 $ # >@ "# "$ > " & # * * ' ¦ D. = E % & +, " "$ " # HF " + , &$ # & * ' N % "+ +<, +< ' " ~2max. H % HF + (=;, C;, K=;), +< "$ # # * * % * ' . J % HF . ` 2. & * * ' "# * $ # * & * $ + 'f f " f min - %& < ¤f=¤f =Df#/N $ # $ # # * ' # > # ' + * $ + : N t D f # / 'f , # D – E , " @ * * ' (D- ), . . 6.1, 6.2. U N %*< ' , & . ` 3. A @+> " ; + h d ( m) T# 2 S Z# / 2 ³ H d ( j Z) e jZ m T# dZ Z# / 2 #&$ &< $ & % * @ + $ hd(m z (N z 1)/2), m=0…Nz1, & - >@ "# * * $ Hd(jq). = E " "# * * $ +"> $ & " f , @& "# % $ # * & + ¤f J " * & # # "& ' $ # & + "# % ( . 6.3). ? , # =; f 1 | f 1 'f / 2 ; f 2 | f 2 'f / 2 . 113 ` 4. ?$ # + $ + @ * (Nz1)/2 + * $ hd(m): h (m) h d [m ( N 1) / 2] w (m), m 0,1,..., N - 1 . ` 5. C & HF + H( j Z) N 1 ¦ h[m] e jZm T# m 0 $ #& #& * $ A "$ > "# % A". ` 6. ! #&* # $ #&$ &$ #&$ ( '), $ # > " &$ " f1 , f2 # & + N & >. ` 7. ?$ # + $ # " # + " * + * $ h(m) ( E ' + , " A), * HF @ # "#& . ` 8. & "' ?C; ( A =;) <> >@ "# "' . A# +, # &$ ' * > * + ;HF ""#& + # * * * E # + * $ h(m)=h(Nz1zm) (. . 2.13, 2.14). 6.2. &)(A &(*(*%&'4 :8)* ()- %))&6 '* 6.2.1. # * & + $ + "# * * h(n)N $ # # "' & # $ Hd(jq) " ; + (D=;). "' * $ Hd(jq) @ 0 … q# $ # & &$ " * & q # &: qk =¤qk, # k=0, 1, …, N z 1; ¤q=q#/N z < # "' ; k z * & ; N z # "' . C % & % jZ T e k # * Z- # " . 6.4. 114 " * N . 6.4. CA ` ¤q & " ¤qu¤q /(L+1), # L z '& , L = 0, 1, 2, …; ¤q z $ # + . "+ # " $ + (HF) H d ( j Zk ) H d ( j Z) Z Z ( . 6.5). ! "#k $ " " + & ""#& , # ; "& HF # " $ %# # $ # " * HF. "' * $ . 6.5 & < ¤q=¤q /2 (L=1). . 6.5. E CA ! % HF " , & 1 (Hd(jqk)=1), "# % z > (Hd(jqk)=0) $ # * – 115 & % & + & ( " &) " Hd(jqk)=H1=var, &$ " ' "# * * $ . HF Hd(jqk) % + > +> $ hp(m), #> @+> # " ; + (D=;), # "' @ & % # + * $ hd(m), >@* "# * ( & *) * $ Hd(jq): h d ( m) Z# T# jZ m T# ³ H d ( j Z) e dZ . 2 S 0 & "&: Z o Zk ; dZ o 'Z Z# / N; ³ o +> $ h p ( m) 1 N N 1 ¦ N -1 ¦ , k 0 hp(m): H d ( jZ k ) e jZ k m T# k 0 1 N N 1 ¦ H d ( jZ k ) e jZ k ( m i N )T# k 0 # i = 0, ±1, ±2, ±… . # «p» ", E + $ # * # Np = N, . . # "' * # "' * ( . 6.6). . 6.6. @" % , "+ ECA + * $ " # * & ?C; & # # + * $ hp(m), # &* (Nz1)/2 (# " * " ) &* + * * ' * (# F- + ) ( . 6.7): h (m) h p (m N 1), m 0,1,...N - 1 2 = + * $ h(m) $ # $ + H(jq), >@ "#>: 116 H( jZ) N 1 ¦ h ( m) e m 0 1 N N 1 ¦ jZ m T# H d ( jZ k ) e 1 N N 1 ¦ H d ( jZ k ) m 0 N 1 jZ k ( N21 )T# N 1 jZ m N 1 T k # jZ m T# 2 ¦e m 0 ¦e m 0 e j(Z Z k ) m T# m 0 ( ZZ ) N 1 sin 2 k N T# jZ( N21 )T# 1 e H d ( jZ k ) ( ZZ ) N sin 2 k T# m 0 > ¦ > @ @ ( & # +" & % # & * ). . 6.7. @" % G,D, ! jZ( N21 )T# E & % % + e N 1 T# , + : M(Z) Z 2 # ;HF * # - + * $ . HF + $ q=qk: H(qk)=Hd(qk) # & & HF, $ qvqk H(q)vHd(q) z "# * < ' . $$ '" * , $,* $ L $ " * Hi. (i=1,2,…,L), #>@ $ > ' > # *. C" & " L > #>@ & " + &$ : L = 0: ~2$ § z20 #; L = 1: ~2$ § z40 #; L = 2: ~2$ § z50 z 60 #; L = 3: ~2$ § z80 z 100 #. C+ # * & % " + ?C; +& "$ "# % # (90z120) #. ! " , "' + "> & L z & $ # * $ +&$ "117 * Hi. , " >@ $ < ' . D # , + &$ & @ % '# "' . D # E " JK # * . 6.2.2. ! / ' ` 1. = " > "# "$ "# % " & + &$ L * $ $ # * . ? , " u 40 #, L = 1. H % HF + , +< "$ # " L. ` 2. " L "# * $ # * & 'f f " f $ # < # "' * $ : 'f 'f L 1 # "' :N f# 'f L 1 f# . 'f = N %*< ' , & . ` 3. " "#> > $ "+ HF Hd(jqk), k = 0, 1, Hd(jq) < ¤f, …, N z 1. D # k # &$, &$ + &$ &$ & . U# +& " Hi. " &$ &$ & %# * $ # * , , * * ' HF %# & " "# % . ` 4. C & > $ ?(jq) $ # &$ $ # " Hi. , "#& . ? , # ;?H L = 1, N = 33 " H1 =0.3904, ~2max= z40 #; L = 2, N = 65 H1 = 0.588, H2 = 0.1065, ~2max < z60 #. ` 5. C & +> $ ?C; * $ : h (n ) H d ( 0) 1 N N ¦ 2 H d ( jZk ) cos> n N21 Zk T# @, KB (6.22) k 0 n = 0, 1, 2, …, N z 1, KB= (N z 1)/2 N KB= (N/2) z 1 – . ` 6. & "' ?C; (A =;). 118 6.3. &)*8&'( +*%' 1. 2. 3. 4. 5. K #& F- F- + ( ' ). = ' & F- + # &$ ' *. A * + * * ' : HF, + $ . F #+&$ ;. = ' & F- + # * & . 119 7. $ #$ G !$ ! I 7.1. *)(* %(&&0 %&)(A 9:*'4 :8)* H & +& #& " ; "> JK @+> '# # * ' "#&$ &$ $ + #& "' < ' . = E & $ + + " +> . D & ' F F- + > # # < (AD) < &< % ( &* *). ' "' AD # &% M E ¦ > H( j Zi ) H d ( j Zi ) @ 2 , (7.1) i 1 # H d ( j Zi ) , H( j Zi ) – "# >@ & $ + , & & # % ' + . qi. J ' * + E K &* * "> "' % +&$ " * " < ' < : E(Z) W (Z) H( j Z) H d ( j Z) , (7.2) # W(q) – % + ' . = +&$ " * E ' + * ' @ # +< $ # , * , * * "' ( ; -=E # F- + ) * "& C" (# + &< * ' * F F- ). $ > E & +> & &, , K " +&$ > H&< F+ , +& & " ; FDAS2K, DFDP, Signal & MatLAB # . 120 " F F- + +"> % #& # # , >@ & "' . = " ; & # & > "+& * ;HF F- + * F- + . A " & & # +& ; > +<> ( # # > +>) < + + +< * ' "# # # "# * (# *) < ' . F- + % $ + * &< * ' * > # + * $ N % # + "#& # < ' @+> E * &, # * [13]. 7.2. &)*8&'( +*%' 1. 2. 3. = ' &$ + & # : ' , # +& &, & & . A + * # # < (AD). A + * < &< % . 121 8. "$ "G !I = # "# +" & #>@ : [2, 3, 5, 7, 19, 20, 21]. 8.1. +*(-((&( %6%) # ! " ; + (=;), > . 8.1, & $' $" +% ( ) X( j Z) # * # + x(n) * # & N1, & & # &$ @ $ $ qk= k ¤q: =; N >x (n )@ X( j Z) Z Z k N1 1 ¦ x (n ) e jZ k n T# , (8.1) n 0 # ¤q=q#/N – < # "' ; N – & &$ @ &$ & =; {0 z q#}, N1; k = 0, 1… N–1 – * & . . 8.1. E ! & < # "' # " % +> x(n) & X( j Z) =;. # " @ @+> " & (D=;). =; (8.1), D=; % &+ # "' & " ; +: 122 x (n ) T# 2 S Z# ³ X( j Z) e jZn T# dZ . 0 +" "& dq q#/N; ; q q, $ # D=; N >X( j Zk )@ x p (n ) A xp(n) ±1, .. 1 N # N 1 ¦ X ( j Zk ) e jZ k n T# . (8.2) k 0 # N: x p (n ) " x(n) < x p (n ) x p (n i N) , i = 0, ¦ x (n i N) . i & N u N1 xp(n) = x(n), n = 0, 1.. N – 1, . . xp(n) 0…N–1 # $ #& x(n), # & (N – N1) & # # % " # E ( . 8.2). D=;, & 0…N–1, # x(n) =;. . 8.2. ! , "+ E#D N M N1 & N < N1 (¤q = q#/N > q# /N1) & # " &$ # N # + * x(n) ( % * ), xp(n) v x(n) n = 0.. N1z1 ( . 8.3). J > " % + # " . A < N N1 # & < # "' ¤q u q#/N1, % % * ": $ * % "'% $ ' '", ' '4+' 4 $ wF. 123 & =; N, &<>@ # # + N1 (# > E (N–N1) & ), E ' , # " +& # & < ¤q=q#/N1. x(n) & +" # &< "< =;. . 8.3. ! , "+ E#D N<N1 ! " , N- =; # " * # N $ # * # + x(n) * # & N1 u N. =; # % " ; + # * # , & N, >@* *&* # + xp(n) . = " =; z D=; (8.1), (8.2) # > # ' # * & qk, * & k: =; N >x (n )@ X(k ) N 1 ¦ x (n ) e j 2NS k n , k = 0, 1… N – 1. (8.3) n 0 D=; N >X(k )@ x (n ) 1 N N 1 ¦ X(k ) e j 2NS k n , n = 0, 1… N – 1. (8.4) k 0 & D=; =; N2 ' * % N(Nz1) ' * % &$ . D " +"> # &* & +&* , &* $ # * " " : D=; N >X(k )@ ^ > @` 1 =; X* ( k ) * , N N # * z ' % . 124 (8.5) * & =; # % * , & " ; + ( * +, # # + ), # +> *. ? % * # ' * + ' "+ =; # &$ # + *. # &$ # + * " > > ($+?) *+? . + # # # $ # + * x1(n), x2(n) # N: y(n ) x1 (n ) * x 2 (n ) N 1 N 1 m 0 m 0 ¦ x1 (m)x 2 (n m) ¦ x1 (n m) x 2 (n ) . (8.6) " , # + * * % $ *, . . & " ; + # $ # + * " # > " * ;+ E $ # + *: Y(k) X1 (k) X 2 (k) ( ). & D=;, % @+> =; & + > # $ # + *: y(n ) D=; N ^=; N [ x1 (k )] =; N [ x 2 (k )]` . (8.7) C* # # &$ # + * x1(n) # * N1 x2(n) # * N2: y(n ) x1 (n ) * x 2 (n ) N 1 1 N 2 1 m 0 m 0 ¦ x1 (m) x 2 (n m) ¦ x1 (n m) x 2 (n ) . (8.8) A * * y(n) # N=N1+N2–1. H & + # , =; # + * x1(n) x2(n) $ # & + # N, >@ # # + y(n), # & < # "' ¤q=q#/N. = E # + x1(n) x2(n) # > N01, N02 & : N01=NzN1, N02=NzN2, * ' > $ # " . A y(n) #& * % % &+ # @+> D=; " # N- &$ =; & &$ # + * x1(n), x2(n): y(n ) D=; N ^=; N [ x1 (k )] =; N [ x 2 (k )]` . (8.9) & % (8.9) # & * * &$ # + * * . = 125 +" &$ # & " ; + "& > % & * . D # , =; * * # + * * # & x1(n), x2(n) E =; * # + *, &$ # "' $ # N=N1+N2z1. 8.2. !8)*9/ %0& & %&( # ! A * =; &$ # + * +"> # "' F- + * * . A &$ # + # # * * * (A) $ # * # + x(n) ( # * # & N1) * + * $ * h(n) # * N2: N 2 1 y( n ) ¦ h (m) x (n m) , n=0,1, …N–1; N=N1+N2. (8.10) m 0 = & A * "> & ' & + & (?C; A). = * A % &+ & (8.11): y(n ) D=; N >H(k ) X(k )@, n=0,1, …N–1; N=N1+N2. (8.11) # "& > * % # + * * # & &. D # * $ * . 8.4. E =; + * $ h(n) H ( j Zk ) N 2 1 ¦ h (m) e jZ k m T# m 0 Y ( jZ k ) X ( jZ k ) # " * * $ + & $ #(HF), X( j Zk ) , Y( j Zk ) – # " * &$ # * # + *. x(n)N x(n)N1 X(jZk) Y(jZk) =;N [x(n)] +N01 h(n)N h(n)N2 +N02 D=;N [Y(jZk)] y(n)N H(jZk) =;N [h(n)] . 8.4. " " G,D E#D 126 > #>@ ' : x " N1 $ # * # + x(n); x & N- &$ =; # + * x(n) h(n); x % N &$ & =; $ # * # + HF + " N- * # + Y( j Zk ) H( j Zk ) X( j Zk ) ; x & N- D=; # + Y( j Zk ) , "+ > N &$ # * # + y(n). ! " , # & &$ # $ # & & $ # , " <& "# * * $ * + . ; + ' @ # + $ # " * >, * $ # >. K % & + "'% ' $+%* ,, $ * * , H( j Zk ) . D +> ""#& &# &$ # , & > + * $ # * # + . " E # " +, ""#& * " "& " "#+ &* $ . "' + $ # + # " &$ # + * x(n), X( j Zk ) , Y( j Zk ) , y(n) E ' H( j Zk ) # > N. D > % K 4 [2 N 2 N] ' * % K % 4 [( N 1) N] ' * % @ &$ . # &$ # E ' * K (1) 4 (2 N 1) K % (1) 4 ( N 1) . = G & * + =; ?C; * * – + A (# # & N2 ' % ). D# E + @ " +" # & =; D=; & " ; + (=;). !, & =; > 2 > + % ' * K 2 N log 2 ( N) ' * % % @ &$ . D@ # # ' * # ?C; =; E 127 K 4 N >log 2 ( N) 1@, K % K (1) 4 >log 2 ( N) 1@, K % (1) 4 N log 2 ( N) , 4 log 2 ( N) . = N = 1024 K (1) 44 , K % (1) 40 . ?C; A ' * " # & + * $ N2 N2 = N/2 K (1) K % (1) 512 . ! " , "' ?C; =; +< G ' *. = * ' +" # $ " &$ =; E + # * "' "& @ &<. = G & * ' & + & =; & & ' & + ( G ). 8.3. +()*8&'6 &A %0&: A-, ()-', +*()*' A +&* " "> " % & +& >@ ' " $ +&$ $ – #&, "&, @ , + * @ # . "#, <& # + ", : x % ; ' ; x " < x % #&$; &$ " ; x &# ' G ( # &$, +&$ x # # $ $ ); x " " ( , " % *) # . *&$ @+> + " < @ "# & &&$ # * $ ( ' &$) "*. A +&* " # &$ # $ ( &$) * # + "& > % " [19]. D & # + " > %' ( #& "), "%' ( & =;), ( $ #* *&$ ' [20]), @ , +"@ @ + ", # + + , # + + , + + ( " ). 128 x x x x " "; ># " (< ) T N T# >@ # N & * "' ; " 'f , &<>@ # # &$ * & ±f#/2; " < , ' + >@ " # $ # $ ": 'f p 1/T " <&$ ( "#&$) &$ >@ $ . A +&* " < # $ %&$ > $. D + " =; "& ' * "' * # &, . . ># . = E , " # E > # # % * "' . ¥ " =; & E &$ & +&$ =;. 8.4. +()*8&'6 &A %0& & %&( # ! " , +">@ $ =;, % " , # . 8.5. D " " & ' " – " < & =;. &$ # =; $ # * @ * # # + x(n), * * ' * w(n) * # & N: ~ =; N >~ x (n )@ X(k ) N 1 ¦ x ( n ) w ( n )e jZ k n T# n 0 N 1 j ¦ ~x (n )e 2 S N k n ,(8.12) n 0 k=0,1, …N–1. U#+ ~ x (n ) x (n ) w (n ) – " $ # # + + =;; qk=kq#/N fk=kf#/N – & ", "& & % " &: 1 < # "' * f#/N. " N "&$ 1 (f#/N) " ' +& qk (fk), E " k=0,1,…N–1 > , ~ ~ * & =; X( j Zk ) X(k ) . ' # , " ># $ # * , # * ># . # " T=NT# 129 … =;N [x(n)] ~ x ( N 1) … ~ x (n ) x(n) ~ X ( j 0) ~ X ( j 1) ~ x ( 0) ~ x (1) ~ X ( j ( N 1)) w(n)N . 8.5. " " E#D % > " < > * *, E & =; # " * * " X(jq) * $ * ( ) * ' W(jq): ~ X(j Zk ) X(j Z) * W ( j Z) Z Z , # * – , . . k # % > ( # >) $4% . D # # + , %>@ "+& + ". = ' +&$ &$ ' * " # + + &"& & E " & $. +*< &$ #&$ #&$ =; @ " &$ ' &$ @+> =; +&$ $ , " @ $ # " &$ . $, xp(n) # NT# ' > #& A m (Zk ) "& M(Zk ) * kf#/N $ # " # @ >A m (Zk )@2 / 2 . ', * % x(n) ( # $) ' >: x +> + X(j Z) " +> [/'], #> # | X(j Z) | M(Z) , . . #& " & & > $ " q=qk $ =;; x E * +> + E Sx(q) 2 ( X(j Z) ) " +> [2/'], "& >@> # E % & > # &$ $ qk. +*', x(n) ' > +> + @ Px(q) " +> [2/'], >@> < + * E *& 130 &, . . & * E * % & > # &$ $ qk. , ', *&$ x(n), y(n) @+> =; " > $ " > +> + @ Pxy(q). = "' &$ + " " &$ % " + < "+ " $ " [20]. =; # & % X ( j Zk ) N 1 ¦ x (n ) e jZ k n T# . n 0 @ $ xp(n) NT# kf#/N, #>@ =;, #& #> A m (Zk ) 2 X( j Zk ) , "& – M(Zk ) arctg[X Im ( j Zk ) / X Re ( j Zk )] , # N 2 # @ 2 1 X( j Zk ) . N * # + NT# & " $ # #&, "& @ k-* * & , + + $ qk # T#X(jqk). +& $ "& =; < : Sx(k)=|T#X(jqk)|2 z + + E qk; Px(k) =(T#/N)|X(j qk)|2 z + + @ qk; Sx Px 1 N T# 1 N T# N 1 ¦ S x (k ) – E ; ¦ Px (k ) – # @ + . k 0 N 1 k 0 K % +, + < & E @ " * " & % T# # =; 1/T# # D=;, "& # - & # ; + (C;) [20]. 8.5. +*(-((&( %%:9/ 0*) " ! & & " ; + (=;) – E & & & =;, >@ * > =; & +> "& +. D & & # %& 1965 # 131 ' !+> " & DA * . & & > *, $* K$' e j 2NS k n kn x WN kn WN : ( N k )n WN ( N n )k WN ; ( k l N )( n m N ) kn WN # , & # x $ WN & * "' N ( =;). pkn A # * E WN kn WN / p - # N/p, # p – '& , & # N. +" #&$ * $ =; > +< >@ $ & =; ' *. D@ * ' =; "> " =; $ # * # + =; # # + * +<* # &, + # + " % * ( * > =;), " & & =; $ # * # + . C" " % # + * * * . " E " > & $ $ & $ $ . =;, =; % & + + # N, >@ ' * m: N=mL, # L – E E % : L=logmN. +"& =; m= 2, 4, 8, @ > =; $ ? 2. " [7], . 8.8, @+> =; & % =; (D=;). 8.6. 0*) " ! + %&&F 2 % +**(K&( + *((& =+ "# # + + x(n) * # & N, n=0,1,…N–1. ?% * =;: N 1 X(k ) ¦ x (n ) e j 2NS k n n 0 N 1 ¦ x(n ) WNk n , (8.13) n 0 # k = 0, 1,…N–1 ( =;) +& G & *. C< E * "# # =; $ # #>@ " . $ #> # + + x(n)N # * N " + 2 # # + # * N/2 – > ( >>@> & x(n) & # n: x1(n)=x(2n) >: x2(n)=x(2n+1), 132 n = 0,1,…(N/2)–1. J ( . 8.6). . 8.6. @ + ! % > D " $ =; X1(k)N/2 X2(k)N/2. & " =; $ # * # + x(n)N " =; # # + * x1(n)N/2, x2(n)N/2: N / 2 1 X(k ) ¦ x1 (n )e j 2 S k n N/2 N / 2 1 ¦ x 2 ( n )e j 2 S k n j 2 S k N/2 e N n 0 n 0 (8.14) k X1 (k ) X 2 (k ) WN , k = 0, 1,…(N/2)–1. J & N/2 &$ & =;. > &$ & X(k) # k=(N/2), …(N–1) *# * # : kN / 2 X(k N ) X1 (k ) X 2 (k ) WN 2 k = 0, 1…(N/2 – 1). & % (8.14), (8.15) ( ' > G# ): k X1 (k ) X 2 (k ) WN , (8.15) #> "+? $? & k X(k ) X1 (k ) X 2 (k ) WN , k X(k N ) X1 (k ) X 2 (k ) WN . 2 (8.16) k , &* #> # ', $ #@ * (8.16) % + WN "& > $?@. & (8.16) >> # % % – & . " > ' > # > @+> + ( =;), . 8.7. ? " ' > % ( $ * &$ #) & ( % * &$ #), % > k >@ * % + WN . 133 X1(jk) X(jk) k WN X(j(k+N/2)) X2(jk) . 8.7. ! % ! ?#D A +&* =; # " &$ ' *. E % " . 8.8 # N=8. . 8.8. ! % ! ?#D ! J D' &* G & * #& ' * % : # =; K.=;=N2; # =; K.=;=2(N/2)2+N/2=N2/2+N/2. # , "+ # % G & * +< 2 ". +< %#> " # + * x1(n) x2(n) % " + @ # # # + # +<* # &: x11(n), x12(n) x21(n), x22(n) (> >) + &< #& ' G# $ =; @+> " &$ ' *. ! % & L " # N/2 # $ &$ # + * xl(0), xl(1), =; &$ & + : X L ( 0) x L (0) x L (1) W20 , X L (1) x L (0) x L (1) W20 . "+ &* # N=8. 134 =;, "&* . 8.9 X(j0) xp(0)=x(0) xp(1)=x(4) xp(2)=x(2) xp(3)=x(6) xp(4)=x(1) X(j1) 0 W2 0 W2 0 X(j2) W4 1 0 W4 W8 1 xp(5)=x(5) xp(6)=x(3) xp(7)=x(7) W8 0 W2 0 W2 2 W8 0 W4 3 1 X(j3) X(j4) X(j5) X(j6) X(j7) W8 W4 . 8.9. # ! ?#D N=8 %# " L E & – G# =; & > N/2 " &$ ' *, @ * G & * # &$ ' * % % – & : K .=; N L 2 N log N 2 2 , K %.=; N L N log 2 N . (8.17) H ' * @' 4 " +< # % 2 " +< # % – & . & &< =; + =; ' * % K .=; / K .=; 2 N / log 2 N . N =210 = 1024 K .=; 5120 , K .=; | 10 6 & &< 204.8. &#& . 8.9 " & > * * + * . ! & & > E , " % @ $, #>@ @> > +> + G, 2N # N &$ ( $ + * * ). = E +"& * $ , N $ # x(n) ( @ ) @? N & & & =; X(k). D +> =; % &* &* # $ # , &* & " & & # # + (n = 0, 4, 2, 6, 1, 5, 3, 7 # N = 8). ! * !, 135 # # "& > -'. J # $ # # + * $ # * # + # & *. E & # + x(n) # > L- " # # #, #& E & > #, . . "> " # > , >@> * # + x(p). ? , # . 8.9 n(10)=4 $ # * # + x(n) # * > # &* # n(2)=100, # - &* ( &*) # n# . .=001 # &* p=1 * # + x(p). J& & – G# =; +& . 8.9 #> #, E % , & & & # =;. . 8.10. < - ! ( ) 136 ? E & > N/2 # $ &$ =;, %# " &$ # " ' =;. ? E $ G# @+> # $ " &$ ' * & > N/4 & $ &$ =; . #. ? L- E # (N/2)- &$ =; @+> N/2 " &$ ' * G# > N- =; $ # * # + . . 8.11. < - ! ! ?#D + 2 137 A " * " ' & =; % " + %&$ ' ( # $ % ): x E & - G# =; i = 1, 2,…L ( < *); x & =; i- E l = 1, 2, …2L–i; & =; m = 1, 2, …2i–1. x " * ' U >@ $ % * # " * ' i E #> @& & % Wk N/2 L i > @ k=0,1,… N/(2 L -i 1 ) 1 ). "+ -$ * "' =;, # . 8.11. D >: x ( G ) +"&$ &$; x # N & * # + ( ) x(n) ( X(n)); # * x * # + x(p); x " & > # # P1, P2 " j 2S P3 P3 P3 >@ % WN # " * e N ' . P3 % &+ % # # + j 2S k k & >@ $ % * WN e N k =0, 1, …N–1. x # & > " ' =;, "@ , # ' ' $ . ; * # + x(p) @ -$ * (# * ) . 8.10. 8.7. 0*) " ! + %&&F 2 % +**(K&( + %))( C , @ > % # =; #> " > ' >. E $ #> # + + x(n) # > # * * &%> " $ =; $ # * # + : N / 2 1 X(k ) ¦ n 0 kn x (n ) WN N / 2 1 ¦ n 0 k = 0, 1,…N–1. 138 k ( n N / 2) x (n N / 2) WN (8.18) kN / 2 & , WN N / 2 1 X(k ) ¦ n 0 e j 2NS k N2 e jSk >x(n) (1)k x(n N / 2)@ WNkn = # k (8.19) " 2k # &$ &$ =;: X ( 2k ) X(2k 1) (1) k 2k+1, & %- N / 2 1 N / 2 1 n 0 n 0 ¦ >x (n ) x (n N / 2)@ WNkn/ 2 N / 2 1 ¦ >x (n ) x (n N / 2)@WNn WNkn/ 2 n 0 (8.19) ¦ >x 0 (n )@ WNkn/ 2 , N / 2 1 ¦ >x1 (n )@WNkn/ 2 . n 0 "+ =; $ # * # + & % " =; &$ N/2- &$ # + * x0(n), x1(n), #&$ #>@ " : x 0 (n ) >x (n ) x (n N / 2)@, x1 (n ) >x (n ) x (n N / 2)@ WNn , (8.20) n = 0, 1, …(N/2)–1. & % (8.20) > "* $ # , # * " + %& +& =; % ( . 8.7). D ' « » "> , % & ' % – & . " # + * x0(n) x1(n) % % + # (N/4)- & # + , =; &$ % "> =; $ # * # + x(n). "+ L- E % (N/2) # $ &$ # + *, =; &$ & " * ' * (8.19) "> =; $ # * # + X(k). D# "-" % * * $ ', '" & ' $ K ' – -', >@ " < & # +&$ . D & > %, $ # * # + x(n) # & =; % . , $%% "#+ '* $ . J " * # + * +> # . 139 = &* +&* =; % " +& % + =; % ( . 8.9 # N = 8). -$ * "' =; % * &$ " * # . 8.12. = $ # & &$ # * # + X(k) % +" + -$ * . 8.10. . 8.12. < - ! ! ?#D 140 D =; > # > & +> E +, #> (8.17). = @ " > E +" + $ "' &$ ' &$ + =; (=;) ( . 8.13). x(n)N =;N[x(n)] % h(n)N =;N[h(n)] % X(jZk) Y(jZk) =;N[x(n)] % y(n)N H(jZk) . 8.13. " " " ! % ?#D A @+> =; % , >@ $ #, & > =; $ # * # + x(n) + * $ h(n), @+> =; % & D=; $ " # Y(k), >@ $ # &* # # # - &* # . &$ #& & D=; E > #, "+ +> > $ # + &$ & ' . 8.8. '%(&( # ! & %&( 0*) " ! % +, & =; % +" + # E & D=;, # # + x(n) # x (n ) 1 N N 1 ¦ X(k ) WN kn , n = 0, 1,…N–1. k 0 = # %#& E & % > ' > % ( *), : * ^ ` ª N 1 * kn º 1 1 =; [ X* (k )] * . x (n ) « ¦ X (k ) WN (8.21) » N N N ¬« k 0 ¼» ! " , & & + D=;, % * X(k) X*(k)=Xre(k)–jXim(k), " " # * >@*, & + =; # + X*(k) & " + 141 &* " # * >@* @ * &$ # * # + =; x*(n), # x(n). @', ',', $%* $ # + # " . K< D=; & > # N $ # * X(k) &$ # * x(n) # + *, % 1/2 @ $ "+ E & =;. H $ $ =; # , "#>@ * & " ; + – =; D=;. & =; & > @ & $ #& # + . @* ,* $% x(n) % +, =; # +? X(k)=X*[N–k] + # +> E > & * . = E " %& # [21]. $ " $ @+> # N- =; # & > =; # $ (N/2)- &$ # + * x1(n)N/2 x2(n)N/2, # $ # + * * * N * * # + x(n)=x1(n)+jx2(n). = E =; # + * x1(n) x2(n) "+ & =; "#> : X1 (k ) > @ 1 X (k ) X* ( N k ) , X ( k ) 2 2 > @ 1 X ( k ) X* ( N k ) , 2 j X( N) X(0) . k = 0, 1,… (N/2)–1. 8.9. &)*8&'( +*%' 1. 2. 3. 4. 5. 6. " ; + (=;) # $ # + *. D =;. =; &$ # + *. & # " ; + (=;) % . " # =; % "' ;. D' E +< ' *, $ # &$ # =; # =;. = =; + ". D # # =;. = =; + ' . & D=; @+> =;. 142 9. ! "" = # "# +" & #>@ : [8, 14, 15]. 9.1. +%' *(A9 0*) A # DA " "' & * % &# + &, " &* %&. ! , " % & @ > @+> "', $*: % , & , % . $% – E % , – & , % &+ '& # & , E "' # $ # "#+ %> + . = + & +& ' " # #& , "# % & + # # # # # "' T# @+> K , # >@ $ * & (* ), G# & "# % , $ # + " % + @ + $' ',. , # & +& ' $ # # + $. &< &$ ' * # # > * % ( * # "& >@ ). = ' + " % + & ", +"&* "' # # %#. %*< , #>@ # + "# * '# & & # % , ' # ( 4). D# & " + '# &, # >@* E , "' . " %& "' DA: x &*; x &*; x - &*. 143 D$$ # " +" " "&$ ' +&$ : , , % *, < , #< , , * "# % , * , # *, $ E , &$ $ ', +< $ +&$ $ . #. A + ' +&$ "* %# # "&* . x(n) X(n) X(n-1) X(n-2) X(n-3) =+ #&$ X X(n-4) % + X b0 =+ E ' B b1 b2 b3 b4 + RG ! ? >@ * y(n) . 9.1. " ! ! % & # " # # &, > # + #& # & # # + " &$ . = # % &+ "& , >@ ' . + +> E # > * " "& & (A++, Java, Pascal), # ' ' ' (=DA) – >@ * "& . ?# * "' " & #* # + & ' * ' . & + & #, # + % " # + >@ * , " . D$$-$ # " , + ' * & DA & ( -' ' - " , % , % , # #&$ . #.), # + ' * – . = #$ # " % + " + # +& & +& ' & @ " & # ( , % >- >, #< . #.), # #* " , " % + >&* & &<: > * & &< # * & " . 144 C" &$ &$ # " " + & +& " % E * "& + "' > DA ' . 9.2. %(&&%) 0*) , /FL( & M((&)&F A ' % $+$ ',. ? , + & # > * +> # 20 000 #, %#&* " $ % # %+ 8 # 16 ( " " # =). D& & "> # &, & &$ + " "& . 9.1. , +< # % # +< # + +, " " &* . ! ' 9.1 # # ( ) 53 144 80 + + # () 22.5 30 10 A + ( /) 2400 4800 8000 A + #&$ # " # + +> ' , & % &$ # ' &$ #, & &$ # (. 9.2): MIPS (Million Instructions Per Second) # ' ;! MFLOPS (Million Float Operations Per Second) # ' =!. ! ' 9.2 # % = ' & TMS320C2xxx TMS320C5xxx TMS320C6xxx ADSP-21xx ! (K') 20–80 30–133 167–250 40–100 = " # + + (MIPS) 20–40 30–532 # 2000 75–150 = " # + +, & % MIPS (MFLOPS), * #+ " % * # # ' . U% $145 %% % &+ " + +<* ' > & ', ; , & =;. = E "> ' ADSP-21160 (100 K', 600 MFLOPS) @ # ' TMS320C6701 (167 K', 1000 MFLOPS), + & =; " 90 , – " 120 . ! % # + G " * * & #/ & #, " * #&$, ## % &$ ' $ . #. * # + * " # + , "&&* BDTImark (. http://www.bdti.com/), =DA ' +&$ "#. C"+ & % #+&$ &$ # '$ (. 9.3): &< " # + +, +< # ' ' ' . # %% = ' & Lucent DSP161210 Motorola DSP56303 TMS320VC549 ADSP-2189M TMS320C6201 = = (MIPS) 100 100 100 75 1000 ! ' 9.3 BDTImark " # + + C+ # '$ BDTImark 36 25 25 19 600 " . 9.3 #, : " # + x ' + * " + * *; x ' & # * * " # + +> "+ > # > +> " # + +. `* $ * ,',/',', ',. D& # " #&$ 40 – 80 #, # &$ * $ % # $ # + # 100 #. A# + , # $ # + > E> ", & "' > #&$ +< * " # . +, # 6 #, " # + % * " &$ # " $ " &+ *, " . 9.4, & " # * # %& + # > " # +. 146 ! ' 9.4 E % * # " (#) 40 60 80 100 C" # + % * 7 10 14 17 C" # + " # 14 20 28 34 * # " #&$ # > #+ "# +> =, E # 20–24, . . # # # " = 120–144 #. #* + " E # * # " "& + +< , % " * . 9.4 " # . C" # + 7–10 # &, +"& $ . " + # * " # + 13–14 . * # " , + & * @ + < ' * ' " + " # , – * * (;!) >@* * (=!). +< (. 9.5) &> ' & . ! ' 9.5 & %% ; Analog Devices Motorola Texas Instruments = ' & ADSP-21xx ADSP-21xxx DSP5600x DSP563xx DSP96002 TMS320C2xx TMS320C3xx TMS320C4xx TMS320C5xx TMS320C54x TMS320C5000 TMS320C662x TMS320C67x TMS320C8xx C" # + ! #&$ ;! 16 =! 32 ;! 24 ;! 24 =! 32 ;! 16 =! 32 =! 32 ;! 16 ;! 16 ;! 16 ;! 32 =! 32 ;! 8/16 147 = " # + + (MIPS) 33.3 40 40 80 20 40 25 30 50 50 40–2000 1200–2400 600–1000 50 %4 $* , + , $*. "& + , E ' > # & # &$ # . , #& % * &+ # & " ' * &$ &< : , , =;, *&$ $ " *. D># #, E " # % &+ & & $ . , # % &+ " $$ + $ ( % +&$ " # *) "# +< + #&$ + # & & & # . E",% "$ " $* ]!. * " " " "&$ , E ' #&$ &$ # &$ $. # & & $ # +< ' # # E$ - " " * #&, ' # ( # & # % "& – #% ), ' $ " , # *& #" . #. & . = " , # %# $ #&$ #&$ & > #* , & @+ . ? , + ' & TMS320C6xxx " * "' $ &. U+% . !. . + #+&$ ' *. ! & > ' « » =; # & . 9.3. %&&'( %6%) A" &< " &# + & * =DA, >@ * E > "' > DA: x & & &$ ' * DA; x "' * ' % ( +&$ " # *); x ;! =! " " * " # +>; x + & #+&$ * , # * "' * # &$ ; 148 x +< + + #&$ + ; x " " % # ' + " & "#: "' , ## % - * # ' =; . #.; x + #&$, >@ $ & * +>; x + * ( # +&$ +&$ * , #/ & #, * ); . x @ E <* D @ &$ * , $ &$ # " "&$ =DA $ $ ' * #& . 9.6. ! ' 9.6 ,# A * = +< DA ( + ' , & % " , +&* ", * . #.) " # + , + $ ' DA, >@ +< G +& #&$, > # & # @ #& %# # ' C% & ' + * J ## % #&$ # ' FIFO J ' &$ $ DA; & ' +& & , ## % >@ & #& #/ & # + , >>@ + " "& * ( # &, # , * &, *& #/ & #, *& & <* @ #/ & # " # .), " " & + & & * = DA # " & #& "#, & &+ & # ' , E " ' " & "# , < &$ " % + %&$ ' $. 149 # &$ $ "#> ' +& =DA (ASIC), & "" # %+ # +& ' +& : - ' *, $ * # , * ">@ =; . #. ""&$ ' "#> + ' & " # +&$. 9.4. L( +*&9+' +%)*(&/ *4)()* 9.4.1. $ % * ! « $ » & +" # , ' #* , ' " # &$ " & + * &. J > % " % " % * , #&$, & #, # ' . #. ! " , « $ » & # >, $ ' . A &$ &$ =DA (1982 .) $ $ + DA. \>& E $ ' #> , " >@ "' ' * (DA). # &$ DA $ & +&$ * < # " " $ & =DA. ! # ' & & , > > DA ' =DA, F- + . &$ # * + # & % N 1 y( n ) ¦ h (i) x (n i) , (9.1) i 0 # $(n) – & $ # ; h(i) – E ' & + . , & $ # %> E ' & + >. = # & & +"> $ # $ $ DA. ! " , " * ' * DA ' % # ( ) "+ % . = # > ' > "> $ * MAC. , & + & * " # + +>, ' # % & + ' > MAC " # ' () & ' . D& , E ' & + #& & $ . & ' " 150 & " – #& # $ % *. A# + , # & & * " # + +> E & $ # " " # & ' . = E # " , "+ ' * & ' ( ' + ' * =), @ +. @ % @ ' " "+ +, . . $ # & & @ " ' . ! " , " # + + ' , %# , # " % #& %# = +> ' "' * $ " #* . ? % > " & # #&, +"& = # &< " # + &. J # > @ # +< ' * * # " – # * " "&$ #*, # & > "&$ ' * + $ #$. 9.4.2. #% & ! % ? . 9.2 " # ' & + * &, >@ « -* *» & + * < . * . ?* (1903–1957) # % '' > & + * < & ( , $ * &), % +< &$ < . D# " &$ E * '' , # # * +>, * $ #& & #&. A # % # < #&$ (¥), * #> #& &, #&. A# + , * ' # & #& # $ % * ( + # & ' MAC). ' $ =DA # $ & + * &, # . 9.3. = # $ " , & * 40-$ #$ XX- # # # . * (1900–1973). E * '' * # $ & ( #) #&$ +"> " & * . A , # < # E $ * : < # (¥==), < #&$ # & +> (¥==) < # #&$ (¥=), < #&$ #&$ (¥=) # & +> #&$. # * $ * % # " # + ' @ " & * , . . $ & + # " == < % + " #&$ = 151 < ¥=. A , E # & ' MAC # ' & ' . C+ " " &$ # +&$ # ' MAC # # ' . C" & & "' ' & %. , == # +" + # $ #, #&$. = E $ $, ]&! * * ,+. ¥ =+ = #& = ¥ . 9.2. " G ¥ =+ ¥ =+ #&$ = ¥ ¥ . 9.3. < " A# <+ + #, + < # # * & #&$ # " = == +"> + =DA * +> ' . @ <* $ ' $ # < $ < – ¥ ¥. J # , #& & $ * & # A. = E " DA +" + + >> +, ' & &> +< * * +> ==, =. = +" <* , # $ & #&$, , " & ' *. 9.4.3. * $ ? . 9.4 # @ ' =DA, %>@ + * " ' $ " #* . $ ' ' +"> + == + #&$ =, & "& # * < . =DA < & " " . 152 < * * #/ & # ¥== * ' # = # ¥= *& ¥== U & & ¥== * +& ' +& # C & =+ % + =+ #&$ \ * < $ < ¥ ¥ . 9.4. " % ,# + (+%) $%. ` $ $ ¥== #" # # # . ` ', $ $ ¥== % # # #, $ &$ , % #&$ +" == # $ #&$ ( , ' E ' ' &$ + ). ` 4 ', $ ', (¥= ¥=) > # # # #&$ #&$. < , < #&$ " &$ ' $ @ . ¥= " " # + ' " # * # #&$ # +" " &$ #$. J # " % + # # & + #& ' . &$ ' $ ( , TMS320C5000) " # +* 4' ',: +"> " & < & #&$ # " ' . 4 $%. * 4, 4, 4 4' `D ', ` . ' & =DA > >> ( +>) +. D# * ' # "& 153 # # $ #&$. , ' % + * =U # $ &, ". E $ $ % +" + < +, "+ * @ " * < $ < < < & # ¥ #&$ ¥. % "& + , < $ < # , E +" < $ == = # @ % &" + "# % ' * " . < < & +" + + # @ <* , # # & * , , +& . * +$ & & # , & " ==, & & & * $ " ' . U' +$. * " . E &, # & * , " , E ' "' & " ' , >@ * ' , , ' +" * ' # # %# <* * +>. E % & " ' @ ' , , $ # " & . * /'. ? * < $ * > " & & * & &. % +, =DA, , > $ + < . C % & , , #/ & # ' & " > ' & + > / &# +> ( *) & . #/ & # ' @ " * #/ & #, &$ > " # # +& &. &*' +. =DA > +< *&$ #*, &$ #> " ' . ;*'. ' & > " & * &, #"&, %, # ' $ # &$ ( , & # "' < =) $ " & * , @+> &$ % " + * < $ # ' . DC , +% # +& ' +& "& #"& # & ' * # & * ' 154 *. = , ' & $ #> " # + + ' & > %. * () # #&$, " &$ " =. # * & + $ # $ # + # + # . E ' % + + * . J * >> # # & # " &$ %&$ #$ # ' . 9.4.4. ' * $ * '$ . = ' & #& $ ' $ " + E . * &* ' & # , " & E& ', & > # . %. D # # &$ #* " % +, +"&* $ =DA. D " # ' > % #&$ « » ' (16 u 16 # 16- " #&$ ' ) " # ' ( &$ # "' ' % , & > $ ' ). ? , ' i8086 ' % " , ' % +< 100 . . A# # > # " # % " # + \, # E #+ #. $ =DA > " & # # , %& '$ # # %# " & # . D " > " # + # # " " # " +" # +&$ #. $%' DC . + \, & >@ " & ' , =DA > +& * . D " > & + " & ' # & \, &< " # + + &. * [D (AGU). ' $ =DA +"> ' " & * # ' # #&$ #&$. J * > # ' > # # @ #, "@& #&$ =. 155 ; # " &$ #$ # ' , ' +&$, " & & *. ' > + # # " > # & ' * \ & + # # # #>@* #&. $ +"> & # $ # &$ #&$ ( , " * # @ * # ' # ) ' " & \. D#+ * ' # #&$ &#> ' $ ADI (DAG), Motorola (AGU), TMS320C55X (DAGEN). E $ ' $ +"> # * , " >@ $ + # # # # # $ # . D$$ . '&, . . # &$ # $ , " > " + # DA. D& "' ' & " +" # * ' , & # %& & + %# $ %# «» ' . ? & E $ # " . = E =DA +"> * , & " > " + ' & « & » "' > ( * ). $%' ' . "' DA =DA @ > ' +& #& # ' . , %# , - ' (' ) # ' . U#+ < "' > ' &$ , +"&$ ' * # ' . ]+'* "+ # * #&$, @ & " # ' , . . # % #* * * *, * " # # @ , #>@ #, + *. ? . 9.5 " % # * 10 " # ; (n–1) – (n+8). # "& «# » > 1–10. D @ * % # > : « "» « $». = # % « "» * ;, & (n+8), # + @ * # (n–1), # % « $» * (n–1) – @ * (n+8). " # # % % $ # + >& # (< ). &* % +" +, , # "' "# % . "' $' '. +< " "&$ # +&$ \ ' +&$ " # " % " # + '156 $ # + #* *. J , > #+, # " % + # < +" &$ #, @ >@ $ # + #* *. & #& > ' $ * «# *» «< * # *» $ *. &$ @&$ & " # +&$ ' $ & $ RISC @&$ # « , o ». J G , %& & #& $ "> $ "& A ' $ + \. E &, & "& A, & > E . A# +, +" %&$ &$ # $ < " & # $ & ' . ; # n-3 n-2 n-1 n 1 2 n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 3 4 5 6 7 8 9 10 . 9.5. , " " & #&, %# , +"> # & * ' DA – % " &$ . U"' +* /' $. C< "# DA +" =DA @ "-" E $ ' $ &$ " "&$ * #- & # ' *&$ * . * #/ & # : x +& # +& & #/ & #, +">@ " & & # ' ; x & # + DMA, " >@ # +/ & # + ' > + & " +" @ * =, . . " " # + &; x # = = (16- " #&* #+- =/= ' $ DSP56156 Motorola, 16-+& 10- " #& = ' $ TMS320LF240X TMS32024X); x " "& # , & < &$ "# : # , # # &, &; 157 x & ' * %# ' "' ' * &; x ' & # < ' +&$ "#: ' & – # # & "& # ( , DSP16XX, DSP16XXX Lucent Technologies, TMS320C6416), ' – Turbo Decoder (TMS320C6416), ' & # "' ' &$ + (DSP56307, DSP56311 Motorola); % ATM (UTOPIA), >x *& # , #&$ >@ ATM, # 8- " #&$ ' * +> # / # 50 K (TMS320C6416); x & ¥K (< - + * #' ) DSP $ (TMS320C24X TMS240X). ]&! * (;) $?@* * (&;). = ' & * >@* * > +> & + & #&, +">@ >@ & # . = E # + #, ' & =! > # # #&$ ;!, =!, . . > E & +& . A # * &, ' $ ;! # % " + #&$ =!, & " . A >@ & " #&$ > # # & . D & ' ;! =! ">> #>@: x ' +& # , & >@ ' ' % , ' $ =! > =DA ;! "# %, . . & & ' * # ;! =! @ >; x ' & =! > " "& & # #&$, & # # #&$ ;!, =! $ " " ; x " # + # #&$ ' $ =! 32 " #, &$ =DA " % +" * & # . % ' =! # , $ ' &<, ' ;!. D# # $ * E +< @ =DA =!. D & @ # #>@: x +" 32 " # =! @ &< + # #&$; x @ < " %&* # * # " #&$, . . < + " % 158 + " % " > < /<; +" ' =! <x #&$ '+> "%+ & " &$ ' * ' * ; #&$ =! x +< " " #&$ # , $ =DA =! # % * # "& A; E , > #+, " + E & & =DA =! +" "& & . ' =! # , $ +" & DA & &. 9.5. %&&'( )+' 9.5.1. , &* * $ = # ' # # % + , +" * [14]. * ' & % "# +, " $ &, #>@ & &: x # & ' & (conventional); x <& # & ' & (enhanced conventional); #&); x ' & VLIW ( + # x & ' & (superscalar); x #& =DA/ . J # &* $ , # ' &$ # $ . , # * &* ' , % &" + " # . D# ' # " * # # * $ & ' . A# % +, &- " # G > &$ ' , &$ $ . ! " % ' , #& >@ $ #> ' >. 9.5.2. ' * ' $ (Conventional DSP) = ' & ' E $ "' $ ' % . & " * ' ' $ " &$ . % +, # & E * ' " & " – #& # $ % *. 159 &' TI. A \ # #&$ ' &$ * #& . 9.6 9.7. , ' & + & % $ - N 1 y( n ) ¦ h (i) x (n i) , i 0 . . ' & + ' > x(n–i)h(i) " &$ " $ $ (n-i) E ' + h(i). ' $ * " * (TMS320C2X/2XX/24XX/5X) % +" + # & . 1. E ' & + & $ #&$ = # & # &< & % ' & > # +& #&, &$ # + #&$ dma (data memory address). LT dma ; " " 1- % ! MPYA dma ; % 2- % # % ; !, # " # ; C, # #&#@ " # ; ( # % C) # % A$ & ' " % . 9.6. ¥= =+ #&$ =+ ¥== C % ! % + C " # P A . 9.6. #" LT – MPYA 160 ' ' & " # E & " # , . . & # # # " # DUD. & & n " # * $ # (2n+1). ! & ' % # , " #&$ " # % " # & , # # & ' # @ #&$. 2. $ E ' + +" + ==. E # & &$ # + % + # > # MAC, " # + # # $ % * + #&$ (dma, data memory address) + (pm, program memory address): MAC pm, dma ; % # % # &$ ; == =, # " # ; C, # #&#@ " # ; ( # % C) # % A$ & ' # . 9.7. ¥= =+ #&$ =+ ¥== C % ! % + C " # P A . 9.7. #" MAC 161 = MAC ' @+> #& RPT $ # & + %#&* " #& " ==. = E # # * ( ). & & n " # * $ # (n+2). = +" # & #& MAC ( '+> & * (n+2) # $ E ' $ # "#* + + >> + . 9.5.3. 0 /7' ' * (Enhanced-conventional DSP) ' $ K # &< " # + ( & # &$ ), &* +" " =DA, < " &. = E % # # & : x + ' *, " # &$ # ; x + #, & &$ # . = ' &, +">@ &* &< " # + , <& # & ' (Enhanced-conventional), ' &, +">@ * – ' VLIW. ' *, " # &$ # , <&$ # &$ (Enhanced-conventional) =DA # : x # +&$ ' +&$ ' &$ " #* ( % , &, \ . #.); x " &$ ' " &$ * , ' " &$ ' (# # & , ' & # ' &$ + . #.); x « < » < # #&$ ( < & < ) # &< # * # ' ; x +" & # ( " % +> & + $ @ * " # ); x < % & #, & " > +" + # +& ' +& # . = & & > # ' & # =DA +" +, &$ &$ ' . = E "# + ' & # & <& # " % , + ' & " > % % %# . <& # & % ' & DSP56301 (Motorola), TMS320C55x (TI), ADSP-2116x, DSP16xxx (Lucent) & # . D# E @ % $ # ' " ' +&$ 162 &$ #. , & + E & & , $ # «$ <» " $ & & # ' . J $ % & " # +&. A # * &, # $ # % * # "& & ("& A). % + &<, & E +"> + & #&, $ & # $ RISC [15]. 9.5.4. $* ' $ % VLIW % +, " %& &< #, & &$ # . = # &* # " ' $ $ * VLIW (Very Long Instructions Word, + # #&). J =DA "& > % Multi-Issue Architectures ( & #& + % ) [14]. = # & ' & +"> @> # (,+ RISC [15]), %# " &$ # # > ' >. ? + &$ # & > + ( # ) " &$ ' &$ #$. D@ # ' +< +$ – " ($) # #+&$ #* , , +<> # . $ # +" &$ * +< " # $ # "+ & $ ' &$ #*. = E > #& « , o », «+ o », « o +». # « , o » ", # $ # > & "+ ' @ . & # > % @ " #&$ < # #&$ #&. +" * & # " " & + E & & "& A E & " &. "+ % + & & & +" # $ #&$ "& & . # =DA $ * VLIW # +< G& , * # " & # & # , ' + +" E * . 9.5.5. ' * ' A & ' & (superscalar) > ' VLIW "&$ %# * $. 163 #& ' , #"& # #+&$ ' &$ #*, G# > # @> cy #, &> + . = ' #+, &* #, " # &+ & & + , $ . = & " $ #&$, +"&$ #$ # + , ' . ! " , ' $ VLIW + & &$ # " , &$ ' $ E "# < ' . D# % # % - " & + " &$ E$ & &. = E #" & &, % # + , #&. = $#< * * ' +& " % ' # +" & +>. 9.5.6. : ' * ' ' , & "& > , G + < . J < * ' , #>@ * +<* ' "' *, " " ' * , " " " &$ *&$ * . & +& , #G & , "> # &. K & < > &$ E " & &. U# & +& G , , # , > ' &$ + '$ . +< * =DA " &$ & "' > "# E # . = % + * TMS320C24xx & TI, % # =DA A2000, & & * ADMC3xx & ADI, % 16- " # # ADSP-2171, & # . A@ "#, & > " % * < $ "# DA "# . = % + & + * , # &$ *, # . #., "# +&$ &$ . & $ < <> "# E & "#$ DA . = E # " # < 164 # &$ "# # # & +" # $ #+&$ ' . # + #& ' &, G# >@ # " % =DA. 9.6. /&( *4)()*' & AK&%) +*9(%%* $ * $ & =DA " % & . 9.7 #& +& #& "' F- + =; " +" " &$ ' . ! ' 9.7 $ " ,# ! : K1, T1 – @A- % , T2 – ?#D 256 ! #&$ ;! 16 ;! 16 ;! 16/32 ;! 16 ;! 16 =! 32 =! 32 =! 32 =! H , T1, MIPS K1 K' 120 120 730 6.1 A# TMS320A54 160 < DSP16xxx 120 120 757 6.3 # (Lucent) 250 2000 347 1.4 VLIW TMS320A62 300 SC140 VLIW 300 1800 183 0.6 (Motorola) A LCI400 (LSI) 200 800 607 3.0 A# ADSP-2106x 60 60 812 13.5 < ADSP-2116x 100 100 573 5.7 # VLIW TMS320A67x 167 500 2.5 550 1498 2.7 – PIII (Intel) 1000 $ = ' T2, 65 9 21 9.5 9.7. &)*8&'( +*%' 1. 2. 3. 4. = ' & ' DA. K #& "' DA. " & ' DA. D DA, >@ E> ". $ =DA. D @ =DA. ' =DA $ . D " &$ # =DA. 165 G N #" # # * # « ' - " + $ $ " <>@ ». = + < # ' * , %# , # +> , # " ' &$ : F- F- + , + =;, " . 166 "" ! 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. D * =.=. ! & ' - " + * $ . – : @ < , 1983. – 455 . C \., # . ! ' * / . . # #. °.?. # . – K.: K , 1978. – 848 . +# \.K. # . . – 2- "#., . # . – K.: C# "+, 1990. – 256 . K.!., A .., < .?. ! & # $ . – K.: &< < , 2002. – 306 . A.. C# $ ' &. C # < > "#: # # $. '. " . – 2- "#., . # . – K.: &<. < , 2002. – 214 . A .. . – A=.: = , 2003. – 604 . .A. : . 2-$ . H.1. – : "#- !, 2001. – 199 . A .., $ .., \.. & ' &' * . – A=.: F-= , 2001. – 464 . A # .. ! ' "# . – K.: ?, 1967. F .?. D & ' * E " + * $ . – K.: J , 1966. * \.;. ' - " +& &. – K.: J , 1966. F# .?. D' # " ' * '. // ! #& ?J=, 1969. – &. 6. + .. & ' & &. – K.: C# "+, 1986. Eyre J., Bier J. The Evolution of DSP Processor / IEEE Signal Processing magazine, 2000, March. °. ? =A Texas Instruments / & $ , 2001. – ¢ 1. 167 17. .. # . K & : . # " / # #. H # .. – K.: &< < , 1971. – 808 . 18. ., # ., J =. & +& $ . – K.: J "#, 1983. 19. FE C.. & + &. – K.: ?# , 1987. 20. * .A., K.=. C# $ ' &: . . – K.: C# "+, 1994. 21. K A.\. * +&* " % . – K.: K , 1990. 22. # ' > + ' > / # #. C. , . # . – K.: K , 1976. 168 O 169 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . / 1 34 / 5 // MATHCAD K # " & > * & ¢ 1 « ». !DKA 2008 170 C" " 1 V *', $ $ Mathcad 1. \² CD!µ 1.1. " ' * Mathcad # # *&$ ; 1.2. " # * ' + Mathcad; 1.3. # # - * $ (HF) + , $ # * $ . 2. C! =DA?? \DC!DC?D³ CD! 2.1. D' *' ' A "+ %# $ #& X(t) &$ #& Y(t) * * & "& +* $" Y(t)=F[X(t)]. (1) C*' "& > &, # &$ & ' " ' : ' *> ' > * * ' ' * E &, #& $ # #+ . F[X1(t)+X2(t)]=F[X1(t)]+F[X2(t)]. (2) F>CX(t)@=CF>X(t)@, # A=const.(3) C' G-$+% "& $+%* ,* ' – h(t). ; " "& & # > # f h(t)=0 ³ h(t) dt f . t<0 (4) 0 C' & # "#* "& $,* ,* h1(t). = $ # $ " + * $ * " +> h1 ( t ) ³ h(t) dt . + $ # $ & " > # + ' > & " +&* $ # * ( ?) # * " & $ t Y( t ) X (0) h1 ( t ) ³ X c(W) h1 (t - W) dW . (5) X (0) h1 ( t ) ³ X c(t - W) h1 (W) dW . (6) 0 t Y( t ) 0 t Y( t ) X ( t ) h1 (0) ³ X(W) h(t - W) dW . 0 171 (7) t Y( t ) X ( t ) h1 (0) ³ X(t - W) h(W) dW . (8) 0 " & $" +% > % $" C$ f * Y (s) ³ Y(t) e s t f ³e dt 0 0 Y * (s) f ³ h(W) e H (s) st sW t dt ³ X(W) h(t - W) dW , (9) 0 H(s) X * (s) , dW , X (s) 0 (10) f ³ X(t) e st dt . (11) 0 # Y*(s), X*(s) – " % ($" C$ ); H(s) – $ + &. * Y ( j Z) f ³ Y(t) e j Z t * dt , X ( j Z) -f H ( j Z) f ³ h(W) e f ³ X(t) e jZt dt , (12) -f jZW dW H (Z) e jM(Z) , (13) -f Y * ( j Z) H( j Z) X * ( j Z) . (14) # Y*(jZ), X*(jZ) – " % ($" +% ); H(jZ) – , & (" + &$ # "#* $ # &); H(Z), M(Z) – $+- - ,. H $ & % &+ # # * ' # s j Z . * * & & ' " ' Y*(s)=H(s)X1*(s)+H(s)X2*(s)= H(s)>X1*(s)+X2*(s) @, (15) (16) Y*(s)=CH(s)X*(s)=H(s)CX*(s). = # + / + # *&$ @ # ' " # > / # &$ ' * E $ H*(s)=H1(s)H2(s), (17) H*(s)=H1(s)+H2(s). (18) 172 , & "#& * , %# , " # # * ' ( * $ ) &. = # * ' # % # + +> ( $ #>) $ &. ? , $ $ # ' & H(s) % &+ # # - ' + * H(s) b 0 b1 s b 2 s 2 ... b m s m B( s ) A (s ) a 0 a 1 s a 2 s 2 ... a n s n , (19) m<n E ' & ai, bi – #* +& . & " A(s), . . $? ' spi, % # + # > ' > # H (s) b 0 b1 s b 2 s 2 ... b m s m B(s ) A (s ) a n (s sp 0 ) k 0 (s sp1 ) k1 ...(s sp n 1 ) k n 1 , (20) # ki – + *. , > & (ki=1), + $ & # & % n 1 h(t) ¦ A / (spi ) e t sp i , t > 0. B(sp ) (21) i i 0 = $ # $ - # E & % h1 ( t ) B( 0 ) A ( 0) n 1 ¦ sp A / (isp ) e t sp i , t > 0. i 0 B(sp ) i (22) i 2.2. + Mathcad ', *', $ #&$ #&$ # * ' H(s) & * . = # * ' # $ # $ & h1(t) – #&* $ # @ ' * invlaplace. U $ #> $ $ # X(t) % * ' > & Y(t) " + "#* , +" # " & % * (5) – (6). = E * " #> $ # Xc(t), # - % &+ +" ' Mathcad # # ' d . dt ? , # + " $ (;?H) 1 #: + – ;?H; ' – ; ' – K0=10; # " F = 100 '; E + – 1. 173 2.2.1. + 1 # # 'c " & A 1 A 0 1 1 H( s ) 2 S Fc K0 A sA 0 # . 1. 2.2.2. = $ # $ h1(t) & #>@ " 1 1 1 · h 1( t ) H( s ) invlaplace s o 2000 S §¨ exp 200 S t ¸ s 200 S ¹ © 200 S 2.2.3. U# tx # " , % + $ # * $ . tmax 2 Fc 1 dt tmax tx 0 dt tmax . 100 12 11 10 9 8 h1( tx) 7 6 6 h1 10 0.95 5 4 3 2 1 . 0 0.005 0.01 0.015 0.02 tx . 1. # DGC 1 2.2.4. = $ # * $ % # + + &$ # & 95 % < " ( 105 % *). ? . 1 + 95 % " # * , < " # # " # +< " tx ( , 106 ). 2.2.5. , ' &* x(t), "#&* # & % , Ux 1 fx Fc 1 wx 2 S fx x( t ) Ux sin ( wx t ) # Ux – # #+ , wx – ' ; " & & % > (6) ´ y ( tx) h 1( tx) x( 0) µ ¶ tx 0 174 h 1 W dx tx W dW # +" " # $ # "#* , " dx(t) % &+ & Mathcad @+> ' # ' dx( t) d x( t) dt 10 . 8 6 K0 x( tx) 4 2 y ( tx) 0 K0 0.5 0.005 0.01 0.015 0.02 2 4 6 8 10 tx . 2. DGC 1 ! ! 2.2.6. * , ' % +" + " * * s j Z # * ' H(s). " # & * $ % &+ "# #>@ " f 1 2 Fc 4 Hf ( f ) Hf ( 0) 2 s ( f ) 2 S i f Hf ( f ) H( s ( f ) ) . 12 11 10 9 8 7 6 5 4 3 2 1 1 10 1 10 3 100 f . 3. "- DGC 1 ;' Hf(f) # * $ * &. K #+ # * ' # # 175 > $ (D^H), ' Mathcad arg() # " - > $ (^H). = HF % # + + – # * > HF , #>@ + # 3 #. 3. =CDCKK?D DA=H? = & * & Mathcad 2000 &<. +" 4. =CDCKK \DC!DC?D³ CD!µ 4.1. " + #& # *&$ Mathcad. 4.2. C + " + HF &. 4.3. ?* + # + – $ #> $ + . 4.4. ?* + & "# % , ' + " +& * + . 5. D?!CD\²?µ D=CDAµ 5.1. A * &$ *&$ . 5.2. A * G- + + . 5.3. H + $ # $ &? " "+ + * $ # * $ . 5.4. H # ' &? 5.5. " "+ + * $ # * ' &. 5.6. # &$ # * & " + $ # ( >)? 5.7. #> & & " HF? 5.8. ' Mathcad # & " \? 5.9. "#+ Mathcad * Tmin # Tmax < dT? 5.10. # + $ # * $ ? 5.11. "#+ Mathcad # " Fmin # Fmax < dF? 5.12. # Mathcad " HF Fx " * # * ' H(s)? 5.13. # + HF " ;?H? 176 5.14. " + Mathcad ' >, * ( #& ) ' F(t)? 6. =DCD µ=D\?? \DC!DC?DD U? 6.1. = # + ($. 2.2.1) $ #& #& "#& ( +>), $ # & # " ;?H: ' – ; " F; E ' K0; # + N=2. 1 100 ' 10 F K0 ;?H H(s) 6.3. 6.4. 6.5. 2 200 ' 20 K0 A 0 A 1 s A 2 s 2 6.2. 7. " #- 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 # # #>@ " : 2 2 S Fc 1 . >2 S Fc @2 C + HF + ($. 2.2.6). C # " , # # ". U + " HF " (Fx=Fc) "# % (Fx=2Fc). = + HF ($. 2.2.6). & + $ #> $ & h1(t) ($. 2.2.2). = + $ # * $ ($. 2.2.3). D # + t ($.2.2.4) &$ # 95 % ( 105 % + $ # '). & + # + # >. & + $ # * X(t) * Fx * " + Fc # * # * ($. 2.2.5). = + &$ # Y(t) ($. 2.2.5). = + .6.4 # * Fx=2Fc. , # A0=1, A1 , A2 A=AD \!C!Cµ 1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 . 2. .. C# $ + +> +Mathcad. – K.: – ! , 2001. – 416 . 3. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 . 4. A .. . – A=.: = , 2003. – 604 . 177 / 1 34 / 5 // MATHCAD K # " * ¢ 1 « ». A + * + 178 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . 5 31 5 // MATHCAD K # " & > * & ¢ 2 « ». !DKA 2008 179 C" " 2 $%'* $ $ Mathcad 1. \² CD!µ 1.1. " ' * Mathcad # " ; 1.2. " ' * Mathcad # & * #&$; 1.3. # . 2. C! =DA?? \DC!DC?D³ CD! 2.1. $' $, = # ( ) & X(t)=X(t+kT), (1) # k – ' , ! – # . $ # $, . . &$ $ >@ $, & % " % + . A & % &* ( +&*) , . . # #& "& . = * % &+ # # & # ; + (# & ): f X(t)= a20 ¦ a k cos( 2TS k t ) b k sin( 2TS k t ) , (2) k 1 # Z0 bk T 2 X(t) dt , a k T 0 2 S ,a0 T ³ T 2 X(t) cos( 2 S k t) dt , T T 0 ³ T 2 X(t) sin( 2 S k t) dt . T T 0 ³ f X(t)= c 0 ¦ c k cos( 2T S k t M k ) , (3) k 1 # c 0 a0 2 – # " , c k a 2k b 2k , M k arctg( bk ak ). ' $' . Xmax – + " ; X 1 T tT ³ X(t) dt – # " ( >@); t X . & 1 T t T ³ X(t) dt – # & " ; t 180 2 X " 1 T t T ³X 2 (t) dt – #* >@ " (AU); t f 2 1 X 2 (t) dt = a 0 1 a 2k 4 2 T k 1 0 X " Xm ,K – E X " X . & T ¦ ³ 2 X " Ka b 2k . ' & #& &; &+%'* $+%. ak a0 2 2 Xm TW S( kTW ) , bk=0, sin( S x ) S x S( x ) 2 Xm W – #, X " T Xm 2 W – AU, T . S(Z) X(t) Xm Z t W T Z0 2Z0 ) 4Z0 6Z0 8Z0 ) . 1. #"! % " % ( ) ! () ;+%'* $+% ('*). ak a Xm W S 2 ( k W ) , bk=0, 0 2T T 2 2 Xm W – #, X " 2T Xm 2 W – AU. 3 T S(Z) X(t) Xm Z t W T Z0 2Z0 ) 4Z0 ) . 2. &"! % " % () ( ) ! () ;+%'* $+% ($"'*). bk a Xm 1 ) , k=0, 0 S k 2 2 Xm 1 – #, X " 2 181 Xm 2 1 – AU. 3 S(Z) X(t) Xm Z t Z0 T 2Z0 4Z0 ) ) . 3. &"! % " % ( ) ( ) ! () &++. ak 2 X " > @ a Xm W S( 1 ( 2 k W 1)) S( 1 ( 2 k W 1)) , bk=0, 0 T 2 T 2 T Xm W 2 – #, T S 2 Xm 2 W – AU. 2T S(Z) X(t) Xm t W T Z Z0 2Z0 ) 4Z0 ) . 4. # "" ( ) () 2.2. V $ $, $ Mathcad 2.2.1. = # # Mathcad # "+ & % # E ' # ; + "#+ " &$ . ? , # + " + & 10 . k 0 9 - Xm 10 - # + - # + + + - # t0 0.5 T 2 Q T t0 Q 4 - % + 182 sin S x FF( x) S x Xm § k 1 · a 2 FF¨ ¸ k Q © Q ¹ C a k 2 k b - ' a 1 Xm 0 2 b 0 k Q - E ' & # ; + - # - $ k . 6 . 10 4.5 xd( t ) Ck 1 0.6 0.2 0.2 0.6 3 1.5 1 0 1 2 3 4 5 6 7 8 9 10 k t ) ) . 5. #"! % ! ( ) ! () 2.2.2. %&* & , +&*, +" & ' Mathcad " & + E ' & # ; + " + * # $ . ? , # + " + & 10 . A % &+ "# ( . 5.) –(T/2) # +(T/2). E " #& & E ' #, & % 2–3. Xm 10 - - # + t0 0.5 - # + + + T 2 - k 0 9 Q tst T t0 T 2 xd( th ) Q tmax Xm if # 4 - % + 2 T t tst tst t0 10 2 th d t0 tmax - # - 2 ( 0) otherwise 183 2 ´ µ Ad k T µ ¶ tmax tst 2 ´ µ Bd k T µ ¶ tmax § 2 S k th · dth Ad 1 ´ xd( th ) cos ¨ µ ¸ 0 T ¶tst © T ¹ tmax § 2 S k th · dth ¸ © T ¹ xd( th ) sin ¨ tst Cd Ad k 2 k Bd 2 - E xd( th ) dth ' & # ; + ' & # ; + - # - $ k - E C"+ & # # * %, . 5.. 2.3. $' $, D $ #&$ ( # $) # $ , $ +" # + * , + # $. D# & % # + # $' $, " ; + S(j Z) f ³ X(t) e j Z t S(Z) e j M(Z) . dt (4) 0 & S(j Z) e jZt A(Z) j B(Z) & % S(j Z) cos(Z t ) j sin(Z t ) # f f ³ X(t) cos(Z t ) dt -j ³ X(t) sin(Z t ) dt . 0 (5) 0 <$%'* $+%. X(t) ­°Xm e - a t , t t 0; ® °̄0 , t 0. (6) S(Z) X(t) Xm Z t ) ) . 6. ' % " % ( ) ! () 184 >+,?@ ". X(t) ­°Xm e - a t cos(Z t) ® °̄ 0 , t t 0; , t 0. (7) S(Z) X(t) Xm t Z ) ) . 7. * " + ( ) () &+%'* $+%. X(t) ­Xm ® ¯0 , 0 d t d W; , t 0; t ! W. (8) S(Z) X(t) Xm W t Z ) ) . 8. #"! % " % ( ) ! () 2.4. V $ $, $ Mathcad & # $ # " # + & % (5). E # & + + & * > & & + " ; + (4). # & + +. 185 - # + - # + + + Xm 10 t0 0.5 2 t 0 t0 10 x( t) - t0 2 # Xm if t d t0 t t 0 ( 0) otherwise ´ A ( q) µ ¶ f ´ B( q ) µ ¶ x( t ) cos ( q t) dt 0 S( q ) f x( t ) sin ( q t ) dt 0 2 A ( q ) B( q ) 2 - #&* fx 0 0.1 50 - &* # " # wx( fx) 2 S fx - . x( t ) 12 11 10 9 8 7 6 5 4 3 2 1 6 5.4 4.8 4.2 3.6 S( fx) 3 2.4 1.8 1.2 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . 0 5 10 15 20 t 25 30 35 40 45 50 fx ) ) . 9. #"! % " % ( ) ! () 2.5. D $ $@%? ' $" +% ( &) " , " &$ # * #&$, Mathcad2001 > #>@ ' : READPRN(«file») – & #&$ " *; WRITEPRN(«file») – " + #&$ " '& &* *; READWAV(file) – & # " WAV- * ( > #&$, – ). WRITEWAV(file,s,b) – " + '& WAV- *; CFFT(A) – & =; '& A (# + ' * cfft(A)); ICFFT(B) – & =; '& B. ;' & =; >, & &V &$ & 2 , # V – ' . 186 2.5.1. ? , " + &* @ " * <. 3 F# 8.192 10 fx 96 * #&$ , #1 T# F# - , [ Zx 2 S fx - , [ - $+ Ux 10 " # $ # * fx , Nmax 2V, Nmax # % #+ #>@ " : § log§ F# 2· · ¨ ¨ fx ¸ ¸ © ¹¸ Nh floor¨ log ( 2 ) © ¹ Nmax 2 Nh 1 i 0 Nmax 1 xideal Ux 1 sin Zx T# i i L 10 Nh 7 Nmax 256 - ' - - 4+ - K O Kr 20 1 Kr 100 L2 1 L ¦ x xideal i i k Ux O 1 sin Zx T# i k - +'* 2 # +"> & * <. 2.5.2. " # " + &$ * «DataX.prn» f "DataX.prn" WRITEPRN( f ) x -A+%8 )%() %0& :6 2.5.3. " & #&$, , " &$ @+> &< "&$ '# , & ' d "DataX.prn" -* ,', ', - ,', ', * Y READPRN( d ) nm length ( Y) - * ', i 0 nm 1 nm 3 Fo 8.192 10 256 - 187 T ( Fo) 1 Transform ,' ' Yi 20 16 12 8 4 0 4 8 12 16 20 6 5.4 4.8 4.2 3.6 3 2.4 1.8 1.2 0.6 Cj Cj 0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.035 2 4 6 8 10 j i T ) ) . 10. ! , «DataX.prn» ( ) ! () 2.5.4. = + * 2V, $ # & + & &$ #&$. & =; # . - & " ; + - "& &$ =; C CFFT( Y) j 0 16 2.5.5. = % . # + >@> fj 3 Fo nm fj 96 # 3 96 '. 3. =CDCKK?D DA=H? = & * & Mathcad 2000 &<. 4. +" - =CDCKK \DC!DC?D³ CD!µ 4.1. " + #& " Mathcad. 4.2. & + " + & *, # %@ & . 4.3. C + " + & @+> & " ; + (=;). 4.4. C + " + & # $ @+> " ; +. 4.5. C + " + & # $ @+> # # ; +. 188 5. D?!CD\²?µ D=CDAµ 5.1. D # . 5.2. K #& # . 5.3. K #& # . 5.4. D # # , # # , # & " *, E ' #& & . 5.5. D & ' Mathcad # " / & * #&$ " . 5.6. # + %*< +< 2V, # V – ' ? 5.7. "#+ Mathcad +&* + ( +&* &*)? 5.8. ' +"> Mathcad # " / & &$ * #&$? 5.9. # + * #&$? 5.10. ' Mathcad +"> # & =;, =;? 6. =DCD µ=D\?? \DC!DC?DD U? 6.1. $%'* $% & + * & «lab2_1.mcd» $ #& 6.1.1. = # #& ($.2.5.1), $ # & # " X: ' K=20 % (L=10, F= 100 '; # – 10; E & 10 & # ), # # % &+ 2B, # B – "' F#=10 '. ' ( # " + 2-$ # ). 6.1.2. U + & * «dataX.prn». = + ($. 2.5.2). 6.1.3. A "#+ * &* * «lab2_2.mcd», " & #&$ ($. 2.5.3) " * «dataX.prn» ' Y. 6.1.4. = + Y ($. 2.5.3). D # + * ( , " " ). 6.1.5. & + # =; ( ' C=FFT(Y)). = + # ($. 2.5.4). 6.1.6. = + %# #* + * * ($. 2.5.5). – E $ # * K + * # * Fc=100 '. = Fk=KF / N & (N – " ). @ %# #* + * * Fc * Fk. 189 6.1.7. &% $$. 6.1.1 – 6.1.6 # * Fc=27=128 '. ( # "' F#=10 '). = + $ # X C, % + %# #* + * * . 6.1.8. &% $$. 6.1.1 – 6.1.6 # * Fc=100 '. ( # "' E 2V, # V – ' , V=13). = + $ # X C, % + %# #* + * * . 6.1.9. &% $$. 6.1.1 – 6.1.6 # * Fc=27=128 '. ( # "' E 2V, # V – ' ). = + $ # X C, % + %# #* + * * . 6.2. D $ $% $" +% +% 6.2.1. A "#+ &* * «lab2_3.mcd». U#+ # * # ' ( , +&* # * Ux=10 # + +> W=0.1 ), $. 2.4. 6.2.2. & + , +" " ; + ( > #* +> # & + "#+ ). = + ($. 2.4). 6.2.3. D # + E ' & # ; + # & , # # ( # "#+ # " +< # + ). = + ( # + # # &$ ), $. 2.2.2. 6.2.4. A + &$ . 7. A=AD \!C!Cµ 1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 . 2. .. C# $ + +> +Mathcad. – K.: – ! , 2001. – 416 . 3. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 . 4. A .. . – A=.: = , 2003. – 604 . 190 5 31 5 // MATHCAD K # " * ¢ 2 « » A + * + 191 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . / 1 34 / 5 // MATLAB K # " & > * & ¢ 3 « ». !DKA 2008 192 C" " 3 V *', $ $ MatLab 1. \² CD!µ 1.1. " ' * MatLab # # *&$ ; 1.2. " # * ' + MathLab; 1.3. # * + . 2. C! =DA?? \DC!DC?D³ CD! 2.1. D' *' ' A "+ %# $ #& X(t) &$ #& Y(t) * * & "& +* $" Y(t)=F[X(t)]. (1) C*' "& > &, # &$ & ' " ' : ' *> ' > * * ' ' * E &, #& $ # #+ . F[X1(t)+X2(t)]=F[X1(t)]+F[X2(t)]. (2) F>CX(t)@=CF>X(t)@, # A=const. (3) C' G-$+% "& $+%* ,* ' – h(t). ; " "& & # > # f h(t)=0 ³ h(t) dt f . t<0 (4) 0 C' & # "#* "& $,* ,* h1(t). = $ # $ " + * $ * " +> h1 ( t ) ³ h(t) dt . + $ # $ & " > # + ' > & " +&* $ # * ( ?). " & > % $" C$ $" +% * Y (s) f ³ Y(t) e s t f dt 0 ³e st 0 Y * (s) t dt ³ X(W) h(t - W) dW , 0 H(s) X * (s) , 193 (5) (6) f ³ h(W) e H(s) sW dW , X(s) 0 f ³ X(t) e st dt . (7) 0 # Y*(s), X*(s) – " % ($" C$ ); H(s) – $ + &. * Y ( j Z) f ³ Y(t) e -f H( j Z) j Z t f Y ( j Z) ³ X(t) e dt , X ( j Z) jZt dt , (8) -f ³ h(W) e -f * f * jZW dW H(Z) e jM(Z) , H( j Z) X * ( j Z) . (9) (10) # Y*(jZ), X*(jZ) – " % ($" +% ); H(jZ) – , & (" + &$ # "#* $ # &); H(Z), M(Z) – $+- - ,. H $ & % &+ # # * ' # s j Z . * * & & ' " ' Y*(s)=H(s)X1*(s)+H(s)X2*(s)= H(s)>X1*(s)+X2*(s) @, (11) (12) Y*(s)=CH(s)X*(s)=H(s)CX*(s). = # + / + # *&$ @ # ' " # > / # &$ ' * E $ H*(s)=H1(s)H2(s), (13) H*(s)=H1(s)+H2(s). (14) , & "#& * , %# , " # # * ' ( * $ ) &. = # * ' # % # + +> ( $ #>) $ &. ? , $ $ # ' & H(s) % &+ # # - ' + * H(s) m<n E B( s ) A (s ) b 0 b1 s b 2 s 2 ... b m s m a 0 a 1 s a 2 s 2 ... a n s n ' & ai, bi – #* 194 , +& . (15) & " A(s), . . $? ' spi, % # + # > ' > # H(s) b 0 b1 s b 2 s 2 ... b m s m B(s ) A (s ) a n (s sp 0 ) k 0 (s sp1 ) k1 ...(s sp n 1 ) k n 1 , (16) # ki – + *. , > & (ki=1), + $ & # & % n 1 h(t) ¦ A / (spi ) e t sp i , t > 0. B(sp ) h1 ( t ) (17) i i 0 = $ # $ - # E & % B( 0 ) A ( 0) n 1 ¦ sp A / (isp ) e t sp i , t > 0. i 0 B(sp ) i (18) i 2.2. + Simulink ', *', C MatLab @ @+> & + Simulink. = Simulink " @ + # ( # ) # # $ . U Simulink % " " # MatLab, % & - > #+ ( ). = " Simulink & > # : untitled ( # "# –# & # ) Library Simulink ( ) &$ "# . & < untitled $ # # + , # >@ , " +&$ &$ . 2.2.1. # & + + #>@> > $ ( #+), . 1. . 1. " " 195 ! ! % . A & # #> . \ # &$ # * # $ #& # . \ % % " + # + &$ # * # &$ #& + $ . \> " % + " + *, %# " &$ " *. H & # + &$ # * # $ #& # , % & + #>@ #* : x + "+ &< &$ # * ( E # % + ); x %+ > &< , # % E % , # + "+ $ # ; x + &< . \ % + $ # &$ # , . 2.2.2. K # & + " $ % &+ & @+> Transfer Fcn (Simulink / Continuous / Transfer Fcn). . 2. Transfer Fcn Transfer Fcn $ #&$ #&$ # * ' H(s) & * . = # ' H(s) "#¸ + , &* &196 "& # *& @ + , ' , Denomi# Numerator – E " E nator – " E ' " ( E ' & # " , E ' +< # ). . 3. ? % Transfer Fcn 2.2.3. "# , +" Signal Generator (Simulink/ Sources/Signal Generator), . 4.. ) ) . 4. Signal Generator ( ) ! () 197 = & "#> Signal Generator ( . 4.), &* &"& # *& @ Sig). Wave form "# nal Generator ( : sine– #+&* , square – +&* , saw tooth – "&* , random – *&* (<). $ Amplitude Frequency "# # . Units "# # ' " , &$ "# (Hertz – '& rad/sec – #/ .). 2.2.4. , & $ # & #+ "#* , +" Constant (Simulink/ Sources/ Constant), . 5. C' & #&* $,* ,* &. . 5. Constant 2.2.5. "+ +"> , & # > + &$ ; % Scope( ' ) (Simulink /Sinks/ Scope), . 6. Scope # $ # " ' # >#+ >@ +" '&. H & + , % # %#& @+ &<+> . D & ' $ # (. . %&$ , # % %+ # 30 ). " ' 198 % + + E . J ' # $ # &# , " . 7. ( &# . 6. ) ). Scope ) . 7. ' ! Scope " ( ) & # " &$ #* * + , # %@ + #>@ " : + # % Scope; &" * Scope; 199 " < * " < " < ; " + * ; + * ; + < * ( <); $ < *. # > * ?% & Scope (Scope parameters), . 7.. Number of axes "# $ # ' , Time range – $ * # , % ' , Tick labels – % * # (all – , none – *, bottom axis only – + " + +). C # +" + * , & & >. 2.3. U' $ Simulink (? Simulation) ? , > Simulation ( # ) # % + # ( . 8), > > + # # * # . = # E $ # " " % + + # + # , "+ %*< & # , , , " #+ , # "+ # . . 8. I+ Simulation. 200 C # # #+> # , & # # > Simulation Parameters ( & # ), . 9. J& # Solver & &. Simulation time ( # ) – & # # " + (Start time) (Stop time) " * #+ . Solver options ( & ) – & # "' ( ) # . Output options ( & & #) – & & # &$ #&$ # * & ( # & < ). . 9. " . = # & # "' # # #>@. # * & # –# &, " % & + # % $ # # . A @+> # $ #& >@ $ Type (! ) % &+ " #>@ $ $: x # & # & $ # " # # ; & & $ #; x # & # & $ # ; x & & & & $ # . x & & = &* ( ) " & + " #+ : 201 x Variable – step ( &* <) – # & < ; x Fixed – step ( &* <) – # & < . * ( ) " & + # &. = &* (discrete) # &$ * &. D+& & > & # # & &$ . J #& " > # (Variable – step) # (Fixed – step) < , & # * # – < & &$ # ' +&$ *(ode). ? % # $ & >@ $ Type $ # , " " " & " #+ ( # + & >). = & # $ # % % +" + >. 3. =CDCKK?D DA=H? = & * & MatLab 6.0 &<. +" 4. =CDCKK \DC!DC?D³ CD!µ 4.1. " + #& # *&$ MatLab. 4.2. A " + # > ' > * * * &. 4.3. ?* $ #> $ + . 4.4. ?* + & "# % , ' + " +& * + . 4.5. A + "+& #& , & # * & Mathcad ( ¢ 1). 5. D?!CD\²?µ D=CDAµ 5.1. A * G- + + . 5.2. H + $ # $ &. " "+ + * $ # * $ ? 5.3. H # ' &? 5.4. " "+ + * $ # * ' &. 202 5.5. #> & & " HF? 5.6. "+ # # # %& &+ #& " + Transfer Fcn, # ' H (s ) 1 s2 2 3 4 s 5 s2 5.7. " % "&$ 5.8. "#+ Simulink? 5.9. & $ +&$ +&$ . # " + ? # Simulink +"> # "# , &$ "#* *, + ? 6. =DCD µ=D\?? \DC!DC?DD U? 6.1. A "#+ #+ + ($. 2.2.1) Simulink. 6.2. = # + $ #& #& ($. 2.2.2) "#& ( +> ), $ # & # " ;?H: ' – ; " F; E ' K0; # + N=2. F K0 ;?H H (s) 1 100 ' 10 B0 A 0 A1 s A 2 s 2 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 # # #>@ " : , # B0=K0, A0=1, A1 2 2 S Fc , A2 1 >2 S Fc @2 . 6.3. = #+ $ # ;?H # "#* ($. 2.2.4). & + $ #> $ & h1(t). = + $ # "#* $ # * $ E ' Scope ($. 2.2.5). D # + t &$ # 95 % ( 105 % + $ # '). A + &* " t #& , & # & Mathcad. 6.4. & + $ # * X(t) * Fx * " + Fc # * # * ($. 2.2.3). = + $ # X(t) &$ # Y(t) ($. 2.2.5). 203 A + #& , & # & MathCAD. 6.5. = + .6.3 # * Fx=2Fc. 7. A=AD \!C!Cµ 1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 . 2. + .. MatLab. ' # # Windows: . – A=.: DCD? = , 1999. – 288 . 3. + .. "+ # # MatLab. . . – A=.: = , 2000. – 480 . 4. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 . 204 / 1 34 / 5 // MATHCAD K # " * ¢ 3 « ». A : * + + 205 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . 5 31 5 // MATLAB K # " & > * & ¢ 4 « » !DKA 2008 206 C" " 4 $%'* $ $ MATLAB 1. \² CD!µ. 1.1. " ' * MATLAB Simulink # " ; 1.2. # " $ %# " & + &. 2. C! =DA?? \DC!DC?D³ CD! 2.1. D $ & ( &) 2.1.1. $" +% " ; + (=;), > . 1, & $' $" +% ( ) X( j Z) # * # + x(n) * # & N1, & & # &$ @ $ $ qk= k¤q: N1 1 =; N >x (n )@ X( j Z) Z Z k ¦ x (n ) e jZ k n T# (1) n 0 # ¤q=q#/N – < # "' ; N – & &$ &$ & =; {0 z q#}, @ N1; k = 0, 1… N–1 – * & . . 1. E ! & < # "' # " % +> x(n) & X( j Z) =;. # " @ @+> " & (D=;): D=; N >X( j Zk )@ x p (n ) 1 N 207 N 1 ¦ X ( j Zk ) e k 0 jZ k n T# (2) A xp(n) .. # N: x p (n ) x p (n i N) , i = 0, ±1, # " x(n) < x p (n ) ¦ x (n i N) . i = " =; z D=; (1), (2) # > # ' # * & qk, * & k: =; N >x (n )@ X(k ) N 1 ¦ j 2NS k n x (n ) e , k = 0, 1… N – 1. (3) n 0 D=; N >X(k )@ x (n ) 1 N N 1 ¦ X(k ) e j 2NS k n , n = 0, 1… N – 1. (4) k 0 & D=; =; N2 ' * % N(Nz1) ' * % &$ . D " +"> # &* & +&* , &* $ # * " " : D=; N >X(k )@ 1 N ^=; N >X* (k)@`* , (5) # * z ' % . & N u N1 xp(n) = x(n), n = 0, 1.. N – 1, . . xp(n) 0…N–1 # $ #& x(n), # & (N – N1) & # # % " # E ( . 2). D=;, & 0…N–1, # x(n) =;. & N < N1 (¤q = q#/N > q# /N1) & # " &$ # N # + * x(n) ( % * ), xp(n) v x(n) n = 0.. N1z1 ( . 3). J > " % + # " . . 2. ! , "+ E#D N M N1 208 . 3. ! , "+ E#D N<N1 2.1.2. D $ & " , +">@ $ =;, % " , # . 4. D " " & ' " – " < & =;. &$ # =; $ # * @ * # # + x(n), * * ' * w(n) * # & N: ~ =; N >~ x (n )@ X(k ) N 1 ¦ x ( n ) w ( n )e jZ k n T# N 1 j ¦ ~x (n )e 2S k n N , (6) n 0 n 0 k=0,1, …N–1. U#+ ~x (n ) x (n ) w (n ) – " $ # # + + =;; qk=kq#/N fk=kf#/N – & ", "& & % " &: 1 < # "' * f#/N. " N "&$ 1 (f#/N) " ' +& qk (fk), E " k=0,1,…N–1 > , ~ ~ * & =; X( j Zk ) X(k ) . ' # , " ># $ # * , # * # ># . " T=NT# … =;N [x(n)] ~ x ( N 1) … ~ x (n ) x(n) ~ X ( j 0) ~ X ( j 1) ~ x ( 0) ~ x (1) ~ X ( j ( N 1)) w(n)N . 4. " " E#D 209 % > " < > * *, E & =; # " * * " X(jq) * $ * ( ) * ' W(jq): ~ X(j Zk ) X(j Z) * W ( j Z) Z Z , # * – , . . # % k > ( # >) $4% . D # # + , %>@ "+& + ". E $%', ', +* – % &"& & E " & $. 2.1.3. V4" +% $ $ & +*< &$ #&$ #&$ =; @ " &$ ' &$ @+> =; +&$ $ , " @ $ # " &$ . $, xp(n) # NT# ' > #& A m (Zk ) "& M(Zk ) * kf#/N $ # " # @ >A m (Z k )@2 / 2 . ', * % x(n) ( # $) ' >: x +> + X(j Z) " +> [/'], #> # | X(j Z) | M(Z) , . . #& " & & > $ " q=qk $ =;; x E * +> + E Sx(q) ( X(j Z) 2 ) " +> [2/'], "& >@> # E % & > # &$ $ qk. = "' &$ + " " &$ % " + 4" +% $ " [5]. =; # & % X( j Zk ) N 1 ¦ x (n ) e jZ k n T# , n 0 < & #>@ % "& . @ $ xp(n) # NT# kf#/N, #>@ =;, x #& #> A m (Zk ) N2 X( j Zk ) , 210 x "& – M(Zk ) arctg[X Im ( j Zk ) / X Re ( j Zk )] , x # @ 2 1 N 2 X ( j Zk ) . * # + NT# & " $ # #&, "& @ k-* * & , + + $ qk # T#X(jqk). +& $ "& =; < : x Sx(k)=|T#X(jqk)|2 z + + E qk; x Px(k) =(T#/N)|X(j qk)|2 z + + @ qk; x Sx 1 N T# N 1 ¦ Sx (k ) , Px k 0 1 N T# N 1 ¦ Px (k) – E # k 0 @ + . 2.2. + Simulink '$ $ Simulink % " # + " # =; (# " ; +). = E " % " + & % $, & . " # $ ' " +" + ' "& MATLAB. D# E # Mathcad. # * * " # $ , + & # "* " 2 «A +&* " Mathcad». C MATLAB @ @+> & + Simulink. U Simulink % " " # MATLAB, % & > #+ ( ). = " Simulink & > # : untitled ( # "# –# & # ) Library Simulink ( ) &$ "# . & < untitled $ # # + , # >@ , " +&$ &$ . " $ " $ # & + # * * @ . = E # % &+ * Block Parameters. 211 2.2.1. % # + " + #>@> > $ ( #+) ( + . 5). . 5. " " %! % K #+ + ( # * # + ) &# , " . 6, "# @+> #>@ $ : x &* + # & Analog Filter Design (DSP blockset/Filtering/Filter Design/Analog Filter Design), . 7; x + Gain (Simulink/Math/Gain), . 8. . 6. I % % ? ! MATLAB $ #& #& $ # & # " + : # ' ; x x # + N; / " %# ( # x +' + ); x E ' K. $ #& #& "#> + Block Parameters: Analog Filter Design ( . 9), #: x Design method – # ' ; x Filter order – # + . E ' "# #+ Block Parameters: Gain ( . 10). 212 . 7. . 8. 213 Analog Filter Design " Gain . 9. ? Analog Filter Design . 10. Gain 2.2.2. Power Spectral Density ( $) + * +"> " & Power Spectral Density (Simulink Extras/Additional Sinks/Power Spectral Density), . 11. * Block Parameters: Power Spectral Density, . 12, "#> #>@ & " : x Length of buffer – # ( > 128); x Number of points for fft – " &$ ( > 512); x Plot after how many points– , " # ( > 64); x Sample time – # # "' . &, # # "' , # %& &+ N & 2 , # N – ' . 214 ) ) . 11. Power Spectral Density ( ) " % () . 12. Power Spectral Density C"+& " , & Power Spectral Density, # > $ $ ( . 11.): 1. #&* (Time history); 2. #&* (Power Spectral Density); 3. " &* (Power Spectral Density (phase)). 215 H & + % " + # . J % #+, &" > Simulation % # Start, – % < Ctrl + T % @ Start simulation. 2.2.3. Signal Generator ( ) "# , +" Signal Generator (Simulink/ Sources/Signal Generator) ( . 13). . 13. Signal Generator * Signal Generator "#> #>@ &: x Wave form – : - sine– #+&* ; - square – +&* ; - saw tooth – "&* ; - random – *&* (<); x Amplitude Frequency – # ; x Units – # ' " & (Hertz – '& rad/sec – #/). 216 . 14. Signal Generator 2.2.4. Sum (+) "# %&$ +" (Simulink/ Math Operations/Sum), . 15. Sum & $ #&$ . = +" # % # $ $ #&$ " . 16. A % +" + # $ % $: x A % $ #&$ ( "& " ); E , >@ $ $ # . x A D * Sum " % . 18. # " List of sings ( " ), % + % & Sum. U "# + # " $ : x # # + " «+» «–», " # $ # , " – >@ $ $ #&$ . = +< &$ $ ' " " + + , # # # * ( : + +¹– +); # ' * % + * & ( +< 1), " x * $ # , $ #& > % +& ( , # & 4 # « " » + + + +); x # " 1 " & & E $ # ( E & # ?). 217 . 15. Sum . 16. # % " " ! # $ * > #>@ * &: ") " &x & >@ * Icon shape ( + : round ( % +) rectangular ( + ); % Show additional parameters ( "+ # +& x &) # " % + "#+ $ # + « » 218 "+ % , &< # " , &* # ' &$ " *. . 17. Sum 2.3. U' $ Simulink (? Simulation) = # E $ #, $ #@ $ > Simulation ( # )( . 18), " " % + + # + # , "+ %*< & # , , , " #+ , # "+ # . . 18. I+ Simulation 219 J& # Solver Simulation Parameters ( & # ) ( . 19), & &. Simulation time ( # ) – & # # " + (Start time) (Stop time) " * #+ . . 19. " Solver options ( & ) – & # "' ( ) # . Output options ( & & #) – & & # &$ #&$ # * & ( # & < ). = # & # "' # # #>@. # * & # –# &, " % & + # % $ # # . A @+> # $ #& >@ $ Type ( ) % &+ " #>@ $ $: x # & # & $ # " # # ; & & $ #; x # & # & $ # ; x & & & & $ # . x & & = &* ( ) " & + " #+ : 220 x Variable – step ( &* <) – # & < ; x Fixed – step ( &* <) – # & < . * ( ) " & + # &. = &* (discrete) # &$ * &. D+& & > & # # & &$ . J #& " > # (Variable – step) # (Fixed – step) < , & # * # – < & &$ # ' +&$ *(ode). ? % # $ & >@ $ Type $ # , " " " & " #+ . = & # $ # +" >. 3. =CDCKK?D DA=H? = & * & MATLAB 6.0 &<. +" 4. =CDCKK \DC!DC?D³ CD!µ 4.1. " + #& # +&$ &$ + MATLAB. 4.2. " + ' * MATLAB Simulink # " . 4.3. # + " $ $ %# " & + &. 5. D?!CD\²?µ D=CDAµ 5.1. & % # & =;. % =;. 5.2. & =; (D=;). & D=; +" =;. 5.3. " # =;. +" &$ ' *. 5.4. " " # < # " # =;? 5.5. " "# # # "' " Power Spectral Density? 5.6. "+& %> " Power Spectral Density? 221 5.7. " "# + Filter Design? 5.8. "#+ # Simulink? 5.9. & Simulink +"> # $ , &$ "#* *, +&$ +&$ + ? Analog "# - 6. =DCD µ=D\?? \DC!DC?D³ CD!µ 6.1. A "#+ #+ + Simulink. = # + $ #& #& + ($. 2.2.1) "#& ( +> ): ' – ; " F; E ' K0; F K0 4. 5. 6. 7. 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 6.2. = #+ $ # + + ($. 2.2.3). 6.3. &$ # + #> + " & Power Spectral Density ($. 2.2.2). 6.4. & + " " + # 4 : #+&* (SIN) * Fx=2Fc ($. 2.2.3); +&* (SQUARE) * Fx=2Fc ($. 2.2.3); +&* (SAWTOOTH) Fx=2Fc ($. 2.2.3); #+&* (SIN) * Fx=2Fc < (RANDOM) # F<=2Fc. A < # $ # " Sum($. 2.2.4). 6.5. = # # & + #>@ & "# Simulation parameters ($. 2.3): &* < (Variable step); # – Domain Prince 45; # – Stop time=10 / Fx (10 # $ # ). 6.6. " (Power Spectral Density) # + "+ # # "' Sample # $ # ($. 2.2.2). time=1 / (10Fx) 222 7. A=AD \!C!Cµ 1. D * =.=. ! & ' " + * $ . – : @ < , 1983. – 455 . 2. + .. MATLAB. ' # # Windows: . – A=.: DCD? = , 1999. – 288 . 3. + .. "+ # # MATLAB. . . – A=.: = , 2000. – 480 . 4. .. # . K & . . # " . / = # #. H # .. – K.: &< < , 1971. – 808 . 5. K A.\. * +&* " % . – K.: K , 1990. 223 5 31 5 // MATLAB K # " * ¢ 4 « » A : * + + 224 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . 5 6 / / 1 7 5 // MATHCAD K # " & > * & ¢ 5 « » !DKA 2008 225 C" " 5 & % "* $" $ $ Mathcad 1. \² CD!µ 1.1. " # * " " &$ # ' + - ; 1.2. " # * ' ' + (;) # * " ; 1.3. # $ # * # - * (HF) $ + . 2. C! =DA?? \DC!DC?D³ CD! 2.1. > ' ', % A " ; @ > $* + & + "# * * + * $ , % + "+* # E ' + $ # , &$ # $ . $* + ] H(z) "# * * # $ Hd(jq) "> $$ K $* +. K #& " "#> , ' & &. = # * * $ Hd(jq) " > ' & + & - " * # - * $ * (HF) – + & % $ (;?H), $ $ (;H), - >@ (==;), -" %#>@ (=U;), & (K=;) ( . 1) ; " + * * $ *. K &+ " & % ; * $ * ' # ' " + . ! & $ ; # & # q# $ #+ (HF) (;HF) #> * * * + q = 0 q#/2, $ # "#+ (0– q#/2) (0–) &$ = qT# ( . 1). $ #& #& # " ; "# * * $ ( . 1) >: x & ", "# % q, q", #>@ '& " , "# % $ #&$ + ; + x # + HF ( '$ & &$ HF) =, #; 226 x + "$ HF "# % U, #. = =, U, #>@ # & < ' "# * # " * HF |Hd(jq)|, > . 1 # * HF |H(jq)| 1 "# % ~2: (1–~1) ==20lg[1/(1–~1)], #; U=20lg(1/~2), #. &#& . 1 "> # < ' , & # % % + >@ HF |H(jq)|, " . 1, . 2.2. V "* $" K # * " . = # * " " ; &* &* + - (;=) # * ' * ?(s) * $ * H(j¡), # " "& # * ' * H(z) * $ * H(jq) ;: ;= ; ;= s f (z) H(s) o z f 1 (s ) m H ( j :) H ( z) ; : f (Z) o Z f 1 (: ) m H( j Z) A "+ E # * s=f(z) * z=f–1(s) ">@ ' >@ s=j¡ z=ejqT# " ¡=f(q), q=f–1(¡) ' + . A @+> E $ " * #> ;=, & $ < " & # " # ' H(s), " " > # > ' > ; H(z). = ">@ ' # %& # + #>@ : x S- + s=+j \, <0, * "@> >& * ;=, # % # %+ + # # |z|<1, Z- "@> > * ;, . . * ;= # % + * &* ;; x + j¡ ;=, ¡=(0 ± w), # % # , . . # $ #, %+ % + # # 227 Z- e jZT# , q=(0 ± q#/2), " + &$ $ $ + . ) |Hd(jZ)| 1 1-G1 = $ # = G2 0 ) Z = "# % Zc Z" Z#/2 |Hd(jZ)| 1 = $ # 1-G1 = G2 0 ) 1 1-G1 G2 0 ) 1 1-G1 G2 0 #) Z = "# % Z" Zc Z#/2 |Hd(jZ)| = $ # 1 = $ # 2 = "# % 1 = Z"1 Zc1 = "# % 2 Z0 Zc2 Z"2 Z Z#/2 |Hd(jZ)| = $ # 1 = 1 = $ # 2 = "# % Zc1 Z"1 = 2 Z0 Z"2 Zc2 Z Z#/2 |Hd(jZ)| 1 1-G1 G2 0 Z Z"1 Zc1 Zc2 Z"2 Z"3 Zc3 Zc4 Z"4 . 1. # CA ,D 228 Z#/2 J * " , # #>@ " : s=f(z)=(2/T)[(1–z–1)/(1+z–1)] K % % * < (1) (2) z–1=[(2–sT)/(2+sT)] " * '# & $ # * " #, + S- % # > % + Z- (# |z|=1) Im[z] Im[s] Re[s] . 2. Re[z] " ! * " – # " ' . J ", %# * Z- # s- . " E * # " #, ++ K $ * * '# % . K # ' &$ + # * " > $ %# #$ #@* # * ' ?(s) + * * " # # * ' H(z) ' + H(z) H(s) |s (2/T)(1- z -1 )/(1 z -1 ) (3) = E " # $ + & $ , * * + . D# E ", & $ ' + # &, # + $ « ». ? , # $ + # 0 <:< f, >@ * ' * + , &* @+> < (3), # #+ #>@* HF 0 <Z< f,. 229 ! +, HF + k #G # 0 <:< f, # - $ >@ ' + # #+ k #G # . "+ $ # & ; & " > # : F # " . 3. ' Z T 2 tg ( ) 2 T (4) * " - . 3. # CA ! ! DGC CA ! DGC Zc 1 #/ $ # # ;?H – : : c + T 2 tg ( ) . 2 T * " > '# $ # &$ ' & + $ # &$ $ " . J ", < & & + & * $ # * +> %> < & ' & + & " K . E "> @ E # > # + * $ . ?# * " , * + < %# ' * * Z * * ¡ # ? ', , &$ + . , E " , $+% ,. 230 2.3. & U] $ + $$+ " %& # # ; . # + - (;=) $ %# >@ + - " $ (;=?H). #+*< +" #$ #@ $" # # E " $ &* ;=. ? ', $+' " E &* + " %&* ' * F+ ( + * + * $ *), &* # #G & . = +> E '# " . 3.. C + " $ ( * :=1 #/), # >@ "#& $ . C + " $ ( * :=1 #/), # >@ "#& $ . ;=?H ;=?H " # # ;=?H >@ * &* + - (;=). * " ;=?H ' * + - " $ (;=?H). ;= ;=?H * " ;= ' * + , # >@ * #G & . " ;, # #G . ;=?H >@ * & - ; ; ) ) . 3. #" % = '# & $ # # $+%* , <* > $ < $ 231 # ' &$ + , + " . V "* $" ( "-" * < %# ' * * Z * * :) # < "+& + # $ &$ $ + , & # > * - "> ' >. J ", $+ " ( . 3.) $ < $ # + $ $ , " %#>@ $ &$ &$ + . > E $ # +" # * #$ # ' &$ F- + . ! * " % . 3.. E $+ " # # & ' & " $ . A# + , & #&#@ $ # "#$ '# & $ # + $ < "+&. E #$ # $ %# #$ #@ + - " $ . &* % ' * + " $ (]&E^). ? ', +" $" # $ # ' " $ + , . . ' + #$ #@ $ "# % # >@ #G & . 2.4. E^-$$ (D&E^) A " ;=?H > & >@* ' , # # + m, " * * s0i > spi # * ' "#& & ¡ = 1, ¡" # < ' ~1, ~2 (A, A"). ? > " ;=?H +> #> # > ' > H(s): m1 H(s) C (s s 0 i ) i 1 m (5) (s s pi ) i 1 # A – >@ * % +; m1 – &$ * (m1 < m). A# +, > ;=?H > @ & - %& ( " # + * +>), & & . A " ;=?H "> ' "# * # " * HF @+> >@ $ >@ $ ' *. 232 >@ $ ' * +"> & # . +& ' !* ( +& ), H&< , # & – E –U (E + &), H&< . = # & ' + + * ' * > &$ *, $ & $ & "# % . + # * ' * # & ' > &$ $ "# % , & $ – +' ( &) E * . ; + & H&< E > & +' . ! & &$ $ " ;=?H + * # * ' #& . 4. . 4. < ! D#GC, "+ "+ " &$ $ & +' $ "& >@ & * > ¡pi, ¡0i =;. 233 ; + & # * ' * > < $ "$ # # + +< " # "# "$ * $ . % . ' ;=?H # C H(s) (6) n (s s k ) > jS 1 ( 2k 1) 2 2n k 1 @ # s k V k j \ k e , A – . ? # + # "# > U * :U. n lg(A 2" 1) 2 lg(: " ) (7) + &* # n, # # + # > ' > + # " # # &$ " + C , V k cos S 22kn1 12 . H(s) n / 2 > > 2 (s 2V k s 1) @ k 1 % ^"'4 1. ' ;=?H H&< 1 H(s) # + n C n # (8) (s s k ) k 1 # s k sh (M) V k j \ k , Vk J J 1 , 2 ch (M) sh (M) sin[ 22kn1 S] , \ k J J 1 , 2 J ª1 H 2 1 º « H » ¼ ¬ 1/ n ch (M) cos[ 22kn1 S] , , H – +' - . ? # + H&< 1 # "# > U * :U +' H. n lg(g g 2 1) lg(: " : 2" 1) ,g A 2" 1 H2 . (9) + &* # n, # # + # > ' > + # " # # &$ " + C . H(s) n / 2 2 2 2 (s 2V k s V k \ k ) k 1 234 % ^"'4 2 ('*). ' ;=?H H&< 2 ( ) # n (s sn k ) H(s) C kn 1 (10) (s sp k ) k 1 # sp k V k j \ k – >, sn k Dk ,\k 2 :U Ek ch (M) cos[ 22kn1 S] , sh (M) D 2k Ek : U Ek 2 D k E2k Vk , Dk j -k j :U cos[ 22kn1S] – . sh (M) sin[ 22kn1 S] , J J 1 , ch (M) 2 J J 1 ,J 2 ªA A 2 1º U «¬ U »¼ 1/ n . ? # + H&< 2 % # "# > U * :U +' ( & % 9). + &* # n, # # + # > ' > + # " # # &$ " + n/2 s 2 -2k H(s) C 2 2 2 k 1 (s 2Vk s V k \ k ) . 2.5. &, D&E^ ] $ &* + - " $ (;=?H) " + - (;=) @+> #>@ $ &$ " *: s ( + " $ ); :u : D&E^-D ^: s o u ( + & $ ); s 2 s :u :l D&E^-D&: s o ( * + ); s(: u : l ) s(: : l ) D&E^-DU: s o 2 u ( % &* + ). s :u :l D&E^-DE^: s o :u – $ ", :l – % ". = &* ;= " &* ; @+> * " (1, 3). ;=?H % &+ " ;=?H * " (1, 3). & > & " # ;: 235 ]&E^-]E^: z ]&E^-] ^: z ]&E^-]&: z k ctg( >Z u Zl @ 2 k tg ( >Z u Zl @ 2 1 1 T) tg( ]&E^-]U: z 1 1 T) tg ( o z 1 D 1- D z o ,D 1 sin( T) 2 >Zc Z u @ sin( T) 2 z 1 D 1 D z >Zc Z u @ ,D 1 cos( >Z c Z u @ > k 1 @ k 1 , D o k 1 z 2 >2 D k @ z 1 1 k 1 k 1 cos( ; >Z u Zl @ T) 2 , >Z u Zl @ cos( T) 2 T) ; >k 1@ 1 k , D o 1 k z 2 >2D @ z 1 1 1 k k 1 Z0 2 T) 2 >Zc Z u @ cos( T) 2 z 2 2D k z 1 k 1 Zc 2 ; z 2 2D z 1 1 k cos( >Z u Zl @ T) 2 >Z u Zl @ , cos( T) 2 T) . Zu – $ ", Zl – % ", Z0 – ' + # # "' . =; C;, Z – " ;=?H, T – 2.6. !" ] "* $" Mathcad D ; Mathcad # " + . # " ' $ % (&) $$* ^"'4 1 , $ D&E^ – 2. 2.6.1. ,', ', 3 F# 4 10 - H # "' T# ( F#) 1 T# 4 2.5 u 10 ;, ' - # # "' fx 100 - ' + & dF 20 - f1 f1 2 F# 2 S § 2 S fx · ¸ © 2 F# ¹ tan ¨ 100.206125367257 A 1 - N 2 - Nr N ;, ;, ' dB 2 S dF ;, ' # ; Zx 2 S fx dB Zx 628.3185 125.6637 - #&% * # *& " Z1 2 S f1 Z1 + +' * A 629.6137 ;, # 236 H 10 10 1 H 0.5088 2.6.2. U $? E^ 1 N 2· § 1 J ©H 1 H ¹ V JJ 1 2 2 O V \ 2 k 1 º sin ª« S» ¬ ( 2 N) ¼ 2 - >@ * E P1 V i \ 2 P2 1 . cos ª« 2 k 1 Sº» ¬ ( 2 N) ¼ ' P2 V i \ 0.5489 0.8951i P1 \ JJ + - > ;- 0.5489 0.8951i O 1.1025 2.6.3. U D^H %-$$ Zmin Zx dB 2 Zmax Zx dB 2 dZ Z Zmin Zmin dZ Zmax s Z i Z s1 Z s Z 2 -# " HF s Z dB H Zx + - " ;- =; "#& - " # * ' ;- 2 s1 Z 2 V O § H Zx 2 1.0002 20 log¨ © H Zx s1 Z 1 2 Z1 1 H Z O Zmax Zmin ( 100) · 34.056 ¸ ¹ - " HF ;- . 1.5 H( Z ) 1 0.707 1 0.5 60 70 80 90 100 Z ( 2 S ) 110 120 1 . 5. < CA D# ( % CH 237 130 1 ) 140 2.6.4. U K ] 2· § 2· ª 4 ª 2 F# 2 2 V 2 F# § ºº Z1 ¨ 1 2 Z1 ¸ ¨ 2 V Z1 ¸ « »» · C0 « §¨ « © dB ¸¹ ¨ dB 2 F# dB ¹ « 2 ¸ 2 2 »» dB ¹ © ¬ © ¬ ( 2 F#) dB ¼ ¼ B C0 0 B 0 B 2 C0 1 B 0 2 3 B C0 1 A 1 4 0 A 2· 4 2 ºº ª § ª Z1 « 4 § 2 F# · 2 § 2 V 2 F# · 2 ¨ 2 V Z1 ¸ 4 « » » C0 ¨ ¸ « ¨© dB ¸¹ « 2 2 »» © dB ¹ © 2 F# dB ¹ ¬ ¬ ( 2 F#) dB ¼ ¼ A 2· 4 ºº ª 2 F# 2 § ª Z1 « 6 § » » C0 · 2 ¨ 1 2 Z1 ¸ 6 « « ¨© dB ¸¹ ¨ « 2 ¸ 2 2 »» dB ¹ ¬ © ¬ ( 2 F#) dB ¼ ¼ A 2 ª « 4 § 2 F# · « ¨© dB ¸¹ ¬ A 2· § 2· ª 4 ª 2 F# 2 § ºº Z1 «§ » » C0 · § 2 V 2 F# · ¨ 1 2 Z1 ¸ ¨ 2 V Z1 ¸ « « ¨© dB ¸¹ ¨© dB ¸¹ ¨ 2 F# dB ¹ « 2 ¸ 2 2 »» dB ¹ © ¬ © ¬ ( 2 F#) dB ¼ ¼ 1 2 3 4 §¨ 2.3955u 10 4 ·¸ ¨ ¸ 0 ¨ ¸ B ¨ 4.791 u 10 4 ¸ ¨ ¸ 0 ¨ ¸ ¨ 2.3955u 10 4 © ¹̧ 4 2.3955u 10 C0 2· 4 § ª ºº Z1 § 2 V 2 F# · 2 ¨ 2 V Z1 ¸ 4 « » » C0 ¸ « 2 2 »» © dB ¹ © 2 F# dB ¹ ¬ ( 2 F#) dB ¼ ¼ 2 ¨ § 1 · ¨ ¸ 3.9165 ¨ ¸ A ¨ 5.8008 ¸ ¨ 3.85 ¸ ¨ ¸ © 0.9663 ¹ - " E ' ; 2.6.5. U D^H ] Zmin Zx dB 2 Zmax Zx dB 2 dZ Z Zmin Zmin dZ Zmax zZ e i Z T# H2z Z -# " B B z Z 0 0 1 1 1 A A z Z H2z Zx Zmax Zmin ( 100) 1 B z Z HF 2 2 1 A z Z 2 1 B z Z + 3 3 2 A z Z 3 § H2z Zx 2 · 35.1586 - " HF ; ¸ © H2z Zx ¹ 20 log¨ 238 B z Z 4 4 3 A z Z 4 4 . 1.5 H2z ( Z ) 1 0.707 1 0.5 60 70 80 90 100 110 Z ( 2 S ) 120 130 140 1 . 6. < CA ! ,D ( % CH 1 ) 2.6.6. U ] * 1 Nmax floor fx pi 0 3 i 0 Nmax y pi F# 10 - & &$ Nmax 400 0 - &$ &$ # ; j 4 Nmax w 2 S ( fx 1) Ux 1 - # $ # x ( Ux 1 sin ( w T# i) Ux 0) - & $ # i 4 § 4 · ¨ B x A y ¸ y j ¨ t j t t j t ¸ t 0 t 1 © ¹ ¦ yi 1 xi ¦ - & &$ # - & ; 2 1.6 1.2 0.8 0.4 0.4 0 0.8 1.2 1.6 2 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 i T# . 7. ,D ! ! (fx=100 <) 2.6.7. U ] +$ * = # $,* , ] $ # "#* "# #>@ " x i 1 if i t 2 0 otherwise 239 . . yi 1 xi 1.5 1.25 1 0.75 0.5 0.25 0.25 0 0.5 0.75 1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 i T# . 8. # ,D 2.6.8. U $? ] U E ' & " # * ' ; (' A), % # + > ;. E $ # + # # E ' ' ( + " # * ' ; E ' & '& A –1 > * z ). Na rows ( A ) 1 jk 0 Na AA jk A Na jk O2 polyroots ( AA ) jk 0 rows O2 1 § 0.9663 · ¨ ¸ § 0.9764 0.168i · ¨ ¸ ¨ 3.85 ¸ 0.9764 0.168i ¸ ¨ ¨ 5.8008 ¸ O2 ¨ 0.9819 0.1427i ¸ ¨ 3.9165¸ ¨ 0.9819 0.1427i¸ ¨ ¸ © ¹ © 1 ¹ AA O2 jk 0.9908 0.9908 0.9922 0.9922 # > ; +< 1, ; * &*. # > % % # # , # + , ; * &*. 2.7. !" +, $ ] 2.7.1. &* % (&) (D&E^ 2 $) E ' & + & > %, " &< =; H&< 1 # (;=?H 2 #), $. 2.6, > + - #> & % V cos ª«ª« 1 ¬¬ 2 2 O V \ 2 2 k 1 º - P1 V i \ P1 1 2 k 1 º º \ sin ª«ª« . » S» ¬¬ 2 ( 2 N) ¼ ¼ S»º » ( 2 N) ¼ ¼ 0.7071 0.7071i >@ * E P2 V i \ P2 ' - > ;- 0.7071 0.7071i 240 + O 1 2.7.2. E^ ^"'4 1 (D&E^ 2 $) C > + " + H&< 1 # (;=?H 2 #), $. 2.6. = $ # ;=?H ;= +" " s Z i Z E s1 Z s Z - " ;- ;?H "#& Z1 ' & + & > #>@ " : 1 B 0 B 2 B 1 2 D # , # ' # + , +< # * ' ; H2z Z 1 1 A A z Z 0 2 j 0 B z Z 2 2 1 1 pi 0 2 y A 1 § 2 V 2 F# · ( 1)»º B ¨ ¸ © O Z1 ¹ ¼ 0 A z Z 2 2 . , % &$ &$ #&$ & ' + . . 0 + E 2. A&$ "- B B z Z 0 B B 0 2 F# · § 2 V 2 F# · ( 1) §¨ ¸ ¨ ¸ O © Z1 ¹ © O Z1 ¹ 2 ª 2 2 F# 2 ª º · ( 2)» B A « 1 § 2 F# · A « §¨ ¸ ¨ ¸ 1 ¬ O © Z1 ¹ ¼ 0 2 ¬ O © Z1 ¹ 1 y pi # - 0 2 · § 2 ¨ B x A y ¸ t j t t jt ¸ ¨ t 0 t 1 © ¹. ¦ ¦ 3. =CDCKK?D DA=H? = & * & Mathcad 2000 &<. 4. +" - =CDCKK \DC!DC?D³ CD!µ 4.1. & + " ;- , "+ + " > PP * P0, + " + HF ;- (;=). 241 4.2. C + E ' & # * ' ;, % " > ;. = " + % > * * Z- . 4.3. C + " + HF ;, + HF "#& . 4.4. ?* + # + – $ #> $ + . 4.5. ?* + & "# % , ' + " +& * + . 5. D?!CD\²?µ D=CDAµ 5.1. H + $ # ' ;? 5.2. * # > ' > ; " >? 5.3. # $ ;? 5.4. H # ; "& " "' + ? 5.5. H > # * ' ;? 5.6. # + * + ; " * > ? 5.7. * " * > # " E ' ? 5.8. H * ">@ ' ? "> & ' + * " ? 5.9. #> + - # * " ? 5.10. & >@ $ ' *, +"&$ " ;? " # " ; # >@* ' ? 5.11. " &* ;?H- ' * =;, ;?H, ;H, C;? 5.12. ' Mathcad " + > ; E ' ? # + * + ; >? 5.13. U + & % # # $ # * $ ;. 5.14. U + & ; 3 # Mathcad. 5.15. # # ' + Mathcad? 242 6. =DCD µ=D\?? \DC!DC?DD U? 6.1. = # + $ #& #& ($. 2.6.1) "#& ( +>), $ # & # " E^: ' – $ ^"'4+ 1 ($. 2.7.2); " F; E ' K0; # + - N=2, +' – 1#. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 = $ # #&% & " F # ' % , *& " . = E " + - F1. 6.2. & + > ;= " $ % * ($. 2.6.2). 6.3. & + # * ' + HF + - ($. 2.6.3). 6.4. & + E ' ; ($. 2.6.4). 6.5. & + > ; " $ % * ($. 2.6.8). 6.6. = + HF ; ($. 2.6.5). = HF + "#& . U + " HF $ " "# % (2Fc). 6.7. = + $ #> $ ' + # + ($. 2.6.7). 6.8. D # + ; $ # * * ($. 2.6.6) * Fx=Fc # * # *. = + + + " HF. 6.9. D # + ; $ # * * ($. 2.6.6) * Fx=2Fc # * # *. = + + + " HF. 6.10. '$% ($.$. 6.1 – 6.9) ' + (=;) ' * 2 #, 'F=0.1Fc. H " Fc %*. 243 7. A=AD \!C!Cµ 1. C \., # . ! ' * . /= . . # #. °.?. # . – K.: K , 1978. – 848 . 2. +# \.K. # . . – 2- "#., . # . – K.: C# "+, 1990. – 256 . 3. .. C# $ + +> +Mathcad. – K.: – ! , 2001. – 416 . 4. .A. : . 2 . H.1. – : "#- !, 2001. – 199 . 5. A .. . – A=.: = , 2003. – 604 . 244 5 6 / / 1 7 5 // MATHCAD K # " * ¢ 5 « » A + * + 245 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . ! " -! I # " "G MATLAB K # " & > * & ¢ 6 « » !DKA 2008 246 C" " 6 & H-% "* $" $ $ MATLAB 1. \² CD!µ 1.1. " + " F- + # * " MATLAB; 1.2. " ' + # * " ; 1.3. # $ " ' + . 2. C! =DA?? \DC!DC?D³ CD! 2.1. V "* $" K # * " . = # * " " ; &* &* + - (;=) # * ' * ?(s) * $ * H(j¡), # " "& # * ' * H(z) * $ * H(jq) ;: ;= ; ;= ; s f (z) H(s) o z f 1 (s ) m H ( j :) H (z) : f (Z) o Z f 1 (:) m H( j Z) A "+ E # * s=f(z) * z=f–1(s) ">@ ' >@ s=j¡ z=ejqT# " ¡=f(q), q=f–1(¡) ' + . A @+> E $ " * #> ;=, & $ < " & # " # ' H(s), " " > # > ' > ; H(z). * " , # #>@ " : s=f(z)=(2/T)[(1–z–1)/(1+z–1)] (1) K % % * < z–1=[(2–sT)/(2+sT)] (2) " * '# & $ # * " #, + S- % # > % + Z- (# |z|=1) 247 Im[z] Im[s] Re[s] . 2. Re[z] " ! * " – # " ' . J ", %# * Z- # s . " E * # " #, ++ K $ * * '# % . K # ' &$ + # * " > $ %# #$ #@* # * ' ?(s) + * * " # # * ' H(z) ' + H(z) H(s) |s (2/T)(1- z -1 )/(1 z -1 ) (3) = E " # $ + & $ , * * + . D# E ", & $ ' + # &, # + $ « ». ? , # $ + # 0 < : < f, >@ * ' * + , &* @+> < (3), # #+ #>@* HF 0 < Z < f,. ! +, HF + k #G # 0 < : < f, # - $ >@ ' + # #+ k #G # . "+ $ # & ; & " > # : F # " . 3. ' Z T 2 ) tg ( 2 T 248 * " (4) - . 3. # CA ! ! DGC CA ! DGC Zc 1 #/ $ # # ;?H – : : c + T 2 tg ( ) . 2 T * " > '# $ # &$ ' & + $ # &$ $ " . J ", < & & + & * $ # * +> %> < & ' & + & " K . E "> @ E # > # + * $ . ?# * " , * + < %# ' * * Z * * ¡ # ? ', , &$ + . , E " , $+% ,. 2.2. & U] $ + $$+ " %& # # ; . # + - (;=) $ %# >@ + " $ (;=?H). #+*< +" #$ #@ $" # # E " $ &* ;=. ? ', $+' " E &* + " %&* ' * F- + ( + * + * $ *), &* # #G & . = +> E '# " . 3.. 249 V "* $" ( "-" * < %# ' * * Z * * :) # $ < "+& + # $ &$ $ + , & # > * - "> ' >. J ", $+ " ( . 3.) $ < $ # + $ $ , " %#>@ $ &$ &$ + . C + " $ ( * :=1 #/), # >@ "#& $ . C + " $ ( * :=1 #/), # >@ "#& $ . ;=?H ;=?H " # # ;=?H >@ * &* + - (;=). * " ;=?H ' * + - " $ (;=?H). ;= ;=?H * " ;= ' * + , # >@ * #G & . " ;, # #G . ;=?H >@ * & - ; ; ) ) . 3. #" % > E $ # +" # * ' &$ F- + . ! * " % E $+ " # # & ' & " $ . &* #$ # $ %# #$ #@ " $ . &* % 250 #$ # . 3.. + ' - * + - " $ (]&E^). ? ', +" $" # $ # ' " $ + , . . ' + #$ #@ $ "# % # >@ #G & . 2.3. E^-$$ (D&E^) A " ;=?H > & >@* ' , # # + m, " * * s0i > spi # * ' "#& & ¡ = 1, ¡" # < ' ~1, ~2 (A, A"). ? > " ;=?H +> #> # > ' > H(s): m1 H(s) C (s s 0 i ) i 1 m (5) (s s pi ) i 1 # A – >@ * % +; m1 – &$ * (m1 < m). A# +, > ;=?H > @ & - %& ( " # + * +>), & & . A " ;=?H "> ' "# * # " * HF @+> >@ $ >@ $ ' *. ! & &$ $ " ;=?H + * # * ' #& . 4. &$ $ & +' $ "& >@ & * > ¡pi, ¡0i =;. % . ' ;=?H + > #> HF. = # + # "# > U * :U. n lg(A 2" 1) 2 lg(: " ) (6) % ^"'4 1. ' ;=?H H&< 1 % + > & &* $ # " & " %# "#&$ % $ . 251 = # + H&< 1 # "# H. > U * :U +' n lg(g g 2 1) lg(: " : 2" 1) ,g A 2" 1 H2 . (7) . 4. < ! D#GC, "+ "+ " % ^"'4 2 ('*). ' ;=?H H&< 2 ( ) + >, & &* $ # " & " %# "#&$ % $ " %# . = # + H&< 2 % # "# > U * :U +' ( & % 7). 2.4. &, D&E^ ] $ &* + - " $ (;=?H) " + - (;=) @+> #>@ $ &$ " *: 252 s ( + " $ ); :u : D&E^-D ^: s o u ( + & $ ); s 2 s : u :l D&E^-D&: s o ( * + ); s(: u : l ) s(: : l ) D&E^-DU: s o 2 u ( % &* + ). s : u :l D&E^-DE^: s o :u – $ ", :l – % ". = &* ;= " &* ; @+> * " (1, 3). ;=?H % &+ " ;=?H * " (1, 3). & > & " # ;: >Z Z @ sin( c u T) z 1 D 1 2 ]&E^-]E^: z o ,D ; >Z Z @ 1 1- D z ]&E^-] ^: ]&E^-]&: k ctg( >Z u Zl @ 2 tg ( >Z u Zl @ 2 c u T) 2 >Z Z @ cos( c u T) z 1 D 1 2 ,D z o 1 > Zc Zu @ 1 D z cos( T) 2 z 2 2D k z 1 k 1 1 k 1 k 1 , z o k 1 z 2 2 D k z 1 1 k 1 k 1 > T) tg( Zc 2 T) tg ( > @ @ Z0 2 ; D cos( >Z u Zl @ cos( >Z u Zl @ T) 2 >Z u Zl @ , cos( T) 2 T) ; >k 1@ 1 k , z 1 o 1 k z 2 >2D @ z 1 1 1 k k 1 z 2 2D z 1 1 k ]&E^-]U: k sin( D T) 2 >Z u Zl @ , cos( T) 2 T) . Zu – $ ", Zl – % ", Z0 – ' + # # "' . =; C;, Z – " ;=?H, T – 2.5. + Simulink $ ', H– % "* $" C MATLAB @ @+> & + Simulink. U Simulink % " " # MATLAB, % & > #+ ( ). 253 = " Simulink & > # : untitled ( # "# –# & # ) Library Simulink ( ) &$ "# . & < untitled $ # # + , # >@ , " +&$ &$ . " $ " $ # & + # * * @ . = E # % &+ * Block Parameters. 2.5.1. % # & ' #>@> > $ ( #+), + (;) . 5. - . 5. " " ! % K #+ ' + "# @+> Digital Filter Design, . 6 (DSP Blockset/Filtering/Filter Design/ Digital Filter Design). . 6. Digital Filter Design $ #& #& ; "#> Parameteters: Digital Filter Design ( . 7). 254 + Block . 7. ? Digital Filter Design ' + E& * & 6 : x Current Filter Information – % ' " ' + ( # – Order, * + – Stable/Unstable, – Sections, & + – Filter structure); x Filter Type – "# + : x Lowpass – ;?H; x Highpass – ;H; x Bandpass – * + =;; x Bandstop – % &* + C;; x Differentiator – # ' &; x % # & + ; x Design Method – "# # ' : x IIR – F- + &: x Butterworth – + ; x Chebyshev Type I – + H&< 1 #; x Chebyshev Type II – + H&< 2 #; x Elliptic – + E * (U -E ); x FIR – F- + & ( % # # $ " $ * ¢ 7 «= ' F- + MATLAB»): 255 x x x x x x x x x x x x Filter Order – "# # + - (Specify order) & % + # + (Minimum order); Frequency Specifications – "#> & & + ( % "+ " & + ): Units – # '& " & (Hz – ', Normalized (0 to 1) – " &* + ( +&$ # '$); Fs – # "' ; Fstop1 – % & " %# ( * "$ Astop1, #); Fpass1 – % & ( * "$ Apass, #); Fpass2 – $ & ( * "$ Apass, #); Fstop2 – $ & " %# ( * "$ Astop2, #); Magnitude Specifications – "#> E ' & "$ + : Units – # '& " E ' "$ (dB – #, Squared – +& # '&); Apass, Epass – E ' & "$ ; Astop, Estop – E ' & "$ " %# . % "+ , & # " &$ #* * Digital Filter Design + , # %@> & #>@ " : "#+ &* * &+ * $ + * + # % ;; ;; ;; ; # # + # +> # % + # #* ; + < "#; # % ; +< # % ; 256 ; & # #+ Filter Visualization Tool " + . "+ + D Filter Visualization Tool " & + , : HF + ; ;HF # + ; # + $ HF ;HF + ; ; ' + "#* ( $ # $ ); * > + * Z- ; " E ' # * ' + (Numerator – ' & "). E ' & , Denominator – E 2.5.2. Gain (+%) = + Digital Filter Design " & + + & + &, . . # & , # E ' # , >@ $ # '&, $ # +" + # +&* Gain (Simulink/ Math/ Gain) ( . 8). . 8. 257 Gain E ' "# Block Parameters: Gain ( . 9). * . 9. Gain 2.5.3. Signal Generator (+%'* ) , & #+ $ # + , +"> +&* Signal Generator (Simulink/ Sources/Signal Generator) ( . 10). . 10. 258 Signal Generator * ( . 11) Signal Generator "#> #>@ &: x Wave form – : x sine– #+&* ; x square – +&* ; x saw tooth – "&* ; x random – *&* (<); x Amplitude Frequency – # ; x Units – # ' " & (Hertz – '& rad/sec – #/). . 11. Signal Generator 2.5.4. Zero-Order Hold (+* '"-,, H) H & $ # ; #+ ' * , +" F, " &* &$ # (Signal Generator) # & & . F +" Zero-Order Hold (Simulink/ Discrete/ Zero-Order Hold) ( . 12). * Zero-Order Hold "# # # "' Sample time ( . 13). , " . 13, # # "' # * # "' , . . 4000 '. A# +, # "' , & Zero-Order Hold, # % &+ # "' Fs, " * ' + ($. 2.5.1). 259 . 12. Zero-Order Hold . 13. Zero-Order Hold 2.5.5. Step Step (Simulink/ Sources/ Step) ( . 14), +" # " # "#* . = & * ( . 14), Step time "# "#* , $ Initial value Final value – + " #& "#* , Sample time – # # "' &$ # ( # >, & &). 260 ) . 14. ) Step ( ) ! () H & * + # "#* ($,+? ,+), % + #>@> > $ ( . 15). . 15. " " % 2.5.6. Scope () "+ +"> , & # > + &$ ; % Scope( ' ) (Simulink /Sinks/ Scope) ( . 16). Scope # $ # " ' # >#+ >@ +" '&. D & ' $ # (. . %&$ , # % %+ # 30 ). " ' % 261 + + E . J ' # $ # # , " . 17 ( &# . 16. Scope . 17. ' ! Scope " 262 &). # > * ?% & Scope (Scope parameters) ( . 18). Number of axes "# $ # ' , Time range – $ * # , % ' , Tick labels – % * # (all – , none – *, bottom axis only – + " + +). C # +" + * , & & >. . 18. Scope 2.6. U' $ Simulink (? Simulation) ? , > Simulation ( # ) # % + # ( . 19), > > + # # * # . = # E $ # " " % + + # + # , "+ %*< & # , , , " #+ , # "+ # . C # # #+> # , & # # > Simulation Parameters ( & # ) ( . 20). J& # Solver & &. Simulation time ( # ) – & # # " + (Start time) (Stop time) " * #+ . Solver options ( & ) – & # "' ( ) # . 263 . 19. I+ Simulation . 20. " Output options ( & & #) – & & # &$ #&$ # * & ( # & < ). = # & # "' # # #>@. # * & # –# &, " % & + # % $ # # . A @+> # $ #& >@ $ Type (! ) % &+ " #>@ $ $: x # & # & $ # " # # ; 264 x x x x # & & & $ #; & & # & $ # ; & & & & $ # . = &* ( ) " & + " #+ : x Variable – step ( &* <) – # & < ; x Fixed – step ( &* <) – # & < . * ( ) " & + # &. = &* (discrete) # &$ * &. D+& & > & # # & &$ . J #& " > # (Variable – step) # (Fixed – step) < , & # * # – < & &$ # ' +&$ *(ode). ? % # $ & >@ $ Type $ # , " " " & " #+ ( # + & >). = & # $ # % % +" + >. 3. =CDCKK?D DA=H? = & * & MATLAB 6.0 &<. +" 4. =CDCKK \DC!DC?D³ CD!µ 4.1. " + " F- + # * " MATLAB. 4.2. & + " F- + , " + % > * + * Z- , + E ' & # * ' ;, + HF "#& . 4.3. ?* $ #> $ + . 4.4. ?* + & "# % , ' + " +& * + . 5. D?!CD\²?µ D=CDAµ 5.1. H + $ # ' ;? 5.2. H # ; "& " "' + ? 265 5.3. H > # * ' ;? 5.4. # + * + ; " * > ? 5.5. H * ">@ ' ? "> & ' + * " ? 5.6. #> + # * " ? 5.7. & >@ $ ' *, +"&$ " ;? " # " ; # >@* ' ? 5.8. & + " "+ + Filter Visualization Tool Digital Filter Design? 5.9. +" Gain # & ;? 5.10. " Zero-Order Hold # & ;? 5.11. " "# # # "' ZeroOrder Hold # % &+ ? 5.12. & $ # +, & &$ # Step + & /# "#* ? 6. =DCD µ=D\?? \DC!DC?DD U? 6.1. A "#+ #+ + ($. 2.5.1) Simulink. = # + $ #& #& ($. 2.5.1) "#& ( +>), $ # & # " E^: ' – $ ^"'4+ 1 ($. 2.7.2); " F; E ' K0; # + - N=2, +' – 1#. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 H # "' + * 4 '. 6.2. = " " + . = + " + #>@ & + : % > * + Z- , E ' & # * ' , HF. 266 6.3. A + "+& + , & " ; Mathcad ( ¢ 5 «= ' + # * " Mathcad»). 6.4. = #+ $ # ; # "#* ($. 2.5.5) & + $ #> $ &. 6.5. A + & "+& #& , & " ; Mathcad. 6.6. = #+ $ # ; * ($. 2.5.3) * Fx * " + Fc # * # *. = + $ # &$ # . D' + " +& * + . A + "+& #& , & # & Mathcad. 6.7. = + $.6.5 # * Fx=2Fc. 6.8. &% $+' 6.1 – 6.6 # ' + (=;) ' * 2 #: ' + & F; E ' K0, 'F=0.1Fc. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 H # "' + * 4 '. 6.9. &% $+' 6.1 – 6.6 # ' % + (C;) ' * 2 #: ' + & " %# F; E ' K0, " %# 'F=0.1Fc. F K0 1 100 ' 10 2 200 ' 20 H # "' 7. 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 + * 4 '. A=AD \!C!Cµ 1. .A. : . 2 . H.1. – : "#- !, 2001. – 199 . 2. + .. "+ # # MatLab. . . – A=.: = , 2000. – 480 . 267 3. 4. 5. 6. + .. MatLab. ' # # Windows: . – A=.: DCD? = , 1999. – 288 . +# \.K. # . . – 2- "#., . # . – K.: C# "+, 1990. – 256 . C \., # . ! ' * . / = . . # #. °.?. # . – K.: K , 1978. – 848 . A .. . – A=.: = , 2003.– 604 . 268 5 6 4- / / 1 7 5 // MATHCAD K # " * ¢ 6 « » A : * + + 269 ;C\²?D ?!A!D =D DCUD?° # " + %# &< + " «!DKA³ =D\!F?HA³ ?CA!!» «!C °» J;; ____________ < .A. «_____» ____________ 2008 . ! -! I MATHCAD MATLAB K # " & > * & ¢ 7 « » !DKA 2008 270 C" " 7 & H-% $, $ Mathcad MATLAB 1. \² CD!µ 1.1. " + " Mathcad MATLAB; 1.2. " F- + 1.3. " F- + # 1.4. " F- + # < ; 1.5. # $ F- + $ - # ; &$ ( &$) ' *; + # # " &$ + . 2. C! =DA?? \DC!DC?D³ CD! 2.1. V' H-% A # % $/ ' &$ # F- + # &# + # &$ #: x # &$ ' *; x # * & . , " % &$ # , # &$ &#> #>@ : x * + # # < ( + AD); x * % . +< # " F- + " MATLAB, " $ & % *. D# > , # % & & + " *< $ + Mathcad. 2.2. U +?@ % ? & F- + % + #>@ * + , &* & # " N : N 1 y(n ) 1 x (n k ) N k 0 ¦ N 1 ¦ h (k ) x (n k ) . k 0 E ' & + > h(k). = # ' + N 1 H ( z) 1 k z N k 0 ¦ 271 (1) + * $ - N 1 ¦ h (k ) z k . k 0 (2) H $ & # z e jZT# H( j Z) &* N 1 N 1 1 jZkT# e N k 0 ¦ h(k) e jZkT ¦ (3) k 0 + # * ' " + . # * ;?H, & & # "' 1 T# F# # - + N. " "& &, % # + " ;?H. & + E + "# %. # " ' % , (E^) +?@ $ * Fc=100 [. 2.2.1. ,', ', 3 F# 8 10 - H # "' T# ( F#) 1 4 1.25 u 10 T# ;, ' - # # "' ;, 2.2.2. U K ] N 20 - # ; ik 0 N 1 B ik 1 -" E ' ; N 2.2.3. U D^H ] Zmin 0 Zmax 2 S F# dZ Z Zmin Zmin d Z Zmax zZ e i Z T# Zmax Zmin ( 1000) - # " N 1 H2z Z ¦ k B z Z k k 1 HF - $ + + 0 1 . H2z ( Z ) 1 2 0.5 0.1 1 10 100 Z ( 2 S ) 1 1 10 3 . 1. " % CA ! % 272 1 10 4 2.2.4. & D^H ] "+* Fc 100 - " H2z 2 S Fc + 1 - " HF " 0.9005 0.7071 2 # , " HF * " " 0.7071. A# + , $ # " + # + N, &* & "+ 20. 2.2.5. &" $ % N "$ "+* ' K % # +, " N=35 +< E ' # " " 0.7071. N 35 - # ; Fc 100 - " H2z 2 S Fc U E + 1 - " HF " 0.7138 ' ' 1 N 1 35 + 0.7071 2 E & 0.0286 . 2.3. U H-% ', +* 2.3.1. !" ', +* A " &$ ' &$ + (?C; F+ ) % &+ & "# * # " * * $ + Hd(jq) & ""#& # & < ' . & , $ + $ "& * " * ; +, @+> " ; + % &+ *# + $ hd(n), "# * # " * * $ : h d (n ) T# 2 S Z# / 2 ³ H d ( j Z) e j Z n T# dZ . (4) Z# / 2 D# + $ #+ + > # +? * +: n < 0 hd(n) v 0 – + % $ # "#* . = E % &+ # +" + * $ ?C;. 273 ? , # ' ;?H ( . 2) H d ( j Z) h d (n ) T# 2S Z ³ H d ( jZ)e * ± q#/2 ­1, Zc d Z d Zc ; ® ¯0, # # $ Z ; jZnT# dZ Z ZT# sin(Z nT# ) S Z nT# +&$ $ #+&$ ; #& . 2.3.4. O sin( O n ) S On # $ hd(n) ZcT# /S S /ZcT# . 2. @" % n %! DGC = + + * $ (4) " "&* F- + * $ *, " * "# *, % # hd(n) (N – 1)/2 " # n < 0 n N. = E $ + & # ; + E ' hd[n – (N –1)/2]: H( j Z) N 1 ¦ h d [n ( N 1) / 2] e jZnT# . (5) n 0 " , # ; + %# " ["", " >@ ' " & &$ ' *. < ' # &$ ' * +> $ ?C; > # & + * $ hd[n – (N – 1)/2] @+> ' +&$ ', +* w(n) * # & N: h (n ) h d [n ( N 1) / 2] w (n ) . (6) ? , E % > $+%+? +? +? wR(n)=1, n=0,…N–1. 274 = * " + * $ $ + - N 1 ¦ h[n] e jZnT# , H( j Z) (7) n 0 # * * "# * * $ Hd(jq) * $ * (; +z " ) * ' W(jq): H ( j Z) W ( j Z) * H d ( j Z) T# 2S Z# / 2 ³ W( j T) H d [ j (Z T)] dT , Z# / 2 # * – , £ – W ( j Z) , N 1 ¦ w[n] e jZnT # – $ * ' . n 0 & " * * > > . 3, # # %>@ ' "# * * $ & # ; +. |Hd(jZ)| 1 hd(n) O/S S/O Z n Zc -Zc |W(jZ)| wR(n) 1 G.max Z n 'Z |H(jZ)| N–1 1+G1max h(n) G2max Z n N–1 2 'Z N–1 . 3. < + G,D " ( % DGC "! % " ) H $ * ' < * ¤q & , 275 . 3 &* + &$ $ - " +& #> " ~.max @#+> # & . A * @ @ #$ ± q#/2 " + % * * $ * ' & @# & "# * * $ * Hd(jq). " #, $ # * $ + H(jq) # < * * $ * ' : 'Z | 'Z , < ' (+' ) "# % ~1, ~2 "& &$ . J # * ' , # % +: 5. +> < ¤q; 6. +&* + &$ ~.max +> @#+ # & ; 7. +> # N. ! E # &. !, # & ' > +< * + &$ , +<> < , +<>@> # & * ' N. J G " +"&$ &$ ' *. A# +, # &$ ' * > * + ;HF ""#& + # * * * E # + * $ : h(n)=h(Nz1zn). 2.3.2. '" * + $ . 1 #& +"& " ; & &$ ' *: + *, + *, F, FE E. " * < & ¤q=Dq#/N, # D z "& &* D- , + &$ ~.max >> % ' & " < ' * $ "# % ( +& +' * $ ) |~2max|, #, & # ' ;?H * " O c Zc T# S / 4 . ! % < > " ;H. ; # " (==;, =U;, K=;) " &$ #&$ < + ' % &+ +< ' " , 6 #. 276 ! ' 1 # " ! = + ! + F FE E ¤q=Dq#/N 2q#/N 4q#/N 4q#/N 4q#/N 6q#/N ~.max, # z13,6 z27 z31 z41 z57 ~2max, # z21 z26 z44 z53 z74 ` 1. C # + #& . 1, "$ > * $ "# % ", % #+ & * ' . ` 2. & * * ' "# * $ # * & * $ + 'f f " f min - %& < ¤f=¤f =Df#/N $ # $ # # * ' # > # + * $ + : N t D f # / 'f , # D – E ' , " @ * * ' (D- ), . .1,2. U N %*< ' , & . ` 3. " "# * * $ +"> $ & " f , @& "# % $ # * & + ¤f J " * & # # "& ' $ # & + "# % ( . 3). ? , # =;: f 1 | f 1 'f / 2 ; f 2 | f 2 'f / 2 . ` 4. ?$ # + $ + @ * (Nz1)/2 + * $ hd(m): h (m) h d [m ( N 1) / 2] w (m), m 0,1,..., N - 1 . ` 5. C & HF H( j Z) + N 1 ¦ h[k] e jZk T # k 0 $ #& #& * $ A "$ > "# % A". 277 ` 6. ! #&* # $ #&$ &$ #&$ ( '), $ # > " &$ " f1 , f2 # & + N & >. 2.3.3. ' ', +* &*4 + – $+% z +> < +&* + &$ . wR(n) = 1, n = 0,..N – 1. (8) ;+% + * # $ +&$ &$ ' * # * N/2: w T (n ) ­° 2 n , w R (n ) * w R (n ) ® N 21 n °̄2 N 1 , 0 d n d N 1 N 1 n d 2 2 N 1 (9) # +< < # +< &$ . & > < ¤q=2q#/N ¤=4/N. !""@ + HK & & % w H (n ) D (1 D) cos( 2 S n ) . (10) N 1 = =0.5 * + H, * + HK. + &$ * ' FE & # $ % * ?C;. & * $ > ¤q=q#/N ¤=2/N. = @#+ # & 0.04 % @# # * $ ' . + K # w B (n ) 0.42 0.5 cos( 2 S n ) 0.08 cos( 4 S n ) . N 1 N 1 =0.54 – "& < * (11) = > * ' * FE < * &* ( 1.5 ") + &$ . ¥ &$ E * * ' ¤q=q#/N ¤=2/N. = " ?C; +"> % E & ' + C4, %-^"'4, $$, # . [7, 8], # &$ " &$ ' * *" . 278 ' + *. # $ &$ ' *, $ ">@ $ & " &$ ~.max < D 'f f# N 'f f# N (D- ), &$ ' * *" E - & < + + @+> K _, $ #@ & % E * ' : > @ 2 w A (n ) I 0 (E 1 2 n / I 0 (E) , N 1 (12) # I0(x) z ' #. # E < # # # " ' "# * * $ +< * # + "# ' . *" ' (. 2) & E &, & " > # "# "$ > "=|~2max| (#) * $ H(jq), >@* #+&* ;?H, & + + " D- E ' & ¦ [5]: D| A " 7.95 , 14.36 A " ! 21 #; D 0.9222, ­0, ° 0.4 E ®0.5842 (A " 21) 0.07886 (A " 21), °0.1102 (A 8.7), " ¯ A " 21 #; A " d 21 # 21 A " 50 # A " t 50 # = & " " '& " > D # $ # &* # + N§Df#/¤f , &* " # %*< +< . # # $ &$ ' *, ' #+&$ + ==;, =U;, K=; "$ * $ "# % % &+ +< " , 6 #. ! ' 2 A", # 25 30 35 40 45 50 55 60 ¦ 1.333 2.117 2.783 3.395 3.975 4.551 5.102 5.653 D 1.187 1.536 1.884 2.232 2.580 2.928 3.261 3.625 ", # 65 70 75 80 85 90 95 100 279 ¦ 6.204 6.755 7.306 7.857 8.408 8.959 9.501 10.061 D 3.973 4.321 4.669 5.017 5.366 5.714 6.062 6.410 . 3 #& % & " +' * * $ , >@ " & " "$ "# % [5]. ! ' 3 A", # 30 40 50 60 1 ±~1max, # ±0.27 ±0.086 ±0.027 ±0.0086 A", # 70 80 90 100 1 ±~1max, # ±0.0027 ±0.00086 ±0.00027 ±0.000086 2.3.4. $+%' , %', ] +&$ $ ; " > @ & " ; + $ # " &$ &$ $ HF Hd(jq). % E^, " &<, + $ # & % Z c T# S h d (0) Oc S ; h d (n ) O c sin(O c n ) , S O c n n=r1, r2, …, (13) % $$+?@ % (=;) &$ # # $ #: y(n)=x(n); hd(0)=1; hd(n)=0 nz0; H d ( j Z) 1 Z d Z# / 2 . (14) +& $ ; ^, & ( ), U ( % ) V& ( ) &+ & %& " +& $ ' E^ &: H d ( j Z) ;H H d ( j Z) =; H d ( j Z) ;?H , (15) H d ( j Z) =; H d ( j Z) C; H d ( j Z) ;?H 2 H d ( j Z) ;?H1 , (16) H d ( j Z) =; H d ( j Z) ;?H 2 H d ( j Z) ;?H1 , (17) Hd(jq);?H2 – & $ # Hd(jq);?H, Hd(jq);?H1 #+&$ ;?H " c, c1, c2, (c2> c1), >@ " ;H, =; C;. ! % "+ # # +&$ $ , " # " + >@ & % : h d (0) ;H 1 Oc S , h d (n ) ;H 280 O c sin( O c n ) , S O c n n=r1, r2, … (18) h d (0) =; h d (0) C; O c 2 O c1 , h d (n ) =; S S 1 O c2 O c1 S S , h d (n ) C; sin(O c 2 n ) sin(O c1 n ) S n S n , sin(O c1 n ) sin(O c 2 n ) . S n S n (19) (20) & " $ # < # K=;. 2.4. U H-% * '" 2.4.1. !" * '" # * & + $ + h(n)N $ # # "' "# * * & # $ Hd(jq) " ; + (D=;). "' * $ Hd(jq) @ 0 … q# $ # & &$ " * & q # &: qk=¤qk, # k=0, 1, …, Nz1; ¤q=q#/N z < # "' ; k z * & ; N z # "' . ` ¤q & " ¤qu¤q /(L+1), # Lz'& , L = 0, 1, 2, …; ¤q z $ # + . "+ # " $ + (HF) H d ( j Zk ) H d ( j Z) Z Z ( . 4). ! "# k $ " " + & ""#& , # ; "& HF # " $ %# # $ # " * HF. "' * $ . 4 & < ¤q=¤q /2 (L=1). . 4. E CA ! % HF " , & 1 (Hd(jqk)=1), $ # * – "# % z > (Hd(jqk)=0) 281 & % & + & ( " &) " Hd(jqk)=H1=var, &$ " ' "# * * $ . HF Hd(jqk) % + > +> $ hp(n), #> @+> # " ; + (D=;): h p (n ) 1 N N 1 ¦ H d ( jZk ) e jZ k n T# . k 0 = + $ ( . 5.) * # * # Np=N, . . # "' # "' * . + * $ " # * & ?C; & # # + * $ hp(n), # &* (Nz1)/2 (# " * " ) &* + * * ' * (# F- + ) ( . 5.): h (n ) h p (n N 1), n 2 0,1,...N - 1 . ) ) . 5. @" % , "+ ECA ( ) " % G,D, ! () = + * $ h(n) $ # $ + H(jq), >@ "#> Hd(jq): H( j Z) N 1 ¦ h(n) e jZn T# n 0 HF + $ q=qk: H(qk)=Hd(qk) # & & HF, $ qvqk H(q)vHd(q) z "# * < ' . ;HF + * # + * $ . $$ '" * , $,* $ L $ " * Hi. (i=1,2,…,L), #>@ $ > ' > # *. 282 C" & " L > #>@ + &$ : L = 0: ~2$ § z20 #; & "- L = 1: ~2$ § z40 #; L = 2: ~2$ § z (50 z 60) #; L = 3: ~2$ § z (80 z 100) #. C+ # * & % " + ?C; +& "$ "# % # (90z120) #. ! " , "' + "> & L z & $ # * $ +&$ " * Hi. , " >@ $ < ' . D # , + &$ & @ % '# "' . D # E " JK # * . 2.4.2. & * '" ` 1. = " > "# "$ "# % " & + &$ L * $ $ # * . ? , " u 40 #, L = 1. H % HF + , +< "$ # " L. ` 2. " L "# * $ # * & 'f f " f $ # < # "' * $ : 'f 'f L 1 # "' : N f# 'f L 1 f# 'f . = N %*< ' , & . ` 3. " "#> > $ Hd(jq) < ¤f, "+ HF Hd(jqk), k = 0, 1, …, Nz1. D # k # &$, &$ + &$ &$ & . U# +& " Hi. " &$ &$ & %# * $ # * , , * * ' HF %# & " "# % . ` 4. C & > $ ?(jq) $ # " Hi. , &$ $ # "#& . ? , # ;?H L = 1, N = 33 " H1 =0.3904, ~2max= z40 #; 283 L = 2, N = 65 H1 = 0.588, H2 = 0.1065, ~2max < z60 #. ` 5. C & +> $ ?C; * $ : h (n ) H d ( 0) N ( N 1) / 2 ¦ 2 H d ( jZk ) cos> n N21 Zk T# @ 1 N k 0 n = 0, 1, 2, …, Nz1. 2.5. ^' ' ', % H & +& #& " ; "> JK @+> '# # * ' "#&$ &$ $ + #& "' < ' . = E & $ + + " +> . D & ' F F- + > + 4" (AD) +4 "'4 $" ('* *). * ! #>@> ' > ' > M E ¦ > H( j Zk ) H d ( j Zk ) @2 , (21) k 1 # H d ( j Zk ) , H( j Z k ) – "# >@ & $ + , & & # % qk. J ' * + E ' + . V'* * "> "' % +&$ " * " < ' < : E (Z) W (Z) H ( j Z) H d ( j Z) , (22) # W(q) – % + ' . = +&$ " * E ' + * ' @ # +< $ # , * , * * "' ( ; -=E # F- + ) * "& C" (# + &< * ' * F F- ). $ > E & +> & &, , K " +&$ > H&< F+ , +& & " ; FDAS2K, DFDP, Signal & MatLAB # . 284 2.6. + Simulink $ ', H–% C MATLAB @ @+> & + Simulink. U Simulink % " " # MATLAB, % & > #+ ( ). = " Simulink & > # : untitled ( # "# –# & # ) Library Simulink ( ) &$ "# . & < untitled $ # # + , # >@ , " +&$ &$ . " $ " $ # & + # * * @ . = E # % &+ * Block Parameters. 2.6.1. % # & ' + (;) #>@> > $ ( #+) ( . 6). . 6. " " ! % K #+ ' + "# @+> Digital Filter Design ( . 7), (DSP Blockset/Filtering/Filter Design/ Digital Filter Design). . 7. 285 Digital Filter Design $ #& #& ; "#> Parameteters: Digital Filter Design ( . 8). + Block . 8. ? Digital Filter Design ' + E& * & 6 : x Current Filter Information – % ' " ' + ( # – Order, * + – Stable/Unstable, – Sections, & + – Filter structure); x Filter Type – "# + : - Lowpass – ;?H; - Highpass – ;H; - Bandpass – * + =;; - Bandstop – % &* + C;; - Differentiator – # ' &; - % # & + ; x Design Method – "# # ' : - IIR – F- + &: - Butterworth – + ; 286 x x x - Chebyshev Type I – + H&< 1 #; - Chebyshev Type II – + H&< 2 #; - Elliptic – + E * (U -E ); FIR – F- + &, . $. 2.3–2.5: - Equiripple – &* * ( &*), $. 2.5; - Least-squares – * + AD, $. 2.5; - Window – # &$ ( &$) ' *, $. 2.3; - Filter Order – "# # + - (Specify & % + order) # + - (Minimum order); Frequency Specifications – "#> & & + ( % "+ " & + ): - Units – # '& " & (Hz – ', Normalized (0 to 1) – " &* + ( +&$ # '$); - Fs – # "' ; - Fstop1 – % & " %# ( * "$ Astop1, #); - Fpass1 – % & ( * "$ Apass, #); - Fpass2 – $ & ( * "$ Apass, #); - Fstop2 – $ & " %# ( * "$ Astop2, #); Magnitude Specifications – "#> E ' & "$ + : - Units – # '& " E ' "$ (dB – #, Squared – +& # '&); - Apass, Epass – E ' & "$ ; - Astop, Estop – E ' & "$ " %# . = & Equiripple # ( &* *) $ # # + "#+ Options ( . 9) Density factor, > &* 16. = & Least-Squares + AD $ # # + "#+ Magnitude Specifications ( . 10) & E ' & $ "# % Wstop1, Wstop2, Wpass, > & 1. 287 . 9. * Options . 10. * J !" Magnitude Specifications = & Window # &$ ' * $ # "#+ Options ( . 11) * ' Window, % # &$ ' * # +& &, Beta # * ' *" Kaiser. . 11. $ " Window D & & ' : x Bartlett – ' ; x Blackman – ' E; 288 x x x x x Hamming – ' FE ; Hann – ' F; Kaiser – ' *" ; Rectangular – + ' ; Triangular – + ' ; % "+ , & # " &$ #* * Digital Filter Design + , # %@> & #>@ " : "#+ &* * &+ * $ + * + # % ;; ;; ;; ; # # + # +> # % + # #* + < "#; ; ; # % ; +< # % ; & # #+ Filter Visualization Tool " + . D Filter Visualization Tool " "+ + & + , : HF + ; ;HF + ; # # + $ ' ); HF + ; ; + * ;HF > "#* ( $ # $ - + * Z- ; " E ' # * ' + (Numerator – ' & "). E ' & , Denominator – E 289 2.6.2. Gain (+%) = + Digital Filter Design " & + + & + &, . . # & , # E ' # , >@ $ # '&, $ # +" + # +&* Gain (Simulink/ Math/ Gain) ( . 12). . 12. E ' "# Block Parameters: Gain ( . 13). Gain * . 13. 290 Gain 2.6.3. Signal Generator (+%'* ) , & #+ $ # + , +"> +&* Signal Generator (Simulink/ Sources/Signal Generator) ( . 14). . 14. Signal Generator . 15. 291 Signal Generator * ( . 15) Signal Generator "#> #>@ &: x Wave form – : - sine– #+&* ; - square – +&* ; - saw tooth – "&* ; - random – *&* (<); x Amplitude Frequency – # ; x Units – # ' " & (Hertz – '& rad/sec – #/). 2.6.4. Zero-Order Hold (+* '"-,, H) H & $ # ; #+ ' * , +" F, " &* &$ # (Signal Generator) # & & . F +" Zero-Order Hold (Simulink/ Discrete/ Zero-Order Hold) ( . 16). . 16. Zero-Order Hold * Zero-Order Hold "# "' Sample time ( . 17). 292 # # - . 17. Zero-Order Hold , " . 17, # # "' # * # "' , . . 4000 '. A# +, # "' , & Zero-Order Hold, # % &+ # "' Fs, " * ' + ($. 2.6.1). 2.5.5. Step Step (Simulink/ Sources/ Step) ( . 18.), +" # " # "#* . ) . 18. ) Step ( ) ! () = & * ( . 18.), Step time "# "#* , $ Initial value Final value – + " #& "#* , Sample time – # # 293 "' &$ # ( # >, & &). H & * + # "#* ($,+? ,+), % + #>@> > $ ( . 19). . 19. " " % 2.6.6. Scope () "+ +"> , & # > + &$ ; % Scope( ' ) (Simulink /Sinks/ Scope) ( . 20). . 20. Scope >#+ ' %&$ Scope # $ # " ' # >@ +" '&. D & $ # (. . , # % %+ # 30 294 ). " ' + + E . J ' # $ # % &- # , " ). . 21 ( &# . 21. ' ! Scope " ?% & # > * Scope (Scope parameters) ( . 22). . 22. 295 Scope Number of axes "# $ # ' , Time range – $ * # , % ' , Tick labels – % * # (all – , none – *, bottom axis only – + " + +). C # +" + * , & & >. 2.7. U' $ Simulink (? Simulation) ? , > Simulation ( # ) # % + # ( . 23), > > + # # * # . = # E $ # " " % + + # + # , "+ %*< & # , , , " #+ , # "+ # . . 23. I+ Simulation C # # #+> # , & # # > Simulation Parameters ( & # ) ( . 24). J& # Solver & &. Simulation time ( # ) – & # # " + (Start time) (Stop time) " * #+ . Solver options ( & ) – & # "' ( ) # . 296 . 24. " Output options ( & & #) – & & # &$ #&$ # * & ( # & < ). = # & # "' # # #>@. # * & # –# &, " % & + # % $ # # . A @+> # $ #& >@ $ Type (! ) % &+ " #>@ $ $: # & $ # " x # & # # ; x # & & & $ #; # & $ # ; x & & & & $ # . x & & = &* ( ) " & + " #+ : x Variable – step ( &* <) – # & < ; x Fixed – step ( &* <) – # & < . * ( ) " & + # &. = &* (discrete) # &$ * &. D+& & > & # # & &$ . J #& " > # (Variable – step) # 297 (Fixed – step) < , & # * # – < & &$ # ' +&$ *(ode). ? % # $ & >@ $ Type $ # , " " " & " #+ ( # + & >). = & # $ # % % +" + >. 3. =CDCKK?D DA=H? = & * & +"> & MATLAB 6.0 &<, % Mathcad 2000 &<. 4. =CDCKK \DC!DC?D³ CD!µ 4.1. " + " F- + # &$ ' *, * & , % & # . 4.2. & + Mathcad " F- + # , + E ' & # * ' ;, + & " "#& . ?* $ #> $ + . 4.3. & + MATLAB " F+ # &$ ' * *" , > + AD >. C + E ' & # * ' ;, + HF "#& . ?* $ #> $ + . ?* + & "# % , ' + " +& * + . 5. D?!CD\²?µ D=CDAµ 5.1. H + $ # ' ;? 5.2. H # ; "& " "' + ? 5.3. D $ " $ ; # ? " + & + ? 5.4. # F- + # &$ ' *? 5.5. & % & > +& $ #+&$ ;: ;?H, =;? 5.6. " " & * # # < (AD) ; & # ? 298 5.7. & #& " # # +"> MATLAB # F- + ? 5.8. & + " "+ + Filter Visualization Tool Digital Filter Design? 5.9. +" Gain # & ;? 5.10. " Zero-Order Hold # & ;? 5.11. " "# # # "' ZeroOrder Hold # % &+ ? 5.12. & $ # +, & &$ # Step + & /# "#* ? 6. =DCD µ=D\?? \DC!DC?DD U? 6.1. = # + $ #& #& ($. 2.2.1) "#& ( +> ), $ # & # " E^: – + $ N- ($. 2.2); " F; E ' K0; # "' F#=16 '. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 = # + # + N # * & " E ' ($. 2.2.2–2.2.5). D' + & " + "# *. = "+ E ' & # * ' HF. 6.2. A "#+ #+ + ($. 2.6.1) Simulink. = # + $ #& #& ($. 2.6.1) "#& ( +> ), $ # & # " $ % (&): # – ' + * ($. 2.3.3, 2.6.1); ' + & F; E ' K0, – 3 #; 'F=0.1Fc; +' Fstop1=0.5 F 60 #; Fstop2=2 F – 80 #. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 299 4 400 ' 40 5 500 ' 50 6 600 ' 60 H # "' Fs + * 16 '. ; + # % + +&* # . 6.3. = " " + . = + " + #>@ & + : E ' & # * ' , HF. 6.4. = #+ $ # ; # "#* ($. 2.6.5) & + $ #> $ &. 6.5. = #+ $ # ; * ($. 2.6.3) * Fx * Fc # * # *. = + $ # &$ # . D' + " +& * + . 6.6. = + $.6.5 # * Fx=1.5Fc. 6.7. &% $+' 6.2 – 6.6 # ' + (=;), > Equiripple ($. 2.6.1, 2.5): ' + & F; E ' K0, 'F=0.1Fc; +' – 3 #; Fstop1=0.5 F 60 #; Fstop2=2 F – 80 #. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 H # "' Fs + * 16 '. = # + # % &+ # + , # &$ ' * *" , $. 6.2–6.6. 6.8. &% $+' 6.2 – 6.6 # ' + (=;), > + AD Least-squares ($. 2.6.1, 2.5): ' + & F; E ' K0, – 3 #; 'F=0.1Fc; +' Fstop1=0.5 F 60 #; Fstop2=2 F – 80 #. F K0 1 100 ' 10 2 200 ' 20 3 300 ' 30 4 400 ' 40 5 500 ' 50 6 600 ' 60 H # "' Fs + * 16 '. = # + # % &+ # + , # &$ ' * *" , $. 6.2–6.6. 300 7. A=AD \!C!Cµ 1. .A. : . 2 . H.1. – : "#- !, 2001. – 199 . 2. + .. "+ # # MatLab. . . – A=.: = , 2000. – 480 . 3. + .. MatLab. ' # # Windows: . – A=.: DCD? = , 1999. – 288 . 4. +# \.K. # . . – 2- "#., . # . – K.: C# "+, 1990. – 256 . 5. C \., # . ! ' * . / = . . # #. °.?. # . – K.: K , 1978. – 848 . 6. A .. . – A=.: = , 2003. – 604 . 7. ., # ., J =. & + & $ . – K.: J "#, 1983. 8. FE C.. & + &. – K.: ?# , 1987. 301 ! -! I 5 // MATHCAD K # " * ¢ 7 « » A : * + + 302 # O ? ............................................................................................................. 3 1. ?\DDµ A?\µ AA!Kµ .................................................... 4 1.1. 1.2. 1.3. 1.4. 1.5. D & & # .......................................................... 4 & & .................................................................. 9 = $ #& # & ................................................ 14 & *& & ............................................................. 16 +& & ............................................................................ 19 2. ;CDµ A?\µ AA!Kµ ....................................................... 20 2.1. C & ' * ............................ 20 2.2. K # # &$ ................................... 22 2.3. A # .................................................................. 23 2.3.1. A "+ %# # , % ............. 24 2.4. D # ' # &$ ............................ 29 2.5. K #& *&$ # &$ * & ' * + ' $ ............................................................................................. 30 2.6. K #& # &$ * ( * ) ............................... 33 2.7. ! & # + # &$ ............................. 37 2.8. = # ' $ # * & ................................................................................ 41 2.9. = # & ' &$ ' &$ + . " * " ..................................................... 45 2.10. H & $ &$ + . * ............................................................................ 49 2.11. ; & "' &$ + ......................................... 51 2.12. = "' &$ + ......................... 58 2.13. = # ' $ + ......................................................................... 60 303 2.14. ? & + & * * " * $ * ...................................................................................... 60 2.15. = & < "# ' &$ .................... 62 2.16. +& & ............................................................................ 67 3. =DC¥?DA! ?!D? A?\D ....................................... 68 3.1. A $ < .............. 68 3.2. = < + " &$ " $ # ............................................ 70 3.3. = < + " # # # " * & ........................ 74 3.4. D # < ## * < +> " ............ 76 3.5. +& & ............................................................................ 77 4. =DC¥?DA! AC!U A?\D ................................... 78 4.1. # # " , # "' ....................... 78 4.2. & " # " ..... 80 4.3. ! .. + ................................................................... 83 4.4. & , < ' ................................................................. 84 4.5. = # * # "' " &$ # ' .................................... 88 4.6. +& & ............................................................................ 89 5. ;CDµ F-;\²!Cµ ........................................................................ 90 5.1. U# #& " ' &$ + ..................................... 90 5.2. A " &$ + ............... 92 5.3. K # * " .................................................... 93 5.3.1. D@ # ............................................................... 93 5.3.2. * " ........................................................ 94 5.3.3. K # " C; .................. 96 5.3.4. C " ;?H- (;=?H) ........................ 98 5.3.5. = $ # ;=?H ; "# ............................... 100 5.3.6. = " + # * " .................................................... 101 5.4. +& & .......................................................................... 104 6. ;CDµ F-;\²!Cµ ..................................................................... 105 6.1. A " &$ + # &$ ' * ......... 105 6.1.1. D # ......................................................................... 105 304 6.1.2. A * &$ ' * ........................................................ 108 6.1.3. & ' *" ......................................................... 110 6.1.4. +& $ #+&$ ; " ................................................ 112 6.1.5. K # " ?C; # &$ ' * ............. 113 6.2. A " &$ + # * & ...... 114 6.2.1. D # ......................................................................... 114 6.2.2. K # " ?C; # * & .......... 118 6.3. +& & .......................................................................... 119 7. HA\??µ K!Dµ A?!U ;CDµF ;\²!CD ............ 120 7.1. " ' &$ + .......................... 120 7.2. +& & .......................................................................... 121 8. µA!CD =CDCUD? ;C² .................................................... 122 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. 8.9. D # * =; ............................................................. 122 ; + ' =; ................................................ 126 A +&* " : "# , #&, & .......... 128 A +&* " =; ................................ 129 D # ' =; .............................. 131 =; > 2 % ....... 132 =; > 2 % ......... 138 & D=; =; ............................... 141 +& & .......................................................................... 142 9. A!CD³A! ;CDD³ DCD! A?\D ........................ 143 9.1. 9.2. 9.3. 9.4. A & "' DA ............................................... 143 D DA, >@ E> " ..... 145 D & * =DA ................................................................... 148 D@ ' & $ =DA ........................ 150 9.4.1. = $ ' ......................................... 150 9.4.2. $ ?* # $ .......... 151 9.4.3. A ' =DA .................................................... 152 9.4.4. D & ' =DA ............................ 155 9.5. D & & =DA ......................................................................... 159 9.5.1. ' ' =DA ......................................... 159 9.5.2. A# & ' & =DA (Conventional DSP) ............. 159 9.5.3. <& # & ' & =DA (Enhanced-conventional DSP) ...................................................... 162 9.5.4. = ' & =DA $ * VLIW ............................... 163 9.5.5. A & ' & ..................................................... 163 9.5.6. #& ' & .............................................................. 164 305 9.6. $ & " % ' .......................... 165 9.7. +& & .......................................................................... 165 U\°H? .................................................................................................. 166 \DC;HA³ A=AD ............................................................... 167 =C\D ? .................................................................................................. 169 \ ¢ 1 K # *&$ Mathcad ................ 171 \ ¢ 2 A +&* " Mathcad .................................... 180 \ ¢ 3 K # *&$ MatLab ................. 193 \ ¢ 4 A +&* " MATLAB .................................. 207 \ ¢ 5 = ' + # * " Mathcad ....................... 226 \ ¢ 6 = ' F- + # * " MATLAB .................... 247 \ ¢ 7 = ' F- + $ Mathcad MATLAB .................................................... 271 306 ! " #$ % .%.., !& .. ' % .. % .. ( ) .. .. * ! ! % 15.12.2008. +- % 60/84/16. #- «7# ». * % XEROX. . !. . 17,86. .- . . 16,15. ; 808. < ) 200 = . <- !%/ #%% 7%- - )-% % <- !%/ #%% %&> NATIONAL QUALITY ASSURANCE ! % %# ISO 9001:2000 . 634050, . <-, !. , 30. 307