............................................................................ 9 1. ........................................................................... 12 1.1. ....................................................................... 14 1.1.1. .............................................. 14 1.1.2. ................... 20 1.1.3. , ........ 25 1.1.4. . (flow over time) ... 26 1.2. ! "#.......................... 27 1.2.1. $! " ! "#................................................................. 28 1.2.2. % & # % ......................... 29 1.2.3. '# % & .............................. 32 1.2.4. ............................ 34 1.2.5. * % & .................................................... 36 1.3. + " ............................................ 37 1.3.1. Chip-firing game ........................................................................... 37 1.3.2. / !.................................................................... 40 1.3.3. * chip-firing game ............................. 42 1.3.4. & «! »..................................................... 45 1.3.5. '# % «! » chip-firing game .... 46 1......................................................................... 46 2. – ........................ 48 2.1. $ ............................................................... 48 2.2. ......................................... 50 2.3. # % " ....................... 64 2.4. # % ! .................................................... 66 2......................................................................... 70 3. – . ...................................... 73 3.1. " ............................................................... 74 3.2. " .... 76 5 3.3. :" .................... 78 3.4. " ; ................................................................. 87 3.5. <## % .......................................... 88 3.6. = # % ............................................... 90 3.6.1. $ % ............................... 90 3.6.2. # % ...................................................... 97 3.6.3. > .......................................... 97 3....................................................................... 102 4. ... 104 4.1. ............................................................................. 104 4.1.1. ....................................................... 105 4.1.2. ! > ................................................... 105 4.2. , % ....................................................................................... 116 4.2.1. & % ! > ! > - ......................................... 118 4.2.2. & % ! > ! > - ........................................ 119 4.2.3. > - .......................................... 121 4.3. / Q1* " ......................................... 123 4.4. ....... 124 4.5. % R % R' ........................................ 128 4.6. $% ............. 131 4.7. ....... 132 4....................................................................... 134 5. .......... 136 5.1. " " ............................................................. 137 5.2. < ........................................................ 138 5.3. ......................................................................... 140 5.4. A% ! > .................... 143 5.5. ! > ....... 144 5.5.1. Z+(t) ........ 144 5.5.2. < . $! ........ 148 5.5.3. ! > ~m C – Z–(0) ................................................................................. 150 6 ~m 5.5.4. C – % Z+(t).................................................................................... 156 ~m 5.5.5. C – ! .................. 160 5....................................................................... 170 6. .................................................. 172 6.1. D % ........................................ 175 6.2. A% % ................................................................... 191 6.2.1. A% % ............................................................ 191 6.2.2. % d-% ............... 196 6.2.3. " ! " .. 200 6.3. " #% % ! > .............................. 205 6.3.1. " ............................................................... 205 6.3.2. % ...... 208 6.3.3. ! > ..................................................................................... 209 6....................................................................... 212 7. .......................... 215 7.1. " .............................. 215 7.2. " ............................................................ 219 7.3. " !" . " ..... 223 7.4. " ....................... 226 7.4.1. & % R'∞ ........................................................ 226 7.4.2. / " " ...................... 230 7.4.3. * .............. 233 7....................................................................... 237 8. ! ........................................................................ 238 8.1. " , , " δW................................................ 240 8.2. δW ! ................................................................................. 252 7 8.3. * % &, % δW .......................................................... 255 8.4. fsum(t) ≥ T .............................. 257 8.5. * , ........................ 259 8.6. $% δW ................................................................. 261 8....................................................................... 265 ... 266 ....................................... 269 ................................................................... 273 8 ...................................... 282 ................. 283 &, " , , , , , " , " > : " , > ; , , < , , " " , , ! , , , ! ! – < >, " , ! " " , > . . , «, !» & " ! ! 60 , A -A [59]. D , ; >, , – " , % ! . / > : # % , % "#, % " , " # > (chip-firing game) . / " " – – . : – < "#, ! " ! . / > ; > " . #% . W " #% . : > t " 9 Q(t). / t > " > ! : > vi >, ! !, > «, », .. ! ! ; > , " % ! . * > ! , " % . / ! "" " : « » ( > ) «! > » . " . / " 1 ! "# % % &, ". / " 2 , ! " : (, "# – , ! ). " # % : " , .. "# , ! . / " . $! : ( ) " ( t → ∞) " , > " , ! > . $ > < . " . *> ! " , , , < . G : , , > . ! " " " ! " % " . : " % " . 10 G , " , 2008–2016 ""., ! " :AAG ! ! [25–37, 41–43, 97, 98]. / ! " : :.. =" .H. I! ! ; *.=. " > ! % ; *.=. J, .=. '!, .'. %, =.=. " , " > ; .*. / .=. * ! > ! " <. 11 1. , : • . • : – , , , ! , ! . • " , , # $ . • % & ' . • " chip-firing game . • " &# « & ». chip-firing game. J > ! > " "#. , , , ! , "# % . – < " # , , , " , " , ! . > , # % : ! % ! " G , % , ! # , ad hoc (ad hoc – % ! , , " « ») . & "" "# % , " " " # . / , # % , ! "# " # , 12 ! > < . / " % , > "#, ! > ( , ). " ! , " , "# . I , ! > . $ , ! « » (, .) " . ! , " "# . ( ., , [72]), "# ! > ; « < % » [120], > « » !, " " "#; " > , % ! [39, 40]. G , "# " ! ! > : 1) # % ; 2) ! "#; 3) % " . * ! < . * , , " , ! > . G " ! ! ! " "# . $ , > , > . " , ! > ( ., , " [78] ! ! "# ), ! , ! . ", ! , " . G " ! « " # >» (chipfirimg-game) . " # % . K , – ! , – % " . 13 $ , "# " ! " " !. ; « " » «!» , , , #" , " < " . 1.1. !" #$ 1.1.1. %% &%! '!" #$ < , " [6, 59, 60], "# c [9, 10, 16–24, 44, 50, 51, 57] ( "# !, ! , <" ). ! , % . $ <" ! > ! " , , <" , % " ! , ! >, , . ! % , > , – < , ( , ), " [46, 48, 54, 56]. = " , > , > . " ( " A – A " # % ), [92], , " " [56, 65]. "#"$" % &"'()&"*+,%& -%/%': ! A A [59]. $! " ! [6, 65]. / . G(V, E) – "#; V – > , ⏐V⏐= n; E ⊆ V ×V – !, e = (u, v); ⏐⏐= m. H ! #% f(e) = f(u, v), u, v ∈ V. f(e) > v < #% !. 14 div f(v) = ¦ f (u, v) − ¦ f (v, u ) . ( u ,v ) ( v ,u ) ; ! > : ¦ div , - f (v) = 0. v∈V /"/)$:('): -%/%') – s-t--%/%' (1-1--%/%') A –A (s-t-) # ! : . * " . #% f(e) . / . 1. / > : s ( ) t (). $ > ; div f(v) = 0. 2. * #% f() " : 0 ≤ f() ≤ (); () ! ! . G . 1 , div f(t) = −div f(s). / M(f) = div f(t) = −div f(s) . K div f(t) = div f(s) = 0, % % . > vj div f(vj) = 0 , n n i =1 i =1 ¦ f ij = ¦ f ji & – #% : M(λf + μg) = λM(f )+ μM(g). - D – ϕC % . . ϕL 15 . f < : f= ¦ϕ L + ¦ϕ C . = (X, Y) G ! > , s ∈ X, t ∈ Y. U+(A) – !, > X > Y; U−(A) – !, X. > Y > c(A) = ¦ c(e) – ! . e∈U + div f(A) = ¦ div f (v ) – "% f . v∈X N" , "% M(f): div f(A) = M(f). ;" M(f) = div f(A) = - ¦ f (e) − ¦−f (e) ≤ ¦+c(e) = c(A), e∈U + e∈U e∈U .. ! !" . s t A – A . – . 1. K ∈ ! () – % , % ( ). 2. & " ! " : M(f) = min (). A = " A –A ! % . 1.1. > . 1.1. ! " , , < . / ! ( ! !) " A –A , 16 " . " 4 a 2 " c 1 s 3 3 b : . 1.1. & 2 t ,%>%-%*?(,@: ) &,%>%-A%#B'/%C@: -%/%') ,%>%-%*?(,@D -%/%'. k s1, …, sk l t1, …, tl. ; " . " " (k-l- ) % 1-1- : # > – s t. ! # ! > : c(s, si) = ¦ c( si , v j ) , j c(ti, t) = ¦ c ( v j , ti ) . j ;" "% > - . & 1-1- k-l- . ,%>%-A%#B'/%C@D -%/%'. K = {1, ..., k}, k s1, …, sk, k t1, …, tk ( " ); k #% fi !, fi i-" si ti. A " : ¦ M i [95]. i 17 s s1 t1 s2 t2 . . . sk t . . . tl : . 1.2. : % k-l- 1-1- %)(' (E"*",()A%C",,%>% -%/%'" ! " [14]. "# G = (V, E), |V| = n. ! " " . > i : Ii Oi. Ii – « » > i: Ii = = {k: (k, i) ∈ E}; Oi – « » > i: Oi = {k: (i, k) ∈ E}, i ∈ V. / "# > T – < > ! ": T = {i ∈ V: Oi = ∅}. * > % qi, . /> qi > 0 " . xij, (i, j) ∈ E. > > > ( qi > 0) " % . * % > - . , > > , " . / > " % " : , " ". ! , > – " 18 !" % > " : qi + ¦ x pi = ¦ xij , i ∈ V \ T . p∈I i j∈Oi % " ! ( ) . G ! % , %, ! " . "C,%C:(,%: A"(-A:#:*:,): A:(BA(%C. ; [15] " , #% , « ». & > "# G = (V, E), |V| = n. /> "# % qi, . * > % ! . ! ", " . / " (i, j) (j, i) " ! . / > . – < " . . / " (i, j) >" k ! xijk . , xij0 ¦ xij0 = qi , i ∈V , j∈Vi ( % j ∈ Vi = {l ∈ V : (i, l ) ∈ E}. > i, j #% . /> i >" ! cij xijk , x kji : ) xijk +1 , ! cij, j ∈ Vi. ; ! , > ( ) #% max cij xijk +1 , x kji → min ; j∈Vi { xijk +1 } ¦ xijk +1 = qi ; j∈Vi xijk +1 = 0, (i, j ) ∉ E . 19 < xijk . ; (#% cij % " ) # . 1.1.2. ! %() % %$*+ $% - #%/0 "# ! P.&. K K.$. J" [9, 10]. / "# " ", " "# , , . / " "#. "# ( ) "# . ! > " NP- [16]. ! [16–24, 44, 50, 51, 57]. $ "# < ! G(X, U, f), " X S ∅– > , U – "; #% f: U T X × X – ! , ! % . 1.1.2.1. &:F",,"G #%(/)H)&%(/+ ," %A>A"I"J $ "# # $% [10]. / "# G(X, U, f) ! ! : U = UR ∪ UZ , UR S ∅, UZ S ∅, " UR – ", UZ – ". / "# > #& . n > , " , > n, ". ; " " " " . * . 1.3 , > 1 > 7, > , , 20 : , > 1-2-4-5-7 1-2-4-6-7. 1-3-6-7, " > , , " . 2 1 5 4 3 : . 1.3. '# 7 6 " / "# > > ( ): « > x > y > y > z, > x > z, < ». $ "# > , , " , < : ! > , « » . * . 1.3 , > 1-3-6 6-7, >; 1-3-6-7, ! , – >. > "# ( " "# ), >" > " " "#, " . "KC:A/'" >A"I" (% (&:F",,%D #%(/)H)&%(/+?. G(X, U = UR ∪ UZ, f) – "# > . & > "# G ! X ∪ X' , " X' – ! X: > x ∈ X > x' ∈ X'. * " " "# u ∈ UR (f(u) = (x, y)) "# " , > y: > x, " – x'. K u ∈ UZ , f(u) = (x, y), "# ! ", > x y'. K "# >, " "# ! > ; " " " > " " "#. "# G' . 21 – ' # y # & x G(X, U = = UR ∪ UZ, f) $ , G' )% # & x # {y, y'}. – " # # & x # y # $% G(X, U = UR ∪ UZ, f) " # # & x # {y, y'} G'. * " # #& $ +&$ " # # & x # {y, y'} G' . > "# G' ! " . , % " ! " "# . 1.1.2.2. ">,)/"G #%(/)H)&%(/+ ," %A>A"I"J KU – " , >, " "# " , " ! . '# ! " " " " [19, 22, 44, 57]. . "# G(X, U, f), U = UH ∪ UM , UH ∩ UM = ∅. & UM " ", UH – " ". μ – , n ". [i; j]N (1 V i < j V n) μ /μ(i, j), " " <" . " , . X /μ(i, j) ! " [i; j]N μ. μ " - k (Y 1) n ! " "# G, . K i- >" " μ " /μ(i) Y k ", % > i- " , ! " ", (i + 1)- " <" ! " . '# G(X, U, f), " U = UH ∪ UM , " - k, +&%) 0 k. 22 "# " "# . / "# > > " "# (k + 1) > "# x0, x1, ..., xk. < " ", ! > , " "; " ", > , " " ; ! " ". [22]. – 9%+ μ' # & x0 # 0 {y , ..., yk} $ G' $& $ μ # & x # y : G. ; + : 0 , "+& # y +& - +&%) # & x G, +: ", "+& G' +& # & x0 :0 +& # Vy = {y0, ..., yk}. – " # > G' # & x0 # Vy = {y0, ..., yk} " # - $& $ G. G < , >" "# ! " ! " >" " U. / [22] " "# " : "# - " , "# -! " , "# ! " . 1.1.2.3. "A+:A,"G #%(/)H)&%(/+ ," %A>A"I"J J , , " , , .. . '# ! G(X, U, f) ": U = U0 ∪ UZ ∪ UB, " U0 – ", UZ – " UB – " !" (! ") [50, 51]. / "# ! " , ! <" ! h. D" " ( <" ). 23 * . 1.4 "# ! . P, h > 0 ! " (3, 4) . ; 1 T 2 T 3 T 4 . % 2 T 3 T 6 T 5 T 2 h , ! " (6, 5), <" ! " (3, 4). 5 1 2 + 6 3 b 4 : . 1.4. '# " !" (3, 4) " (6, 5) ;, h = 1, ! ! %: 1 T 2 T 3 T 6 T 5 T 2 T 3 T 4. * "# ! > " . "# ! " "# G'. 1.1.2.4. AB>): C)#@ ,:(/",#"A/,%D #%(/)H)&%(/) ," >A"I"J / "# $ $% [21] " ! m 0 m – 1, " " , , , " , i, i. / "# , " k ! >, " k – 1. '# $% m ". "# , " ! ! , .., ", l, " 1, 2, … l – 1. , " " & & [9, 10], "# + 0 $% [51], " $% [44]. / "# 24 " " " [18, 50]. "# !! " ! [19, 21]. ! , , ", > > , "# . ; ! % , "#, ! % &. / ! P.&. K " *.*. / " , " " - > " % " [23, 24]. 1.1.3. $& , %$(4 %( ! % &%! # '!"# #$(# "#"$" % ,"K,"$:,)GJ. D , ! , > " . l t1, …, tl k ! s1, …, sk. ! !, " . > % 1-1- : ! (si, tj) ! (si, tj) = 1. "#, . 1.5, , " , # . t1 s1 t2 s s2 . . . sk t3 t . . . tl : . 1.5. 25 "(-A:#:*:,): /%C"A%C. D !, " , " . ! ! . + ! " , , ! > % . E&:, #",,@&). / , . ! ! . ; , – , % . "#:H,%(/+ (:/). % , , , ! . ;! " , ! > ! . /(:$:,): *),)D (,"EH:,)G. / , ! ". + , ! ! , " ! ! . < ", ! ! % > " . " ! !, ! ", ! > ! . 1.1.4. # &%! 6$& . ! *# (flow over time) " ! "# G(V, E) ! c(e), τ() % <## % a(e) ( % ). / < > . ? $& : s t . @& # : s t !^ . 26 +& : s-t- , ! > θ θ ∈ [0, T). : s-t- , θ θ ∈ [0, T). ( NP- ): − : − !> , . @& # & ( NP- ). &" f " ! #% fe,i: [0, T) → ъ+, " fe,i(θ) ( % ) i, " ! θ. , > > ! θ, θ + τ(). / # . " !, ! fe,i(θ) = 0 θ ∈ [ – τ(), T). / < : > " ( "% ), " < > ! , . / > > ! >, . 1.2. 9&+" :9-$ ( *%%( *;) J > " ! !. G % !, ! , ! ( , / . .). ; - «> » , . & , , % : > "#. ; # "# ! « " » [78]. 27 / < . ;" + "# – %, " > , , ! > . 0 ( ) % " ( " # % ") . / > ! 0 : 0, ! " . K" 1.2.3. 1.2.1. :% '* # ( #$+ %9&+ :9-$ ( *%%( ( *;) : "# " !, > ! , " > % JG [101]. " ! " , % # % , ! , " %. @ % "#. / < > (! ") "# %, % i ! " wi. % " " % ! , , ! " ! . < ! ! " "#, " «» ! , , [64]. & 0: + $&: , , "# [84]. /> <" "# , " > – , ! # ", ! > " . / , > , > . " , ! ! . & 28 % " % ! %. 0 $&: 0: [12, 13, 49] "# ! % . '# ; " # % #, " # . / > % , : , % , . , % > , PageRank [79], , , # % % " ! "#. G % , ( (! >!), !, .) % . &" # % % < ! >! [119]. $!! , " , ! # % , , ! " [45, 121]. % [113] "" ( ' !! ) , , % & [4, 5]. 1.2.2. &" <' *! ) !%% ; !< ( 1.2.2.1. (,%C,@: %-A:#:*:,)G S1, S2, …, Sn – , #% t. / t . / " " % , " pij – Si Sj. ; $% ? [38, 53, 108, 109]. K pij t, % & . N! % σ0 = σ 1(0) , σ 2(0) ,..., σ n(0) U % &. ( ) 29 % & σ0 % : σk = σ0Pk, " σk – k. : % % , 2, 3,…, " – %. K : ∞ = lim ( P) k , pij∞ $&k →∞ :& 00 . & % P , % , P O , Π ; P Π = 11 P21 P22 - " P11 P22 — % > n [11]. / % P . – + [11, 48, 99] ! % P ≥ 0 " ! λ, " " . & ! λ. D ! . K % P ≥ 0 h ! λ0 = |λ1| = … = |λh-1| = λ, % h = 1, h > 1 [11]. / # % % &, " , [38]. % & ! < . < , " ". < > " , . ; < , " , D " . / " ! & 0 0 . K <" > " , < , , ", " . ; )%) . 1.2.2.2. :-) E:K ,:C%KCA"/,@J &,%H:(/C + & D " , " <" " . D , 30 " ( ! >"). K % <" % & k, Pk, " k, " , % 0 1. K <" % " , " . 1.2.2.3. :>B*GA,@: M:-) "A'%C" : , " % &, !! [38]: 1.1. K – " %, : 1) lim P k = ∞ ; k →∞ 2) !" σ σPk π = (π1, π2, …, πn) k → ∞; 3) π ; 4) % ∞ ! ! , .. ∞ = 1π, " 1 – - !%, n %; 5) π – , " π = π. 6) ∞ = ∞ = ∞. - 1.2.2.4. :-) ( ,:C%KCA"/,@&) &,%H:(/C"&) / % <" . , % " . < % <" % %, <" 1 , % " % (< " [38]). / % ! – ! " ! " <" " . " , [38]. & [11] " ! 31 " < . ; % )%) 0 ? . 1.2.3. *;" '*)$ !&") <'+ *! / % & % = (pij)n×n, > "# G(P), " % : pij – < ! eij; pij = 0, ! eij . ; "# : [52]. K "# , % . K "# , % P ! . ; ! , % & < > > "# , ". ; % " + "#. ! "# G > i0; t >" > it, < > >" t + 1 ! ! > j pit j . & > % &. /> i0 ! # , ! ! " " σ 0 (" σ 0 – -). $! P = (pij)n×n % < % . ! : σ t+1 = σ t P. σ t = σ P t. ; ! , ", , > i, " > j t >", ! ij- < % P t. : σ 0, σ 1, σ 2, … ! , . : σ 0 , σ 1 = σ 0. / < , , σ t = σ 0 t Y 0. b ! ! π. G 1.1 , " % & π – ! % , ! 1. 32 " "# G πi = di 2m (m – !). % " "# , , . : % " " > "# , > t + 1 % ". "# G % A = (aij)n×n, " aij – ". %, < % , , > aij t. % aij pij = n . *¦ aik k =1 ! , % % P = (pij)n×n " ! "# G. ρ 0 – - " , " W. t + 1 " : ρ t+1 = ρ t P. : " ρ 0, ρ 1, ρ 2, … * ρ σ : ρ t = Wσ t. ; ! , ! ! "# < % < "# " , < # %. % % & ! . ! " " , " , . [66, 67] !33 " , # " " [53, 115]. 1.2.4. %!*( #$/ $% - ( !%%9% -"# "" ! ! % " ! "#, > " " . $! < " [106]. $ ' "" . $ " !^ % ( ) " " [85, 4, 5, 62, 63]. / <" " % , % ! . x(0) = (x1(0), …, xn(0))T – , " ", x(t) = (x1(t), …, xn(t))T – >" t. ;" % " # : x(t+1) = Px(t) = Pt+1x(0), " P – %, " " "; < pij " j " i. " " , , " . " " " " , " % ∞ k lim P = . G 1.1 k →∞ , " % " . % > "# " '. :! (j, i) , " j " i. !: wji = pij. :! ' . 9 L >" "# [5] ! %: L = E – P, (1.1) " E – %. ? $&: :0) : J = J ij >- ( ) " "# ' 34 ! : J ij = f ij f , i, j = 1, …, n, " f – ', fij – , > i , j [63] ( >" "# " !). G % & : ∞ = J . / . – % n × n. $! % ! R(A) N(A). G % – ν = ind A – > k ∈{0, 1, …}, rank Ak+1 = rank Ak. G % ! >" ! " !" # [63]. G % Z (.. %, Z2 = Z), +& % , ! 0, R(Z) = N(Aν) N(Z) = R(Aν) [114, 63]. Z : ZAν = AνZ = 0. G % ! [5], < ! . ! % L ! ~ J . / [80] , ! % L ~ % J : J = J . * , J 2 = J LJ = J L = 0 . " , L = E – P, ∞L = L∞ = 0, R(∞) = N(L) N(∞) = R(L) [1, 2]. ; ∞ – ! % L, rank ∞=ν, rank L= n – ν ; ind L = 1 [107, 114, 3]. ; ! , %, , ! % % "# : ~ ∞ = J = J . 35 K lim P k , .. % – k →∞ I (! , " : ∞) 1 k i ¦P . k → ∞ k i =1 P ∞ = lim / % I {k}. I > . ;" % " % ' # : ~ lim x (k ) = J x (0) . k →∞ !" " . / [3] , ! ! % ! " " % Ak, " k ≥ ν. ; % ν = ind L = 1, % ∞ ! !" " " L. ~ ", % J # , . 8–10 1 [63], , [3]. 1.2.5. $*$" <' *! / % & . K % >": P = P(t), % & . % % P(1), P(2), …. / ! : k H k = ∏ P(i ) , k = 1, 2, … i =1 K ! % P(t) = 1σT, " 1 = (1, …, 1)T, σ – , .. % P(t) , U Hk ! 36 ! % . < ! % R' R'P(t) = P(t). K R' P(t) , % [4]. / < % % " % . ' < , " . + % H k = (hij(k ) ) + D " , i, l, j (hij( k ) − hlj( k ) ) → 0 [93]. < % H k . H k $ D " [94], + % " " π lim H k =1πT. k →∞ $! % &, " [4]. 1.3. >& %" '*" #$ 1.3.1. Chip-firing game G" # > (Chip-firing game) ! :. = .[68], *. J "" [74, 75], =. JU . [76, 77], N. N [101], . [117] " [81, 82, 100, 111]. G" . G – "#, !. / > "# # > ( . 1.6). «X » ! > , # > > !, " < > , .. # > ! . G" , ! > , ! . " , ! % ! : ! ! !, ! >" % . 37 : . 1.6. : # > chip-firing game / [76] " chip-firing game. / [117] ! «». / % N # >. * >" ¬N/2¼ . K N , # > %. * >" . . G % , %. J , < " % ' –/ [55, 73] ( , , ! # >, " ! ). [68] ! ! , >" ! , , % k(k q 1)(2k q 1)/6 >", " k = ¬(N + 2)/2¼. J ", ! # % N , # > , N , N + 1 " N – % < . / < " "# [76], " % ! > , # >. (G" , ! > , ! 38 .) G, %, ! chip-firing "#. < ! , " # > " "# (% ) !, ! . J ", # " " ! ! " " % >", ! " % % . / "# " > . / > ! # % ". ;, , [111] " , " > , ! , . / [74, 75] [100] # % , ". / < " > , ! ! # > . $ " " , " > ! > . " ; [8]. / [74] , " ! < , ( > ) " , < . G # % " " , # "% [74, 75]. " , > "# " , " > ! ! . / " " > . / [81] ! < – chip-firing game "#, " > , > # > ! ". D ! % , # > , " > % " . J " , !, " , % < ! > # "% % # "% # > 39 !" . G ( ! %, ! ", # , .) ! " "#. 1.3.2. *(%"+ :! & , < chip-firing game, ! . " > , " . [117], !! [68], 1970- "". =. D" ! , « ! » [90, 91]. D" ! ! . + ! > "#. / ! > . ; "# " % &. / # > "# (D" >> ). /> ! , , ! , ! " " . <", ! >" % . < " , <" % &. $ > % " ! " . '# < !! >> . y> > , ! . * , . 1.7 > 1 , ! > >> . / ! , > 1 >> 6q + r (0 V r <6), q, 3q 2q > 2, 3 4 , r >> > . /> ", >> ( . 1.7 > 1 "). " ", " > ( . 1.7). 40 1 1/6 1/3 1/2 2 3 4 : . 1.7. " : ! " ! > . 1. 0 1 , ! " : 101 0101. '# < " . 1.8 ([91]). 1 1 s 3 7 4 2 0 : . 1.8. '# " 10 101 5 6 8 01 010 0101 . / " ! 0,5 " "# " ": > >>. G" > s. / ! >>, > , > – , " , " > ! >> . <" > s " "#. K 41 " , ! >> s ". ; , " ( ). / > s ! >>, 7 – 8. ; ! , > s " 7 8 ! 5/8 3/8. / " >> . / " ! 80 . $ >" > 1 # m1 = " : : 80 = = 10. " )&: ## 8 : % , " ! , > ( ) – [91]. J " ! " . ", [77] " " . 1.3.3. !*" *69/" $( chip-firing game " . J % ! ? K , " ! ? K ! , % ? # > ! ! "? % " % ? / "# < . " , % ! ", , % ". n – > , m – ! "#. K % , , O(n4) >". > " n; # > ! " m. $ "# ! , " . 42 " "# G = (V, E), n = |V|, m = |E| ( ! , ! ). - di+ di− – > i , aij – !, > i > j. ;" d i+ = ¦ aij , di− = ¦ a ji , aii – > i. j j " v ∈ ъV ! : v= ¦ vk k ∈V , v = ¦ d k+ vk . k∈V $"# D &, di+ = di− [77]. / chip-firing games "# ! ! , . ; ! , "# < < . : , "#, < "#. "# " >. chip-firing games « # >». s – % , t – % ", xi – < > i. ;" ¦ a ji x j − di+ xi = ti − si . j * <" , xL = t – s, (1.2) " L ∈ ъV×V – 0 "# G(V), ! : i ≠ j ­ aij , lij = ® + ¯− d i + aii , i = j 43 D , [101]. # (1.2) # (1.1), %, ! < % L1 L2 , , L1 = – L2. / % L ! % (1.2). v – ! L, ! λ0 = 0: vL = 0. G –A! , v > 0. K G – < "# ( , "#), v = 1. & % N % " ! > : P = D-1 L + E, " D – " % > " " . $ , v # : πi = d i+ vi . v (1.3) chip-firing games . G (1.2) , " s = t xL = 0. (1.4) , x = lv " % " " l. / [101] , " x = v. / < ! , ! " "# G |v|, # >, " , ||v||. G # (1.3) , " % & q % " q " , " x, xi = +i , di % N , .. (1.4). = <, , , # > " % &. 44 1.3.4. $/ «: !9& '%!» # J " , . " ( ) " , # ( ) >!, , , . < " ( ). ; ! % , " . b , . J , . ; . b # ! « », [69–71]. & ! >, , . & : , « » " > " . ( ) (x, y) % % Z(x, y). / .. « !> ». K (x, y) ! > " Z = 3, ! , (x, y) > 4. #% . / > ! ! , ! . % , " " . ;" !> , , , !> . K " , >. ! % > . ; #% ! >! – ! > . G . = "! ! !, , [83, 86–89, 96, 102–105, 110, 112, 116, 118]. . !! « ». $ , ! ! " [86]. K !> > , !> . $!> : ! ! , . 45 1.3.5. *;( *'*< ( «:+ !9& » chip-firing game & « » ! " >, !! ! "#. K % < chip-firing game. / [101] , "# ! . > ! , ". % > s «> ». D > , ". $ > . " " > > ", «!> », % " , , , " !> , . ., . G " > " . K "#, , , >" > ! >" ", ! > , . /> s > i ai !. " > s. ", " s « » ", ! " . ; ! , . -" - -" -… ! " "# " : > s " , " " > . " , > ! , > " . % " . "A"&:/A@ &%#:*): " "#, ! > i > j > i > j; > > ; > s > . ##* + ! 1 *> ! " ! "# . $ % . % – : % &, ! < 46 ". / % – % : " %, ! > . D – . 1. 0, , .. 0 . 2. ( " ) , #% ( ) " . D ! # % , , .. – ( – ! "#, < ). 3. G , .. !^ , " % , - ( > ), " ! ( % ) – , . K , , > < , ! . 4. / % ! : 0$0 ( ! , ) ( ). 5. 0 " & : . ;, , chip-firing . $ ! , ! " > " – . 47 2. @ A BD – B D B , : • % & . ( , . • ) & – & . • % & : (1) & (2), , & & 1 × 2. "# – , – , " . 1, . 2.1. %" '*$ ( $% "# G = (V, E) > vi ∈ V ! eij = (vi, vj) ∈ E; |V| = n. :! "# % rij, & +0 ; &: + R = (rij)n×n. /> "# % qi(t), t . /> vi " " . ;0 Q(t) t Q(t) = = (q1(t), …, qn(t)), > t. riin = ! n ¦ r ji j =1 riout = n ¦ rij – j =1 > . ! n , n . rsum = ¦ ¦ rij – , ! ! . > ! W. / : 0: #% i =1 j =1 48 : ∀t n ¦ qi (t ) i =1 = W. / t > vi, i = 1, …, n, ! , ! qi(t) ( > ). A"C)*" A"(-A:#:*:,)G A:(BA(". ' t # vi + eik, 0%) # vk: out rik , qi (t) > ri ( 1); rik q (t ) , qi (t) ≤ riout ( 2). out i ri :, > vi ! eik t, > vk t + 1. < . 1 ! " , " > ! >, ; «U, », .. ! , ! <" !, " n out ri = ¦ rij . 2 > - j =1 , % ! !. K > ! > : qi (t) = ri , 1 2 . : : > , , " ! 1 2, " ; > , , ! . Q(t) " &, Q(t) = Q(t + 1) = … Q* = (q1*, …, qn*) " & Q(0), !" ε > 0 tε * , t > tε «qi – qi(t) « < ε, i = 1, …, n. $&, ! Q(0) , ! Q(0). & > vi, qi(t) V riout , Z–(t). /> Z–(t) #% 2. Z+(t) out 49 > vj, out qj(t) > rj . D > - #% 1. " Q* ! < Z–* Z+*. %/%' A:(BA(". , > vi ! eij t, > vj t + 1, ! , t t + 1 ! eij. D fij(t). $! F(t) % F(t) = (fij(t))n×n. n / : fsum(t) = n ¦ ¦ f ij (t ) . i =1 j =1 ! ! , ! > " ! , , fij(t) ≤ rij fsum(t) ≤ rsum !" t. $! f i out (t ) < i- n f i out (t ) = ¦ f ij (t ) ( j =1 % F(t)), , - > vi t. $ / f jin (t + 1) = out out , fi (t ) ≤ ri . n ¦ fij (t ) ( < j-" !% - i =1 % F(t)) , > vj ; f jin (t + 1) ≤ r jin . ", f jin (0) = 0. K Q*, < ! . & % " ! F* = (݂) כn×n. , ! > < ", – < . / ! Q(t) F(t), . & – , – " < > . 2.2. " $*$" *%9*%" % : , ! i, j ! eij rij > 0. % R . : , ! ! . $! r. / < 50 "# ! ; " ! . / < % R r, < < % R ! . > ! ( ) n, in out !" i = 1, …, n ri = ri = rn. ;" # 1 2 : t # vi : n &:0) : + : − r , qi(t) > rn ( 1); − q i (t ) , qi(t) ` rn ( 2). n , Z–(t) Z+(t): Z (t) – < > vi, qi(t) V rn; Z+(t) – < > vj, qj(t) > rn. ! : ; 2.1. K " t qi(t) = qj(t), t' > t qi(t') = qj(t'). D ", t ! > . ; 2.2. K " t qi(t) ≤ rn, t' > t qi(t') ≤ rn. D ", vi t , " n – 1 > ! rn. < > , > Z–, " , , , Z– . ; 2.3. K qi(t) ≥ rn, i = 1, …, n, Q(t) . D ", > rn % . ; 2.4. ! t > : f i in (t) = f jin (t), i, j = 1, …, n. – D ", > ! . < !" t !% % F(t) . 51 A)&:A 2.1. : > , r = 2, W = 60, Q(0) = (20, 17, 9, 8, 6). ;" rn = 10, Z+(0) – > ; > Z–(0). § 2 ¨ ¨ 2 F(0) = ¨ 1,8 ¨ ¨1,6 ¨1,2 © ; 2.5. K 2· ¸ 2¸ 1,8 1,8 1,8 1,8 ¸ . ¸ 1,6 1,6 1,6 1,6 ¸ 1,2 1,2 1,2 1,2 ¸¹ 2 2 2 2 2 2 t > vi1 , …, vim (m ≤ n) Z , qi1 (t + 1) = ... = qim (t + 1) . − > Z− t , t + 1 . ;" 5 4. G 5 , > Z–(0), t = 1 q1(1) = … = qn(1) < > ! . , Q(1) ! , , . < > ! , Z+(0) . > , q1(0) ≥ … ≥ qk(0) > qk+1(0) ≥ …≥ qn(0), (2.1) " qk(0) > rn, qk+1(0) ≤ rn. ;" Z+(0) k > , Z–(0) − > . / ! k – , Z+(t) ( 2 , !). < ! k ! k(t), k(t) ! , ! " ! . $ Q(t), > Z+(t), ! Q+(t); Q(t), Z− (t), ! Q−(t). 52 < : Q+(t) = (rn + c1(t), …, rn + ck(t)), Q−(t) = (rn − dk+1(t), …, rn − dn(t), (2.2) " ci > 0, dj ≥ 0. k / ! ;(t) = ¦ ci (t ) ; D(t) = i =1 − n ¦ d j (t ) . ; j = k +1 D(t) – < , " Z rn(n – k), D(t) Z−(t), ;(t) − Z+(t). Q(0), : n ¦ qi (0) i =1 = W = rn2 + ;(0) − D(0), (2.3) , ;(t) – D(t) = const = p W = rn2 + p. (2.4) 2.1 k = 2, c1(0) = 10, c2(0) = 7, ;(0) = 17, d3(0) = 1, d4(0) = 2, d5(0) = 4, D(0) = 7, = 10. / : f +out (t) = f −out (t) = k n ¦ ¦ f ij (t ) – Z+(t). i =1 j =1 n n ¦ ¦ f ij (t ) – Z−(t). i = k +1 j =1 out out fout (t) = f + (t) + f − (t) – ! . ! f +in (t + 1), f −in (t + 1), f in (t + 1). G (.2.1.4) , f out (t) = f in (t + 1). G : 53 f +out (t) = rkn ( > Z+(t) rn). f −out (t) = rn(n – k) – D(t) ( > Z− (t) ). fout (t) = rkn + rn(n – k) – D(t) = rn2 – D(t). / > 4 ! . < f +in ( t + 1) = k out k k f (t) = ( rn2 – D(t)) = rkn − D(t). n n n f −in ( t + 1) = n − k out n−k f ( t) = ( rn2 – D(t)). n n Z+(t + 1) = f +in (t + 1) − f +out (t). "% Div Z+(t + 1) = : Div Z+(t + 1) = rkn − k k D(t) – rkn = − D(t). n n k D(t). n D , (t, t + 1) Z+ Z– k D(t). n K t + 1 Z+ , , Div Z−(t + 1) = Q+(t + 1) = (rn + c1(t) − Q−(t + 1) = ( 54 D(t ) D(t ) , …, rn + ck(t) − ), n n D(t ) D(t ) f in (t + 1) f in (t + 1) , …., ) = (rn− , …, rn− ), n n n n D(t + 1) = k k n−k D(t) = D(t)(1 − ) = D(0)(1 − )t, n n n out f + (t + 1) = rkn; f −out (t + 1) = rn(n – k) – f out (t + 1) = rn2 – (2.5) n−k D(t). n n−k D(t). n ;" : Δf out (t + 1) = f out (t + 1) − f out (t) = k D(t) = Div Z−(t + 1). n . – > n ! r. < , " n r # , " W " > t = 0, .. " Q(0). : < . A)&:A 2.2. : n = 7 r = 1. KU ! rsum rsum = rn2 = 49. W = 54 Q(0) = (30, 15, 9, 0, 0, 0, 0). > Z+(0): k = 3. #% W Q(0), .. (! . 2.1). / < ! 54. *, ! , ! % ! % . *! > " " . / > , , ! "# . . 2.1. / < Q(t) t, t %. $ Ox > , Oy – 55 > . ' – < " % Z–(t) Z+(t). t = 0 ( ) Z+(0) > . #% k = 3 !, > Z+ ! , .. , 7. * > t = 1 ( ) v3 Z–(1). * t = 3 ( ) > v2 Z+* " > . * t = 4 > v2, …, v7, > Z–, , ! Z– rn = 7 ( , 2 < > " Z–). , . 2.1 " 1 5: > Z–, " > Z–, < . D % ! & . ti 0 1 2 3 4 5 6 7 8 9 10 … 50 51 52 53 54 55 56 A%/%'%* #*G Q(0) = (30, 15, 9, 0, 0, 0, 0) v1 v2 v3 v4 v5 v6 30 15 9 0 0 0 26 11 5 3 3 3 23,429 8,429 4,429 4,429 4,429 4,429 21,592 6,592 5,163 5,163 5,163 5,163 20,222 5,63 5,63 5,63 5,63 5,63 19,047 5,825 5,825 5,825 5,825 5,825 18,04 5,993 5,993 5,993 5,993 5,993 17,177 6,137 6,137 6,137 6,137 6,137 16,438 6,26 6,26 6,26 6,26 6,26 15,804 6,366 6,366 6,366 6,366 6,366 15,26 6,457 6,457 6,457 6,457 6,457 … … … … … … 12,007 6,999 6,999 6,999 6,999 6,999 12,006 6,999 6,999 6,999 6,999 6,999 12,005 6,999 6,999 6,999 6,999 6,999 12,004 6,999 6,999 6,999 6,999 6,999 12,004 6,999 6,999 6,999 6,999 6,999 12,003 6,999 6,999 6,999 6,999 6,999 + 2.1 v7 0 3 4,429 5,163 5,63 5,825 5,993 6,137 6,26 6,366 6,457 … 6,999 6,999 6,999 6,999 6,999 6,999 56 … 12,000 … 7 … 7 … 7 … 7 … 7 … 7 … : . 2.1. > r = 1 Q(0) = (30, 15, 9, 0, 0, 0, 0). : . " "# " . 2.2, ! > . Ox t; . 2.1, Oy > , " – " % Z– Z+. Q(t) ! 7 % t, > %. > Z– < " " % " % Z– Z+. : W = 45 Q(0) = (15, 12, 9, 5, 3, 1, 0). W < rsum. ! . 2.2. / "# " <" . 2.3. / , > Z–(t), " t = 7 . D , 57 W rsum = rn2. $ . 58 59 : . 2.2. " > r = 1 Q(0) = (30, 15, 9, 0, 0, 0, 0). % > 60 : . 2.3. > r = 1 Q(0) = (15, 12, 9, 5, 3, 1, 0). : % , . 2.2, ! > Ti 0 1 2 3 4 5 6 7 8 9 … + 2.2 A%/%'%* #*G Q(0) = (15, 12, 9, 5, 3, 1, 0) v1 v2 v3 v4 v5 v6 v7 15 12 9 5 3 1 0 12,286 9,286 6,286 4,286 4,286 4,286 4,286 10,633 7,633 5,347 5,347 5,347 5,347 5,347 9,452 6,452 5,819 5,819 5,819 5,819 5,819 8,53 6,078 6,078 6,078 6,078 6,078 6,078 7,74 6,21 6,21 6,21 6,21 6,21 6,21 7,063 6,323 6,323 6,323 6,323 6,323 6,323 6,483 6,42 6,42 6,42 6,42 6,42 6,42 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 6,429 … … … … … … … :%A:&" 2.1. 0 0 " # n > 2: 1) & W : T = rn2, %+ "$ 0 $& 0 W· §W 000 ¨ ,..., ¸ ; n n¹ © 2 2) W > rn , %+ "$ 0 , :0 +& : # : & &, & : . : 4 . 1. Z+(0) . 2. Z+(0) , W < rn2 3. Z+(0) , W = rn2. 4. W > rn2. , " Z–(0) , : < . ;" 1. Z+(0) . ;" 5 . ;" 2. Z+(0) , W < rn2. G (2.5) , k lim D(t) = 0. * t →∞ W < T (2.3) (2.4) , p < 0, D(t) = 0 ". (2.4) > D(t) > ;(t), t', " C(t') , 61 ! > Z+(t') Z−(t') 5 t' + 1 > Z−. > % > k. W < rn2 ;(t) < D(t), t'', " ;(t'') = 0, > Z−, t'' + 1 ! ". ;" 3. Z+(0) , W = rn2. / < p = 0, D(t) ;(t) , (2.2), lim Q(t) t →∞ = (rn, …, rn). * < ! D(t) ≠ 0, , C(t) ≠ 0; < > ! Z+ ! " . ;" 4. W > rn2. / 2 > , > Z-, ". ; lim D(t) = 0, lim Q−(t) = (rn, …, rn), t →∞ W − rn = p 2 lim ;(t) = p. / t →∞ t →∞ p - + > Z , ! ! >, rn, , .. . *:#(/C):. & W : T = rn2, %+ "$ 0 $& W f ij* %+ + eij 2 . n > > #% 2, ! . ; n > ! W " n2, f ij* = 2 . n 4 2.2. :%A:&" 2.2 . W > rn2, $& 0 000 Q* = (q1(0) − w*, …, ql (0) − w*, rn, …, rn), (2.6) l=k 62 w* = D ( 0) , k ck(0) ≥ D ( 0) ; k (2.7) " l < k – +$# " , , " cl(0) ≥ w*, w* = C l ( 0) − p , l (2.8) (2.9) l Cl(0) = ¦ ci (0) . i =1 A " " . ; «# » > . 2.1 2.2. * , k – < > Z+(0). / l – < > Z+ Q*. K k Z+, l = k, .. (2.7). / l # (2.8), (2.9). t > Z+(t) − Z (t) w(t) = qi(0) – qi(t). / w* – < w(t) . $ & 2.2. D(0) ;" 1. ck(0) ≥ . / 4 1 k ! , lim Q−(t) = (rn, …, rn). < t →∞ Z−(t) D(0), < > D ( 0) Z+(t). ; ck(0) ≥ , > Z+ !k D ( 0) w* = lim w(t) = < > t →∞ k ck , , , Z+ , .. l = k. D(0) ;" 2. ck(0) < . ;" t k ck(0) – w(t) ≤ 0, > vk ( , !, % " > Z+) Z–, > Z+(t), t' Z l+ . Q(t') 63 Z l+ , Z l− # % Dl(t′). ; l t' >, 1 k l. < (2.6) . / l w* l ! . G (2.2) k l , ¦ q (0) = i i =1 * = rln + ;(0). < , (2.6) Q , W = rn2 + Cl(0) – w*l. G (2.4), (2.9). rn2 + p = rn2 + Cl(0) – w*l, b (2.8) ! ", ! cl Z l+ . *:#(/C):. W > rn2, %+ "$ 0 $& f ij* %+ + eij r. > Z+(t) ! t #% 1 , , ! r % . N! > Z− rn % (# (2.6)), " 2 n ! . 2.3. %% ; !< ( *%9*%") %+ ' ' / " "# , % . / 1.2.3 ! , "#, , % &, , !: % & % P "# G(P). '# " % &, 1.2.2. K "# , <" % &. , , "# , ! D " $%. D" % 0 , *$ % d "# %. , " "# ! . K d > 1, "# % % &. '# > (> , !) " % . " % . D" " , , % ! , % !, 64 ! " . < " >" k, > , – ! . * . 2.4 > v1, …, v5 ! <" , " . v1 v6 v5 v2 v4 v3 v1 v7 v9 v8 : . 2.4. <" , " (% 5) "#, <" , :& . . 2.4 v6, …, v10. :, > "# > , . G % " <" , <" > , < % &. /> , !, ! <" . / ! : , > , . : > ! )%) & 0 . <" , . 2.4, ! " > ( . 2.5). * . 2.6 . $! < # % ;1. , <" !" " . 65 v2 v1 v6 v3 v5 v4 : . 2.5. " :(BA(,@: (:/) A>%#)$:('): :" + :QA>%#)$:('): " « >» – <" : . 2.6. ; " # % 2.4. %% ; !< ( *%9*%") %+ ' '*'9%!"# %'%:%(# # % , , ! % !. ;, ! , " ! ( <" " " ! ). $ < # % 66 . / ! ! ! #% ; . / # % , " . * ( . . 2.2), 1, ! ! . / . * , , . * " , % ! : R = RT. / > ! . $ # "% , ! , . : " , ∀i riin = riout . (2.10) K , ! > , riin − riout ≠ 0 . > vi ! < Δri: Δri = riin – riout . ;" > : 1) # &- , Δri > 0; 2) # &- " , Δri < 0; 3) $& # &, Δri = 0. / > $&. ! " , (2.10). * ! . /> (( )( ) ( )) ρ = r1in ; r1out , r2in ; r2out ,... rnin ; rnout . (2.11) # % ( . 2.7). 1 ; « » % & ( . 1.2.1, 1.2.2). 67 :(BA(,@: (:/) #,%A%#,@: :%#,%A%#,@: * * ! D : . 2.7. # % ! G , : , !^ ! D &: . / < ! !: > ! . / " ! % , "# ! ( ! ), > " . "#, ! , < [58]. : , ! > , ! !! < "#. < ! D & & 0 . | " . < " <" : > ( ). $ . , : < G c n > . ;" , . 2.8, " ! <" . / ! !, 68 , ! "; , ! ! <" . D" : . 2.8. «*<" < » / G G’ m > , m < n. ! ! ! , < > v1, …, vm. / < ! > vi G’ riin = riout . (2.12) : < . riin = σ ୀଵ ݎ +σୀାଵ ݎ . – < « » !, vi, .. !, ! > G’ (rij = 0, " ! ); - < !, vi , .. !, vi G’. riout = σ ୀଵ ݎ +σୀାଵ ݎ . – < « » !, vi; – < !, vi , .. !, vi G’. < (2.12), : σ ୀଵ ݎ +σୀାଵ ݎ ൌ σୀଵ ݎ +σୀାଵ ݎ . (2.13) > (2.13) G’. - σ ୀଵሺ σୀଵ ݎ ) +σୀଵሺσୀାଵ ݎ ሻ = = σ ୀଵሺ σୀଵ ݎ ) +σୀଵሺσୀାଵ ݎ ሻ. (2.14) 69 (2.14) – < ! G’, ; – < ! G’, . $ , < , : σ ୀଵ൫σୀାଵ ݎ ൯ = σୀଵሺσୀାଵ ݎ ሻǡ " : 0 %+ 0 D :0) : + &:0) : + . * !; , . < . 2.8 < . * . 2.7 . > , . / > : < . ( ! . 2.2.) D # % ! ! ;2. N! , " # , <" , , ;1 × ;2. # % , !, % (! . 2.3). + 2.3 *"((@ A:(BA(,@J (:/:D ) (/AB'/BA" ',)>) ;2 ;1 :" + " $ ' 2 ( ) ' 6 – * D ' 3, 4, 8 ' 2, 5 ' 6 ' 7 ' 6 – ##* + ! 2 /! " . D " : " < ! 70 " , ! " . '# #% . / , <" > ! ( , , #% > – 1 2, – % " ", Z+ Z–) , # < . " " .2 " ! . #% " ! > Z–(t) Z+(t). Z–(t) – < > , t #% 2; > Z+(t) t #% 1. < rn: vi ∈ Z–(t), qi(t) V rn. /> , > Z–(t), ", < Z–(t) !. " ! . < , W , .. " T = rn2, " : > Z–(t), " ! > ; !. K W > ", % , % ". K Q(0) > Z+(0), Q(0) ( 2.3) , , . K Q(0) ! > Z-(0), > Z- ! > Z+ ( ), rn. < > Z+ Z-. * .2.1 > , : , Z+, !, , > Z-, . / > Z- ! , rn. b ! ! ( ) > : > – !, ! – !. < > , 71 : !" " " > . / " ! % #% . , < " : " % – > ! " " ; , # > – : " T W, ; Z+ Z-; " . $ " > !, # % , . 2.3. < #% ! , . D % , ! ! " " . 72 3. @A B – @ > @. B@B@ B B B , : • & & & . & «», , t', & & & 2. % &# & & &. • , & & & '. • 0 , $ ' R'∞ L = – R' # , & . • & & & . • ( , - & Z–(t); 3 , & Z+* (t) t. • % & , & & , & '. ( 6 ! & . • % , $ . 7 , # & (0, 1], ! , & & . • % – , & & & & ! ; Z+(t) . , ! ! . • , & . / < " #% " . " , , " > #% 2, , " > #% 1. / 73 " ! , " > " #% 2; ! " %, " #% . > > , ! Z+*, " , < . 3.1. *$/ %%( *9(*+ % '* $ &# *%9*% " % R % W = 1, % ! R : ! > vi riout ≥ 1 . D – ( ") #% > 2: t > , ! > >". *! ! # > . ; , ! , " . " ! Q1(t). > > ( ), t. % #% : Q1(t + 1) = Q1(t)⋅R', % R' #% § r11 ¨ out ¨ r1 R ' = ¨ ... ¨ rn1 ¨¨ out © rn ( r12 r1out ... rn 2 rnout ) r1n r1out ... ... rnn ... out rn ... 2. · ¸ ¸ ¸. ¸ ¸¸ ¹ R' = D–1R, " D = diag r1out ,..., rnout . R' – %, . 74 & % ! R " . ; ! , " % R', 2, " Q1(0) = (q11 (0), q12 (0),..., q1n (0)) " % &. * , % &, W = 1 [11, 38]: 1) ! " lim ( R ' ) h = R'∞; h→∞ 2) !" " " (W = 1) " Q1* , # Q1* = Q1(0)⋅R'∞; 2') ", !" t > 0 Q1* = Q1(t)⋅R'∞; 3) % R'∞ n Q1*: R'∞ = 1 ⋅ Q1*, " 1 – - !%, %; 4) Q1* ! R', ! λ = 1: (3.1) % Q1* R' = Q1*; 5) ! !% % R'∞ (3.1) ! % R'; 1* 6) Q ! % R'∞: 1* ∞ 1* Q ⋅ R' = Q . G . 2) , ". | " . / 1.2.4 " % R'∞ % "#, " % R': L = E – R'. & % R'∞ ! % L. < % [107, 114, 3]: 75 R'∞L = LR'∞ = 0, rank R'∞=ν, rank L=n–ν. ; < % "#, " " "# % ! [1]. N "# " %, , , rank R'∞ = 1, " # (3.1). & % R'∞ ! !" " " % L [62]. 3.2. *$/ %%( *9(*+ % '* #") *%9*%) W , , " t', > #% 2, .. Z–(t). ; W " : , W < min riout , i > Z+(t). 3.1. ' 0 0 %+ W, ∃ t' >0: ∀ t > t' vi ∈ Z–(t), i = 1, … n, 0 %+ "$ 0 0 Q(0) $ 0 0 Q*: 1) ); 2) ; 3) 000 & +& : " $ & R'∞ +& & R' * " λ = 1: Q = Q*⋅R' Q* = Q*⋅R'∞. $ . > , > #% 1. * t', " > Z–(t) #% 2. ;" !" t ≥ t' #% # : Q(t+1) = Q(t)⋅R', " R' – %. !" k : Q(t+k) = Q(t)⋅R'k. (3.2) " R'∞ , k → ∞ (3.2) : 76 Q (t ) lim ( R ' ) k = Q (t ) R '∞ . k →∞ ;" : (3.2) Q* = Q(t)⋅R'∞. (3.3) ; ! , " ! !" " Q(t) (t ≥ t'). ; (3.3) !" t ≥ t', , , : Q* = Q*⋅ R'∞. (3.4) $ , Q* – ! % R' ! λ = 1. G (3.4) , ∞ Q*⋅ R' = (Q*⋅ R'∞)⋅R' = Q*⋅ (R'∞⋅R') = Q*⋅ R'∞ = Q*. Q* – ! % R', λ = 1. A! < . ; ! , . #% 2 " ! % R'. * ! % R' " , " W2 . W1 : Q1* Q2* = . W1 W2 ;" " W, #% 2, " Q* Q1* : Q* = Q1*⋅W. (3.5) ; ! , ( , > 77 Z–(t)) , % ! . ", ! ! " . , , . $ , , – , ! > t , , > , Z+(t), – #% . : #% ! > . 3.3. 9(*" % ##* &" % ) %+% * ! > : > - , ! , > - , ! > !. ", " > , ! < . ! . : , "# vi, > - ( . 3.1). < , vi , > (.. < < ). D * vi : . 3.1. * < ; ! " $% D . $ " ! 3.6. D ! " – " , ! 78 > - . ", ! ". $ " ! #% " . J , " . l > - , k n > n – l – k > . J , 1 l, – l + 1 l + k, > – l + k + 1 n. & > , qi(t) ≤ riout , >, ! Z–(t), > qi(t) > riout – Z+(t). /> Z–(t) #% 2, > Z+(t) – 1. * ! " > – – ! , " , < . D ! > , ! , % " % & ! " % ! . / > , > > t → ∞ " ! > . / > , > ! . ; 3.1. K " t' > vi, (i > l), !: qi(t') ≤ riin , t > t' qi(t) ≤ riin , (i > l). $ <" , > - > ! , , - qi(t') ≤ riin , , qi(t') ≤ riout , , > #% 2 , ! > riin . > - qi(t) ≤ riin vi(t) ∈ Z–(t), > < . 79 < 3.1 , Z–(t) > vi " < . 3.2 3.3 #% " " . ; 3.2. K % R !% i, j > l, > vi, vj , t', t > t' qi(t) = qj(t) (i, j > l). , ! 3.2, " t' ! > 2 ! , . ; 3.3. / % #% > ! , . D , " " !, > . ;" ( > ) > , ! ! . . 3.1. > % ! : §1 ¨ ¨1 R = ¨3 ¨ ¨4 ¨5 © 1 1 1 1· ¸ 1 1 1 1¸ 1 1 1 1¸ . ¸ 1 1 1 1¸ 1 1 1 1¸¹ D ! v1, v3, v4, v5. / > v2, …, v5 > v2 ! , ! . W = 40 > v2. * Q(0) = (0, 40, 0, 0, 0). #% ! . 3.1 " " ( . 3.1). 80 : > , – > Z (t), > riin ( 3.1), > v2, …, v5 % #% ( 3.3). ( 3.2) ! t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 … 29 30 31 32 33 … + 3.1 "(-A:#:*:,): A:(BA(" – -A%/%'%* A"E%/@ (:/) v1 v2 v3 v4 v5 0,000 1,000 2,684 3,880 4,945 5,826 7,232 8,870 10,596 12,355 14,127 15,903 17,682 19,461 21,240 23,020 24,799 26,579 28,110 29,116 29,699 40,000 36,000 32,579 29,714 27,299 25,268 23,393 21,577 19,784 17,999 16,218 14,438 12,658 10,878 9,099 7,319 5,539 3,760 2,972 2,721 2,575 0,000 1,000 1,579 2,135 2,585 2,969 3,125 3,184 3,207 3,215 3,218 3,220 3,220 3,220 3,220 3,220 3,220 3,220 2,972 2,721 2,575 0,000 1,000 1,579 2,135 2,585 2,969 3,125 3,184 3,207 3,215 3,218 3,220 3,220 3,220 3,220 3,220 3,220 3,220 2,972 2,721 2,575 0,000 1,000 1,579 2,135 2,585 2,969 3,125 3,184 3,207 3,215 3,218 3,220 3,220 3,220 3,220 3,220 3,220 3,220 2,972 2,721 2,575 30,494 30,496 30,498 30,498 30,499 … 2,377 2,376 2,376 2,375 2,375 … 2,377 2,376 2,376 2,375 2,375 … 2,377 2,376 2,376 2,375 2,375 … 2,377 2,376 2,376 2,375 2,375 … % <. " -:AC%& Q/"-: ( 0–10) > v3, v4, v5 ! " " . " C/%A%& Q/"-: ( 11–17) < > ! % , > v2 v1. " /A:/+:& Q/"-: ( 18-") > v2 > ! , > . 81 82 0 5 10 15 20 25 30 35 40 q(t) v1 : . 3.2. ! ! % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 v2 t v5 v4 v3 v2 v1 3.2. ' 0 " 0 : " $&: # , ) : D & , 0 %+ W "$ 0 Q(0) = (q1(0), q2(0), … qn(0)) ) t', " 0 %+ t > t' & 0 : qi (t) V riin , i > l. (3.6) $ . G 3.1 , > , Z–(0), < . > (3.6) . 1. , ! Z+(0) " Z–(t), .. #% 2. vi – > - , i = l+1, …, l+k; riin < riout . ; < > ! > riout , < > ! #% 1, .. riout % . < > riin < riout . ;" > - ! > " ! , r': r' ≥ Δri = riout − riin . ; ! ! < > , ti > - 2 ! , riin , < , (3.6) . / ti % : q (0) − riout ti ≤ i . Δri 2. , (3.6) " > , < . " , > vj " . = > < , " vj, . t* – , 83 > Z–(t). " !" " . 1. ! eij vi > vj. ;" vi 2, ! , " > " ! , > vj (3.6). K > k > , < k , ! > > . ; ! , > > - (3.6). K < , > , > , Z+(t). : . 3.2. > > %: §1 ¨ ¨5 ¨1 R= ¨ ¨1 ¨2 ¨ ¨2 © 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 2 0 0 0 1 0 2· ¸ 0¸ 0¸ ¸, 0¸ 0 ¸¸ 1 ¸¹ W = 50, Q(0) = (0, 0, 0, 0, 50, 0). & % ! , . 3.3. * > v5 v6 v1 . ! ! . 3.2. * . 3.4 % . G ! . 3.2 . 3.4 , v1 > v6, , ! ! , > > v5. * > v3 v4 , , < !, v2. 84 v6 v5 v1 v2 v3 v4 : . 3.3. < – > v5 v6 + 3.2 A%/%'%* A"E%/@ (:/) t v1 v2 v3 v4 v5 v6 0 1 2 3 4 5 … 102 103 104 105 106 … 0,000 2,000 2,250 2,896 3,340 3,777 0,000 0,000 0,250 0,438 0,635 0,815 0,000 0,000 0,250 0,438 0,635 0,815 0,000 0,000 0,250 0,438 0,635 0,815 50,000 48,000 46,500 45,063 43,786 42,622 0,000 0,000 0,500 0,729 0,967 1,157 8,000 8,000 8,000 8,000 8,000 2,666 2,667 2,667 2,667 2,667 2,666 2,667 2,667 2,667 2,667 2,666 2,667 2,667 2,667 2,667 31,001 31,001 31,001 31,000 31,000 3,000 3,000 3,000 3,000 3,000 85 86 0 5 10 15 20 25 30 35 40 45 50 q(t) v1 : . 3.4. < 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 v5 t v6 v6 v5 v4 v3 v2 v1 $!^ " . /> v1, < , – 1. $ >, , ! , . ; ! , ! > , " > " , < #% , < . / < , > , ! > ! ! > . < ! " ; " , ! > , ! " 5. 3.4. * 6& / 3.1 " , > Z–(t). / , , > 2 ( , , Z–(t)). K , , ! , % &, # (3.5). $ < 3.3. 3.3. ' 0 " ) " , , ": W ≤ # &, " 0 t', :0 Z–(t); W > T Z+(t) , " 0 t''. "$ 0 0 Q(0). $ . G 3.2 , > , < , Z–(t). ;" ! > Z+(t) " > > < . W > rsum ! > " Z+(t). 1 * , " > , !. K ! " , ", ! , . ! . 3.6. 87 : " #% W: Q*=Q*(W). W , > , " , > Z–(t). G Q*(W) = Q1* ⋅W , Q*(W) % W, > Z–(t). W > " riout , < > 1 > W > (3.5) . $! " , > , riout , . Q*(W) " W ≤ Q(0), – . | " 3.1. $ , ≤ rsum. = rsum ( 2.2); < rsum. D 3.2. 3.5. E;; < % ##* &% % $ – D " . 3.1, = rsum. ;" % ! . $ rsum " . : . 3.3. % ! : § 1 100 1 1 1 · ¸ ¨ ¨ 1 1 70 1 2 ¸ 1 0 1¸ R = ¨3 1 ¸ ¨ 1 5 1¸ ¨1 2 ¨ 1 1 10 1 1 ¸ ¹ © < ρ, # (2.11), : ρ = ((7,104), (105,75), (83,6), (8,10), (6,14)). – < > v2 v3. rsum = 209. : < . 88 1. / " W = 1 : Q1* = (0.212, 0.284, 0.396, 0.024, 0.084). 2. D , ≈ 15.16. 3. W = T " : Q* = (3.215, 4.312, 6.000, 0.359, 1.273). ! : W = 100 Q* = (3.215, 4.312, 90.841, 0.359, 1.273). 3.4. % ! : § 1 10 1 ¨ ¨1 1 7 R = ¨3 1 1 ¨ ¨1 2 1 ¨ 1 1 10 © 1 1· ¸ 1 2¸ 0 1¸ , ¸ 5 1¸ 1 1 ¸¹ ; ! > ! r12 r23 > " > 10 . $ . ρ = ((7,14), (15,12), (20,6), (8,10), (6,14)). – > v2 rsum = 56. 1. / " W = 1 : v3 . Q1* = (0.212, 0.253, 0.316, 0.091, 0.128). 2. ≈ 19. 3. W = T Q* = (4.034, 4.800, 6.007, 1.724, 2.434). , , 89 " . W = 100 ! : Q* = (4.034, 4.800, 87.007, 1.724, 2.434). D , ! " ! : ! > rsum, ! > , – ! . / rsum = 209 ≈ 15.16; > ! ! , , > ! rsum = 56, " : ≈ 19. I ! ! > , > " . / , ! , = rsum. I ! > , > T rsum. D " > T χ= . $ , χ ∈ (0, 1]. ! " 7, rsum % χ = 0 " = 0 " . ; ! , χ ∈ [0, 1]. I ! χ %, «! ». 3.6. *!*" ) !%% ; !< ( 3.6.1. '*$ '< /") *!* D , " Z+(t) ! " ! > W Q(0). : #% , ! ! . 3.5. % ! : § 1 1 1 1 1· ¸ ¨ ¨ 1 1 1 1 1¸ R = ¨ 3 1 1 1 1¸ ¸ ¨ ¨ 1 2 1 1 1¸ ¨ 1 1 1 1 1¸ ¹ © W =100; : Q(0)=(100, 0, 0, 0, 0). 90 < ρ : ρ = ((7,5), (6,5), (5,7), (5,6), (5,5)), ! , {v1, v2}, {v3, v4} > {v5}. "# , < . #% ! . 3.3. t 0 1 2 … 31 32 33 34 … A%/%'%* IB,'M)%,)A%C",)G (:/) v1 v2 v3 v4 + 3.3 v5 100,000 96,000 92,995 0,000 1,000 1,876 0,000 1,000 1,710 0,000 1,000 1,710 0,000 1,000 1,710 83,799 83,798 83,797 83,797 4,536 4,536 4,537 4,537 3,888 3,888 3,889 3,889 3,888 3,888 3,889 3,889 3,888 3,888 3,889 3,889 > < , ! W = 100 Q* = (83,797, 4,537, 3,889, 3,889, 3,889). ; ! , ! Z+, , ! ", , > . (* " : ≈ 5 + 4,537 + + 3,889 + 3,889 + 3,889 = 21,204.) : ! . §1 ¨ ¨1 R = ¨2 ¨ ¨1 ¨1 © 1 1 1 1· ¸ 1 1 1 1¸ 1 1 1 1¸ , ρ = ((7,5), (7,5), (5,7), (5,7), (5,5)). ¸ 2 1 1 1¸ 1 1 1 1¸¹ 3.6. : : Q(0) = (30, 0, 0, 0, 0). 91 t 0 1 2 3 4 … 29 30 31 … A%/%'%* IB,'M)%,)A%C",)G (:/) v1 v2 v3 v4 + 3.4 v5 30,000 26,000 22,900 20,493 18,625 0,000 1,000 1,900 2,593 3,132 0,000 1,000 1,733 2,304 2,748 0,000 1,000 1,733 2,304 2,748 0,000 1,000 1,733 2,304 2,748 12,144 12,143 12,143 5,000 5,000 5,000 4,285 4,286 4,286 4,285 4,286 4,286 4,285 4,286 4,286 G , ! ! > , > , r2out , > , > riin ( 3.2). Q* = (32,143, 5,000, 4,286, 4,286, 4,286). K " , " : >" : Q* = (5,000, 12,143, 4,286, 4,286, 4,286). / . (> v3): 3.7. : Q(0) = (0, 0, 30, 0, 0). " " Q* = (9,291, 7,852, 4,286, 4,286, 4,286). ; ! , ! Z+*, ! ! > ! , >, ( . 3.6). (> v4), : Q* = (7,852, 9,291, 4,286, 4,286, 4,286). K > , ! : Q* = (8,571, 8,571, 4,286, 4,286, 4,286). * . 3.6 " " , Q(0) = (0, 0, 0, 0, 30). : , , . * > > , > v3, v4, v5 . 92 v2 t v5 v4 v3 v2 v1 ( ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 v1 : . 3.5. A% 0 5 10 15 20 25 30 35 q(t) 93 94 v1 ( t v2 v5 v4 v3 v2 v1 (> v3)) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 v3 : . 3.6. A% 0 5 10 15 20 25 30 35 q(t) v1 v2 t v5 v4 v3 v2 v1 ( > v5) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 v5 : . 3.7. A% 0 5 10 15 20 25 30 35 q(t) 95 G , " ( , ", !" " ). ( . 3.8), , " , ! > ! <" . , ! > , ! >. K , . / , " , " > , ! . : < " ! , .. < Z+(t) t. v5 v3 v4 v1 v2 : . 3.8. , " U /> , W > T Q(0), " Z+*, . ! 3.6, 3.7, ! " , ! Z+*. 96 < ! > $& . G 3.2 , % ! , ! > < . , < , > , ! > -. / , – , , , ! , , ! < . K > " ! > Z*– ! " . K < – , < , . 3.6.2. %% ; !< ( *!* 3.5, . " , " ! > . $ - > % . /> - " ! , % . ! > ! Z+(t), Z–(t). * > ! > $0 Z+(t), . Z–(t) . ; ! , : − & & – < > - ; − & & – > < . 3.6.3. * 6! *! % *G " b, > , % ! . : . 3.8. > %: 97 § 1 ¨ ¨ 1 R = ¨100 ¨ ¨ 1 ¨ 1 © 2 1 1 1· ¸ 1 1 1 1¸ 1 1 1 1¸ ¸ 1 1 1 1¸ 1 1 1 1¸¹ ρ : ρ = ((104, 6), (6, 5), (5, 104), (5, 5), (5, 5)). / " Q(0) = = (0, 0, 0, 0, 100). : W = 100 > . ! . 3.5. t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 76 77 78 79 80 81 82 … 98 A%/%'%* IB,'M)%,)A%C",)G (:/) v1 v2 v3 v4 + 3.5 v5 0,000 1,000 2,528 3,601 4,544 5,342 6,017 6,604 7,575 8,725 9,948 11,200 12,466 13,736 15,008 16,281 0,000 1,000 1,743 2,522 3,145 3,677 4,128 4,504 4,635 4,689 4,711 4,720 4,724 4,725 4,726 4,726 0,000 1,000 1,576 2,100 2,545 2,920 3,238 3,504 3,635 3,689 3,711 3,720 3,724 3,725 3,726 3,726 0,000 1,000 1,576 2,100 2,545 2,920 3,238 3,504 3,635 3,689 3,711 3,720 3,724 3,725 3,726 3,726 100,000 96,000 92,576 89,677 87,221 85,141 83,379 81,883 80,519 79,208 77,919 76,639 75,363 74,088 72,814 71,540 86,647 86,669 86,683 86,691 86,696 86,704 86,704 4,088 4,083 4,079 4,077 4,076 4,075 4,075 3,088 3,083 3,079 3,077 3,076 3,075 3,075 3,088 3,083 3,079 3,077 3,076 3,075 3,075 3,088 3,083 3,079 3,077 3,076 3,075 3,075 , > v2, …, v5 , > ! , > v1, . Q* = (86,704, 4,075, 3,075, 3,075, 3,075). , . D > v1 > v2. $ ! > v1 > ! > v2, , > v1, . A% . 3.9 "# , % ! > " " # . 100q(t) 90 80 v5 v1 70 v1 60 v2 50 v3 40 v4 30 v5 20 10 0 0 3 6 9 121518212427303336394245485154576063666972757881 t : . 3.9. A% ( > v5) G , #% ! > v5 v1, > ! ! % . G % R < : r12 = 3. 3.9. > %: 99 § 1 ¨ ¨ 1 R = ¨100 ¨ ¨ 1 ¨ 1 © 3 1 1 1· ¸ 1 1 1 1¸ 1 1 1 1¸ ¸ 1 1 1 1¸ 1 1 1 1¸¹ ρ : ρ = ((104, 7), (7, 5), (5, 104), (5, 5), (5, 5)). * : Q(0) = (0, 0, 0, 0, 100). ! . 3.6. t 0 1 2 3 4 5 6 7 8 9 10 … 157 158 159 160 161 162 … A%/%'%* IB,'M)%,)A%C",)G (:/) v1 v2 v3 v4 + 3.6 v5 0,000 1,000 2,504 3,529 4,439 5,222 5,886 6,454 6,915 7,219 7,576 0,000 1,000 1,838 2,766 3,495 4,123 4,661 5,119 5,606 6,333 7,119 0,000 1,000 1,552 2,051 2,487 2,855 3,169 3,437 3,643 3,751 3,786 0,000 1,000 1,552 2,051 2,487 2,855 3,169 3,437 3,643 3,751 3,786 100,000 96,000 92,552 89,603 87,091 84,945 83,114 81,552 80,194 78,946 77,732 6,268 6,268 6,267 6,267 6,266 6,266 84,098 84,100 84,101 84,103 84,104 84,104 3,211 3,211 3,211 3,210 3,210 3,210 3,211 3,211 3,211 3,210 3,210 3,210 3,211 3,211 3,211 3,210 3,210 3,210 Q* = (6,266, 84,104, 3,210, 3,210, 3,210). , > v1 v2 . ; > v2, v1 , > ! . D , !, 3, ! e12, > v2 « » v1 > v5, v1. " ! r12 ! 2, ! « » , > v1. 100 G . 3.10 > , > v1 Z+(t), . q(t) 100 90 80 v5 v2 70 v1 60 v2 50 v3 40 30 v4 v1 v5 20 10 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 0 : . 3.10. A% ( > v5) t / : ! r12, , " ! ! % , < ! 3.6, 3.7? $! . # ! : , , , > . & ! > ? ", , , % #% " " . G " , " ! > , " 4. 101 ##* + ! 3 ' 3, " 4, " . / > , !. D > : ( ! >, ), ( ! >, ) > ( ). ; > , % ! . J – % " – > , $%. = – < > , ! Z+*. I #% " , " . 4, ! . $! : - Z– Z+, " T. / Z– > #% 2; > " ! > 1. 1 " " % & ( 3.1). , .1 2.1 – < 3.1, ଵ n > < % R' . $ < . % – . 1. / > > Z+* – U " . / <" > ! : Q(0) > Z+(0) ( ! ! ), , " t, " Z–. ; ! , ! ; > ! 1 102 D ! " . 4. t Z–(t). ! " > - . * > , < , " ! ( + Z , ! ). = , .. > , ! Z– Z+*, " ! , " . b, > , % !, . / > , ! > " . 2. < rsum; < " , ! . $ (. 3.5): <## % χ % ! > , > χ, .. > rsum. $ . : – < , < % &, % , . $ <" > ( ., , . 5.8 " [52]). K " ! W = 1 (. 3.1), , > Q1(t), " > < . 103 4. B D BA A @A B BA, : • ) & W ≤ T. ( &# W > T; & & . 9 &# , &# . • , W = T & , & . " & , & W > T, ! $ - . • & & . • ! &# ' Q1* & -. • ( , & & . % & W – T ! & . • % $ ! & n × n. , $ [Ri'] &# & , # ! . Ri'. • ( , & , , # , & . ( , $ & . 4.1. ! *%9*% ! > ! , < ! , – % &. ; > " , > , #% . 104 < > , #% > , ! > . 1, ; , . ! - 4.1.1. ! '* #") *%9*%) K W ≤ , ! > t (t > t') #% 2, > > >", .. " : Q(t) = F in (t ) . " , 2 > , , < t : F out (t ) = Q(t). G 3.1 3.3 , Q(t) W ≤ Q*. ;" lim F in (t ) t →∞ lim F t →∞ out (t ) . ; ! , #% - 2 : Fin* = Fout* = Q*. * f sum = W. / " W = ! ~ ~ ~ in ~ out ~ Q = (q1 , ..., qn ) , F F . ;" ~ ~ ~ ~ F in = F out = Q ; f sum = . 4.1.2. ! '* :/G ) *%9*%) : #% W > . / " , . % ! R 3.5 (" 3) " . 105 4.1. §1 ¨ ¨1 R = ¨3 ¨ ¨1 ¨1 © 1 1 1 1· ¸ 1 1 1 1¸ 1 1 1 1¸ . ¸ 2 1 1 1¸ 1 1 1 1¸¹ < % ≈ 21,204. : " Q(0) = = (100, 0, 0, 0, 0) ( . 4.1). $ . ( , , < "# " , ".) : . 4.1. " . * Q(0)=(100, 0, 0, 0, 0) ' ! – . K ! " > , . ;, Q(0) = (0, 100, 0, 0, 0) ! , # ! % , > !, ( . 4.2). 106 : . 4.2. " . * Q(0)=(0, 100, 0, 0, 0) % > . / < > v1, > v2 #% 1. : > > v2 1 2. " ! % . K > v3, ! – ! % ( . 4.3). : . / > , ! > ! . ! rsum, !, ! % . ! % (fsum = rsum) , " > #% 1. * " , > v3, ! > , 2, >. , " > v3, …, v5 ! , : ! > ". > . 4.5. 107 : . 4.3. " . * Q(0) = (0, 0, 100, 0, 0). ($ }: 5 % ) : . 4.4. . * Q(0) = (20, 20, 20, 20, 20). ($ }: 15 % ) 108 : . 4.5. " > . * Q(0)=(20, 20, 20, 20, 20). ($ }: 3 % ) G > , . 4.4, 4.5, . 4.6. v1 v2 : . 4.6. > . * Q(0) = (20, 20, 20, 20, 20) 109 / " > : Fin* = Fout* = (5, 4,537, 3,889, 3,889, 3,889), ~ f sum = 21.204. : , W > T " . $ . 1. K , #. ! . / , !, < , > - " . = , Z+(t), .., ! . ; ! , ; " > . < . 2. #% ! % . 3. > , " > - Z–(t). 4. t → ∞ . 5. , ~ f sum = T. ! , > , , ! : f1out* → 5 = r1out ( . . 4.5). G 3.3 "" , W = ! > ! , ! : ~ q~i = riout . , , Q = (q~1 , q~2 ,..., q~n ) – " W = . / % > , q~i = riout l > (l Y 1). ;~ " : Q = (r out ,..., r out , q~ ,..., q~ ) . 1 l l +1 n 4.1. ' 0 " 0 W > T %+ "$ 0 0 $& ), " ) 0 0 # , " $ F* : 110 § r11 ¨ ... ¨ ¨ r ¨ ~ l1 * F = ¨ ql +1 r ¨ r out l +1,1 ¨ l +1 ¨ ~ ... ¨ qn rn1 ¨ r out © n r12 ... ... rl 2 ... ... q~l +1 rl +1, 2 rlout +1 ... q~n rn 2 rnout ... ... ... · ¸ ... ¸ rl n ¸ ¸ ~ ql +1 rl +1,n ¸ , ¸ rlout +1 ¸ ... ¸ q~n ¸ r nn ¸ rnout ¹ r1n & l # % W = T , & &: + . $ . G 3.1 3.3 , W = T . ;" , % W = T ! : § r11 ¨ ¨ ... ¨ r l1 ¨ ~ ¨ q~l +1 F= r ¨ r out l +1,1 l +1 ¨ ¨ ~ ... ¨ qn rn1 ¨ r out © n r12 ... ... rl 2 ... ... q~l +1 rl +1, 2 rlout +1 ... q~n rn 2 rnout ... ... ... · ¸ ... ¸ rl n ¸ ¸ ~ ql +1 rl +1,n ¸ ¸ rlout +1 ¸ ... ¸ ~ qn ¸ r n2 ¸ rnout ¹ r1n > , " i i- % (4.1) i-" !%. /- !% " : T ~ F out = r1out ,..., rlout , q~l +1 ,..., q~n ( ) (4.1) (4.2) W > T Q(0) = (q1(0), q2(0), …, qn(0)). / <## % % : T ~= < 1, W 111 " QT(0) = (~q1(0), ~q2(0), …, ~qn(0)) " W = . " " . ~ % F , (4.1). / " " " (4.2): ( ~ ~ F in = F out ) T ~ = Q = (r1out ,..., rlout , q~l +1 ,..., q~n ) . QT(0) FT(t) F(t) Q(0) (W > T): F(t) Y FT(t). (4.3) , (4.3) t → " , W > T W = T . l > : – ! < > . , t → W > T > vi (i > l) ! > q~i Δf(t). ;" % ! : r11 § ¨ r21 ¨ ¨ ... ¨ rl1 ¨ ¨ f l +1,1 (t ) ¨ F (t ) = ¨ ... ¨ ¨ § q~i · ¨ ¨¨ out + Δf (t ) ¸¸ri1 ¹ ¨ © ri ¨ ... ¨ ¨ f n1 (t ) © 112 r12 r22 ... ... ... ... rl 2 ... f l +1, 2 (t ) ... ... ... § q~i · ¨ ¸ ¨ r out + Δf (t ) ¸ri 2 ... © i ¹ ... ... f n 2 (t ) ... · ¸ ¸ ¸ ... ¸ rl n ¸ ¸ f l +1, n (t ) ¸ ... ¸ ... ¸ § q~i · ¸ ¨ ¸ ¨ r out + Δf (t ) ¸rin ¸ © i ¹ ¸ ¸ ... ¸ ... ¸ f nn (t ) ¹ r1n r2 n " , i < , ( " "). K < i- < k V l, > vk. rkout , " ! >, < > > vi § q~i · ¨ out + Δf (t ) ¸rik , ! > , W = T, – ¨r ¸ © i ¹ > . ; ! , > vk ! > , , . / , Δf(t)⋅rik. K < " , > vk ! !, W. < , Δf(t)⋅rik → 0 t → , Δf(t) → 0, < i- ~ % F(t) < % F . ; ! , > vi ! ! l > , t → W = , .. q~i . > vi ! l > . ;" i- % l . § r11 ¨ ¨ ¨ ... ¨ ¨ rl1 ¨ f (t ) ¨ l +1,1 F (t ) = ¨ ... ¨ ¨ ¨ 0 ¨ ¨ ¨ ¨ ... ¨ f (t ) © n1 r12 ... r1l r1,l +1 ... ... ... ... ... ... rl 2 ... rll rl ,l +1 ... f l +1, 2 (t ) ... f l +1,l (t ) f l +1,l +1 (t ) ... ... ... ... ... ... 0 ... 0 § q~i · ¨ ¸ ¨ r out + Δf (t ) ¸ri ,l +1 ... © i ¹ ... ... ... ... ... f n 2 (t ) ... f nl (t ) f n,l +1 (t ) ... · ¸ ¸ ¸ ... ¸ rl n ¸ ¸ f l +1,n (t ) ¸ ¸ ... ¸ § q~i · ¸ ¨ ¸ ¸ ¨ r out + Δf (t ) ¸rin ¸ © i ¹ ¸ ¸ ... ¸ ¸ f nn (t ) ¹ r1n 113 rim > 0, m > l. : > vm. K " ! >, W = , ! (vi, vm): · § q~i q~ ¸rim > i rim . m > l, > vm W = ¨ f t + Δ ( ) ¸ ¨ r out riout ¹ © i , > ! , #% 2, .. , < , . K > vm ! ! > vk (k V l), , , " , vk ! ! >, , , , , , " q~m . : ( ) > vi < ! q~ . i " , "# ; < > vi " > vk (k V l). K < , 2, J, " J – 1 . , > , < , t → " W = : q~i1 , q~ , …, q~ . " , W > T, " i2 iJ < . ; ! , . & % " ! W > T " % " W = . * 4.1 . ; 4.1. ' 0 " %+ " "$ W > T $ 0 ). ; 4.2. ' 0 " %+ " "$ W > T " * $ " % : f sum = . ; 4.3. ' 0 " 0 %+ W > T $ $ 0 0 W = T: ( F in* = F out* 114 ) T ~ = Q = (r1out ,..., rlout , q~l +1 ,..., q~n ) . ; 4.4. ' 0 " # 000 $& $ , $ 0 W = T , & &: + : q~k = rkout . ; 4.5. ' 0 " # &, %) W = T , $# &: + : q~ j < r jout , %+ W > T % $ 0 , & q~ , $ 0 0 j + Δql* , q~l +1 ,..., q~n ) , Δqi* ≥ 0 – # : Q = , & $& * (r1out + Δq1* ,..., rlout l . ¦ Δqi* = W − T . i =1 ; 4.6. ' 0 " , %) , %+ W > T $ 0 "$ 0 . ; 4.7. ' $ ", # & 00%0 $& l = n, $& - ( ) T ) F in* = F out* = (r1out ,..., rnout ) . K ! " , . : % " . : > !" W > T. G A – A , ! " . > , , " ! " n r min = ¦ r jmin , " ( r jmin = min r jin , r jout ) > vj - j =1 U !. G 4.1 , * " > " : f sum = < rmin, ! %, % < rsum. $ " , > 115 ! ! , ( ) " > rmin " rsum. 4.2. #+% %+, %%904 ) $+ %)% &%!+ #* < N! % ! R % R': § r11 ¨ ¨r R = ¨ 21 ... ¨ ¨r © n1 r12 r22 ... rn 2 § r11 ... r1n · ¨ out ¸ ¨ r1 ... r2 n ¸ ¨ ... , = R ' ... ... ¸ ¨ rn1 ¸ ¸ ¨¨ out ... rnn ¹ © rn r12 r1out ... rn 2 rnout r1n r1out ... ... rnn ... out rn ... - · ¸ ¸ ¸. ¸ ¸¸ ¹ " , % R' ! % ! R, % % R R'. , % i- % R ! ! i- > . G R' > < % ! . % ! , % R', ! [R']; [Ri'] , i = 1, 2,… – < % ! . Rk ~ Rm ⇔ Rk ∈[Ri'] & Rm ∈[Ri']. G % ! , % Ri', ! " . #% % ! , %. D ! % ! Rm " [Ri'], " 116 , "" , ! > ! % . / %, % 3×3: §1 1 1· ¸ ¨ ¨3 3 3¸ 1 4 5¸ Ri' = ¨ . ¨ 10 10 10 ¸ ¨1 1 1¸ ¸ ¨ ©3 3 3¹ 4.2. & % ! : §1 1 1· ¨ ¸ R1 = ¨ 1 4 5 ¸ . ¨ 4 4 4¸ © ¹ (4.4) W = 1. Q(0) = (1, 0, 0). t 0 1 2 3 4 … + 4.1 A%/%'%* A"E%/@ (:/) v1 v2 v3 1,000 0,333 0,256 0,250 0,250 0,000 0,333 0,356 0,357 0,357 0,000 0,333 0,389 0,393 0,393 Q1* % Ri'∞, Q1*: ∞ Ri' § 0,25 0,357 0,393· ¨ ¸ = ¨ 0,25 0,357 0,393¸ ¨ 0,25 0,357 0,393¸ © ¹ ρ (# (2.11)) < ! ρ = ((6, 3), (9, 10), (10, 12)}. ! : 117 . G # (3.8) , W ! > % , W " "" . - ! , . 3.2–3.3 " ", " > , ! . / " % , " W = 12. : #% W = 12. 4.3. ; % ! (4.4); Q(0) = (12, 0, 0). + 4.2 A%/%'%* A"E%/@ (:/) t v1 v2 v3 0 1 2 3 4 … 38 39 40 … 12,000 10,000 8,433 7,218 6,274 0,000 1,000 1,733 2,304 2,748 0,000 1,000 1,833 2,478 2,978 3,001 3,000 3,000 4,285 4,286 4,286 4,714 4,714 4,714 , > - " r1out , " 3. > #% 1, .. ! !, > !. ;, , " W = 100 < ( ) ! : Q* = (91, 4,286, 4,714). ; ! , " : ≈ 3 + 4,286 + 4,714 =12. 4.2.1. * <" % :/G+ ")$+ '*'9%!+ %'%:%/0 *G - %& ! G " % R2 " [Ri'], R1 % 118 ! " . 4.4. ; % R2 % (4.4) : §1 1 1· ¨ ¸ R2 = ¨ 1 4 5 ¸ . ¨ 20 20 20 ¸ © ¹ W = 1. Q(0) = (1, 0, 0). ! " " W = 1 4.2. t 0 1 2 3 4 … + 4.3 A%/%'%* A"E%/@ (:/) v1 v2 v3 1,000 0,333 0,256 0,250 0,250 0,000 0,333 0,356 0,357 0,357 0,000 0,333 0,389 0,393 0,393 " T 12. ; ! , , [Ri'] % ! : 1) " Q1* , W = 1, , W > T. ! , 2) " " > > !" <" 4.3. " - 4.2.2. * <" % :/G+ ")$+ '*'9%!+ %'%:%/0 *G -'* # ! : % R3∈[Ri'], R3 ! > ! . <" % (4.4) 119 % ! > . $ ! ! " %, < > ! , .. ! >, . 4.5. / ! % (4.4) . § 2 2 2· ¨ ¸ R3 = ¨ 1 4 5 ¸ . ¨ 4 4 4¸ © ¹ W = 1. Q(0) = (1, 0, 0). ρ : ρ = ((7, 6), (10, 10), (11, 12)). > , > . t 0 1 2 3 4 … + 4.4 A%/%'%* A"E%/@ (:/) v1 v2 v3 1,000 0,333 0,256 0,250 0,250 0,000 0,333 0,356 0,357 0,357 0,000 0,333 0,389 0,393 0,393 , 4.2, 4.4. " . $ " , , 1, . ! > - . < " , , ! % > . 4.6. & % R3 4.5; W = 24 ≈ . Q(0) = (24, 0, 0). 120 t 0 1 2 3 4 … 46 47 … A%/%'%* A"E%/@ (:/) v1 v2 v3 24,000 20,000 16,867 14,436 12,548 0,000 2,000 3,467 4,609 5,495 0,000 2,000 3,667 4,956 5,956 6,000 6,000 8,572 8,572 9,428 9,428 + 4.5 = 6 + 8,572 + 9,428 = 24 " . ", > 4 " W = T : 3 ⋅ 2 = 6; 4,286 ⋅ 2 = 8,572; 4,714 ⋅ 2 = 9,428. 4.2.3. # %/0 *G "-'* # ! & % R4∈[Ri'] % R1 (4.4), ! . 4.7. " > . - § 3 3 3· ¨ ¸ R = ¨1 4 5¸ . ¨ 4 4 4¸ © ¹ W = 1. Q(0) = (1, 0, 0). # "% ρ ! : ρ =((8, 9), (11, 10), (12, 12)). / > . , , – > . G <" , Q1* %, % 121 ! , , . > , - + 4.6 A%/%'%* A"E%/@ -A) (B&&"A,%& A:(BA(:, A"C,%& 1 t v1 v2 v3 0 1 2 3 4 … 1,000 0,333 0,256 0,250 0,250 0,000 0,333 0,356 0,357 0,357 0,000 0,333 0,389 0,393 0,393 G < " . b W = 28 ! % " . :, 28, " # "% . 4.8. ? + R4; & W = 28 ≈ . Q(0) = (28, 0, 0). t 0 1 2 3 4 5 6 7 8 9 … + 4.7 A%/%'%* A"E%/@ (:/) v1 v2 v3 28,000 22,000 17,300 13,653 10,822 8,625 7,169 7,011 7,001 7,000 0,000 3,000 5,200 6,913 8,243 9,275 9,952 9,997 10,000 10,000 0,000 3,000 5,500 7,433 8,934 10,100 10,879 10,992 10,999 11,000 > " > 2 ( ). ;, , 100, ! : Q*=(7,000, 82,000, 11,000). " , ! !122 , – , 10, – > % Q1* . ~ / " W = : Q = (q~1 , q~2 , q~3 ) . ;" : q~1 = 0,250T; q~ = 0.357T =10; 2 q~3 =0,393T; G " > : T ≈ 28. ;" : q~1 = 7; q~3 = 11. # , !! . 4.3. !* Q1* '* 6& 4.2. ' [Ri'] W = 1 % $ 0 0 Q1*. $ . ; % Ri' , (Ri')∞ . (Ri')∞ = 1⋅Q1*, " 1 – - !%, n %, Q1* – . ; . ! % Rm [Ri'] ! # (2.7) Q*, W, W ≤ T. # , " ! Q1*. : . * > ! , % > , 1. 4.3. ' " 0 , +%) & 1: ~ 1) & Q = (q~1 , q~2 ,..., q~n ) , %) W = , :00 : r out q~i = 1 1* qi1* ; q1 2) " : 0 : 123 T= r1out . q11* (4.5) $ . W ≤ T " % Q1*. " " , > , ! . , > ( 4.4 4.1). 1. ;" q~1 = q11*T = r1out , (4.6) q~i = qi1*T < riout , (i > 1). G (4.6) : T = r1out 1* r1out ~ ; q = qi i q11* q11* | " . A (4.5) !^ 4.5: % ! % . 4.4. +% *! % %%( % '*$/ . 4.4 4.1, > % , W = T , ! . $ < , " " ". # ! ", > , . 4.4 ( + :). ' # vj " 0 000 , r out $ j = arg min i 1* . i∈{1,...,n} q i 124 $ . > > : r out Ti = i 1* , i = 1, …, n. qi , , > , ! , : q~ r out q~k = rkout . " , q~k = q1k*T , T = 1k* = k 1* . qk qk ;" , , > : k = . " , " , #% 2, , > , ! . ; ! , W = T: q~k = rkout ; q~i ≤ riout , i S k. > (4.7) (4.7) : qi1*T ≤ riout , T≤ riout qi1* riout . i∈{1,...,n} q1* i K < " > , % . ! : > , q~ j = r jout , (i = 1, …, n), < r jout , T = min riout . i∈{1,...,n} q1* q1j* i > vl – % , r out r out " T = min i 1* = l 1* . > vk – % i∈{1,...,n} q ql i = T = min 125 . ;" : q~k = rkout . * rkout . q1k* W = T > #% r out 2, > vk ! : q~k = Tq1k* = l 1* q1k* . ql " , ! , q~ = r out . ;" : > k rkout = out rl q1* 1* k ql rkout q1k* = k out rl =T . ql1* | " . * , " # r out T = min i 1* . i∈{1,...,n} q i % % R (R')∞, " " " , >" . / " ! " 2. $!! , " , . 4.5 ( $ 0 ). |" 0 $ 0 0 Q* = q1* , ..., qn* 0 " 0 " & W 0%0 %) : r out 1. W ≤ , T = min i 1* : i∈{1, ..., n} q i ( qi* = qi1* ⋅ W 2. W > 0 : (4.8) : - : " &- qi* = qi1* ⋅ T , i ≠ jk, 126 ) (4.9) jk – . jk 0%0 0: r out jk = arg min i 1* . i∈{1, ..., n} q i }# 0 00 $& . ; ! , Q* : 1) W; 2) ! % % R'∞ ; 3) ! out % ri . W ≤ . W > > % > . " " . / - # qi* = q~i = qi1* ⋅ T . | " . , "" " Q* Q1*, .. < % R. $ # (4.8)–(4.9) !" , % " , % " % ! R. D , , Q1* = (q11* , q12* ,..., q1n* ) , !" ! , % !" " . = " # . 4.6 ( $ ). ' 0 " $& " %+ " W: r out 1. W ≤ f iin* = f i out* = qi1*W , " T = min i 1* ; i∈{1,...,n} q i 2. W > f iin* = f iout* = qi1*T . ; , " W. I 127 – % , , " W – r jout " ; k > , . 4.5. %* #* <" R % '* 6/"# ! &%# *!* ' 6$+ #* < R' ! >, % Ri' % ! [Ri']. " % ! R vj – . K % R', [R']. " : r jout T = 1* . : > vk, . qj % ! % R R', > ! > vk, , ! < . vk : out rkout r j = . q1k* q1j* (4.10) / (4.10) rkout – , k % . $ – . $ : rkout = q1k* out rj . q1j* (4.11) | " . $! ! : ! > vj ( ), " <##, vj < . 128 ! k- % R (4.11), vj vk > : rkout q1k* = , r jout q1j* (4.12) .. ! > - " ( ! ) . 4.9. : , ! % . > . K % ! % : §1 ¨ ¨1 R = ¨6 ¨ ¨1 ¨1 © 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1· § 0,2 ¸ ¨ 1¸ ¨ 0,2 ¸ 1 , R' = ¨ 0,6 ¸ ¨ 1¸ ¨ 0,1 ¸ ¨ 0,2 1¹ © 0,2 0,2 0,2 0,2 · ¸ 0,2 0,2 0,2 0,2 ¸ 0,1 0,1 0,1 0,1 ¸ . ¸ 0,6 0,1 0,1 0,1 ¸ 0,2 0,2 0,2 0,2 ¸¹ / < W = 1 ! : §1 1 1 1 1· Q = ¨ , , , , ¸ , ρ = ((10, 5), (10, 5), (5, 10), (5, 10), (5, 5)). ©4 4 6 6 6¹ T = 20. : (4.10) – (4.12) > v1 v2, % R. $ , Q1* " ! , , ! > ( [R']), ! ", – , < ! > v5. <" > ! , ! (4.11). 1* r5out = 1 1 10 . : ⋅5 = 6 4 3 129 ; ! , , %: §1 ¨ ¨1 ¨ R =¨6 ¨1 ¨2 ¨ ©3 1 1 1 1 1 1 1 6 2 3 1 1 2 3 1 1 2 3 1· ¸ 1¸ 1¸ ¸ 1¸ 2¸ ¸ 3¹ % . < , " , > - v3 v4 <## % % , % (4.13) % . §1 ¨ ¨1 ¨2 ¨ R=¨ 1 ¨ ¨3 ¨¨ 2 ©3 : rkout q1k* 1 1 1 3 2 2 3 1 1 1 3 1 3 2 3 , % (4.13) = 20 = T , 1 1 1 3 1 3 2 3 1· ¸ 1¸ 1¸ 3¸ 1¸ ¸ 3¸ 2¸ ¸ 3¹ (4.13) ! > - . / ". I! ! ! % , % 3: §3 ¨ ¨3 R =¨6 ¨ ¨1 ¨2 © 130 3 3 1 6 2 3 3 1 1 2 3 3 1 1 2 3· ¸ 3¸ 1¸ . ¸ 1¸ 2 ¸¹ % ! . K ρ : % - ρ = ((15, 15), (15, 15), (10, 10), (10, 10), (10, 10)). % (4.13) < ! , , < , > : § § 10 10 · § 10 10 · § 10 10 · · ρ = ¨¨ (5,5), (5,5), ¨ , ¸, ¨ , ¸, ¨ , ¸ ¸¸ . © 3 3 ¹ © 3 3 ¹ © 3 3 ¹¹ © / , > , ! . (G 3.1 ! Z–(t) " ! > , % , ). , ! . < > " ! ( " ). , > ! ! , ! (. 2.4), < . G " . 4.6. <! & % %+ % $ %"# *!*# : % [R']n×n, % R'. % R ∈ [R'] vj. # < %, k ≠ j. J % < , ! rkout ª q1* · !" « 1k* r jout , ∞ ¸ . G # ¸ ¬« q j ¹ (4.11) , rkout < q1k* out r j > vj ! q1j* q1k* out r j vj – q1j* , ( % " ) ! . . ! rkout > 131 ; ! , # j % R, , % !" " > -, ! > vj, vj. , n −1 # > vj ¦ Cni −1 = 2 n −1 %, i =1 ! % % . $ , " . :" #% ! ! ! !^ . 4.7. ( %/ % $ # '* # !# $ # %& !# G , ! " > ! . $ . : n > ! r. : , [41], ! " . b ! " ! α (α > 1). "# , ! ! ! . < ! (v2, v1). ;" r21 = αr, rij = r (i ≠ 2, j ≠ 1), > v2 . n = 5 . 4.7. / > , > - , n riout = ¦ rij = rn . ! j =1 n ! : r1out = ¦ rij = r ( n + α − 1) . j =1 (( )( ) ( )) ρ = r1in ; r1out , r2in ; r2out ,... rnin ; rnout < ! : ρ = ((r(n + α – 1), rn), (rn, r(n + α – 1)), (rn, rn),…(rn, rn)). 132 r " v2 αr v1 r r r r r r r r r v3 r r r r r r r r r r r r v5 : . 4.7. r v4 r ; 4.7 ! > , ! ( " <" ! ). 4.7. / ! r21 = αr, rij = r (i ≠ 2, j ≠ 1), " α > 1: 1) T = rn n 2 + (n + 1)(α − 1) , n + 2(α − 1) 2) !" " Q(0) = (q1(0), q2(0), …, qn(0)) W > T : Q*=(W – (n – 1)q*, q*,… q*), " q * = rn n + (α − 1) . n + 2(α − 1) / " 4.8. 4.8. / ! r21 = αr, rij = r (i ≠ 2, j ≠ 1), α > 1, !" " 133 Q(0) = (q1(0), q2(0), …, qn(0)) W ≤ T % , Q*=(q1*, q*,…, q*) # : n + (α − 1) q* = W 2 ; (4.14) n + (n + 1)(α − 1) q1* = W n + 2(α − 1) . n + (n + 1)(α − 1) 2 ; . W = T ! Q*=(rn, q*,…, q*), " q* # (4.14). / 4.7 4.8 # " ! ! " " : > > - . < " ! [27]. ##* + ! 4 / " 4 " ! > , .. W > T. / . <" , # ! " : • " " , , ! " " ; • # ( 4.3); • ( 4.4); • # - ; • # " . $ < " W = T, .. ~ Q = ( q~1 ,..., q~n ) , # <" . , 134 , W > T > W – T ; ", – , W = T. K ( . 4.6 , < ! " ), , > , " " . K , > . $ , <" >, ! " 8. , , " > – . * ! , , , , .. > ! . ! " . , > < , ! , ! . 135 5. @A K B, : • " & $ , &# & . • ) &, !# 6 W = 1 W = T $ R. • ( &# & & . • & & Z+(t), , !# Z+(0), Z+*, .. Z+(0) = Z+*. • % &, # & & . • W > T , Z–(0) + ! & , Z (t) , . " ! $ R . • W > T , # & & Z+(t), , !# &# , !# Z–(0). • < & , # & & W > T. • & & $ W > T. < > riin = riout , , , > . K < % ! , < , , . K < % ! , . D !^ , ! ! , ! > . D , " 2, " ! <" (" % ). / " ! " < . / , , ! > . / " , , , , " , <" . 136 5.1. 94% '*$/ %%( ( '* 6& " W ≤ " . < < . * " #% < > "" . 5.1. ' 0 D " + : = rsum. $ . $ , V rsum. , " < rsum. ;" W: < W < rsum, , W, > ! 1, .. : qi* > riout , , riout . = > , > vi riout . ; < riin = riout , ! > vi ! . ; ! , > , > !: r jout . . ! > , , > , > ! . $ n , ! ! > ¦ r jout j =1 = rsum , . , = rsum. ; 5.1. $ & & , " 0 0 D & 0: ~ ~ Q = (r1out , ..., rnout ) , Q – $ 0 0 W = . ; 5.2. vi ∈ Z–(0), ∀ t > 0 vi ∈ Z–(t). (* ", " Z+(0) 0 # 0$0.) $ . / > < > , " 137 Z–(t). > vi ∈ Z–(t) " riout , > ", , ! > <" , . ; 5.3. ' 0 D 0 %+ W $ 0 ). $ . " W V T ", " . G 5.1 , W = ~ Q = (r1out , ..., rnout ) . W > ~ ~ ! Q : Fin* = Fout* = Q . <" " " ( 4.1 ). , . ; 5.4. & 0 D +$# " 0: W > , 0 # & & Z–(0) $ 0 & 0: * out qk = rk . $ <" . > W > , ! >, W = . = W = 5.1 ~ Q = (r1out ,..., rnout ) . ; ! , qk* ≥ rkout . * > – ! , Z (0) " Z+(t), !. $ qk* = rkout > Z–(0). 5.2. +% E+*") %+ / < > ! !: > " ! ; > . G #% < ! > # . / " 4 (% .4.5) ! , > % , < . 5.1 ! , # 5.1. 138 ; 5.1. N! > " < % : W > rsum , " Z+*. ; 5.2. / " < &: > Z+(t), . ; 5.3. W > rsum > , Z+(0) " Z–(t) , , Z*–. 5.3 . 5.1. : > ( " !! ! > ). % ! : § 1 50 1 1 1 · ¸ ¨ ¨ 1 2 50 1 1 ¸ R = ¨ 1 1 3 50 1 ¸ . ¸ ¨ ¨ 1 1 1 4 50 ¸ ¨ 50 1 1 1 5 ¸ ¹ © (5.1) ρ=((54,54), (55, 55), (56, 56), (57, 57), (58,58)). rsum = 280. * : Q(0) = (205, 80, 0, 0, 0). W = 285. : Q* = (54, 60, 56, 57, 58). . 5.1. / Z+(0) > . G , > " ! > , , Z–(t) , r1out = 54 . / > Z+(t), > W – T = 5 . , > " " " Q(0) ! Z+(t), ! 5.5. 139 : . 5.1. > Z+(t) Z–(t) 5.3. *$/ %%( % '* $ &# ## *%9*% " ! ! " . $ % < #% " ! ! . I " , " , . * , , " . 5.2. : #% , % (5.1) , > "" : W = 50. Q(0) = (50, 0, 0, 0, 0). G . 5.2 , , " > !" , ! . ! " % !. : . $ ! . 140 : . 5.2. ! 5.3. / % (5.1) ! , 50, " " . W = 50. Q(0) = (50, 0, 0, 0, 0). § 1 50 1 1 50 · ¸ ¨ ¨ 50 2 50 1 1 ¸ R = ¨ 1 50 3 50 1 ¸ . ¸ ¨ ¨ 1 1 50 4 50 ¸ ¨ 50 1 1 50 5 ¸ ¹ © (5.2) & % , ! . " , " ! . <" , , ! < , 50, % (5.2). * " < . #% . / t W = 1, , ! ! Q1(t), – Q1*. Q1* % 141 ! % R', % ! R. : . 5.3. ! < ! . 5.11. ' 0 D $ 0 0 W = 1 : § r out r out r out · Q1* = ¨¨ 1 , 2 ,..., n ¸¸ . rsum ¹ © rsum rsum (5.3) $ . ; > < % , r out : i 1* = T . * 5.1, = rsum. qi $ , ∀i qi1* = riout , " rsum # (5.3). 1 D > ( ., , [103]), "" " . 142 | " . , 1· §1 1 " < , : Q1*= ¨ , ,..., ¸ , n n n¹ © " , " 2. !" W ` T % R W: § r out r out · r out Q* = ¨¨ 1 W , 2 W ,..., n W ¸¸ . rsum rsum ¹ © rsum 5.4. 9!< * % '* :/G ) *%9*%) W = T , ! >, ~ Q = (r1out , r2out ,..., rnout ) . W > T Z+(0) m > . * > ! , , < > 1 m, m < n ( m = n, ). ;" " Q(0) : ( ) Q(0) = r1out + c1 (0),..., rmout + cm (0), rmout+1 − d m +1 (0),..., rnout − d n (0) . I 1(0), …, cm(0) > 0 – > > "" ( ! ) – # % . dm+1(0), …, dn(0) Y 0 – # % > . $! # % csum(0), # % – dsum(0). m csum (0) = ¦ c j (0) , d sum (0) = j =1 * ! t Y 0 # % : n ¦ d j (0) . j = m +1 # % >- csum(t) – dsum(t) = const = W – rsum. 143 4.5 4.1, " W > : ( ) Q* = r1out + c1* ,..., rmout + cm* , rmout+1 ,..., rnout , " c1* ,..., cm* ≥ 0 . (5.4) 5.1, % W > Z+(t) . < ci* " ! . ;" . # % > vk, ! " Z+? G ", * * c ,..., c , 1 m (# (5.4)) ! " ? & ! #% , < ! ? $ ! . 5.5. *$/" %%( ( '* :/G ) *%9*%) '! 5.5.1. *$/ %%( % '* 6#+ 6 Z+(t) " ! # , !" " W > rsum , > , Z+(0), ! Z+*. J ", ! # " > . , > % , ". * . b . " < . - Z+(0) > 1 m: ( ) out Q(0) = r1out + c1 (0),..., rmout + cm (0), rmout − d n (0) . +1 − d m+1 (0),..., rn 144 # ! . # % > Z+(0), ! % #% Z–(t)? G , ! Z+(0) > ! r1out , ..., rmout (# % > ), ! > v1, …, vm Z+(t), W = T = rsum? $! # % > m m ~ ~ c1 , ..., cm ( < ", % % ! " ). / " " " ! : ( ) Q(0) = r1out + c~1m ,..., rmout + c~mm1 , rmout+1 − d m +1 (0),..., rnout − d n (0) . P, , W = T, > : m ¦ c~jm = d sum (0) . (5.5) j =1 $ , " , > Z+(0) , ! ci (0) > c~im (i V m) # % < > ! c* = c (0) − c~ m . i G < ! c~1m , ..., c~mm c~im = , qi (0) − qi* i i : ! > qi(0). / qi (0) − qi* = riout + ci (0) − (riout + ci* ) = ci (0) − ci* = c~im . | " . , - ! > Z+(0) : ck (0) = c~km + Δck (0) (k V m), > , Z+(0), c~ m i . / , < > " #% 1, .. ! 145 " , " . G > > . # " < ! > . * Q(0), Z+(0) m > , Qm(0) = Q(0) + + (dsum(0), …, dsum(0), 0, …, 0), " m dsum(0). 9 5.1. $ 0 D W > T "$ 0 Z+(0) m # 1, …, m: ( ) out Q(0) = r1out + c1 (0), ..., rmout + cm (0), rmout − d n (0) , +1 − d m+1 (0), ..., rn 0 , "+& 0 : $ Z+(t) t > 0 0 # vi, i = 1, …, m, +: ", "+& &0$: ci (0) ≥ c~im , (5.6) ~ c~im – & C m : ~ C m = Qm (0) − Qm* . (5.7) $ . b ", > , Z+(0), , , Z+(t) % , .. ci (t ) ≥ c~im t Y 0 vi, i = 1, …, m. I! ! <", > Z+(0) ! ! > , # % . / > > , c~im , Qm (0) − Qm* , < ! " > vi ∈ Z+(0), c~im , , < > #% . ; 5.4. ' D W > T 0 "$ 0 0 Q(0) : vi ∈ Z+* ci (0) ≥ c~im , ~ C m : 0 (5.7). }+ , $ # & Z+(0) 0% % (5.6). 146 ; 5.5. D "$& 0 ( out Q(0) = r1out + c1 (0), ..., rmout + cm (0), rmout − d n (0) +1 − d m+1 (0), ..., rn ) W > T 0 : # vi ∈ Z+(0) &00 ci (0) ≥ c~im , $ 0 0 ( ) Q* = r1out + c1 (0) − c~1m ,..., rmout + cm (0) − c~mm , rmout+1 ,..., rnout = ~ = Q ( 0) − C m , (5.8) ~ C m 00 (5.7). ~ ; ! , C m (5.6) > Z+(0). 5.1. ", , (n – m) ~ C m % # % . n ¦ c~jm = −d sum (0) . j =m+1 < # # (5.5), : n ¦ c~jm = 0 . j =1 $!! # % ( ! " ck(0) Y c~km ). / < Z+(t) ! % #% . : % > " " . 147 5.5.2. *$/ %%( E+*+ % . :4 + %9&+ % > , m > c (0) ! > β i = ~i m . c i K βi ≥ 1, i =1, …, m, # (5.8). l: 1 < l < m, , c (0) β i = ~i m < 1 , j = l+1, …, m. (5.9) ci < > c j (0) < c~jm , , + ! Z (t), Z–(t). * > vl+1, …, vm m # % , ¦ (c~jm − c j (0)) , - j = l +1 > Z+(0). < (5.9) > vi ∈ Z+(0) > (5.6), < " ", Z+*: % . Z+(t) > m, > (5.9) . K > m – k, m – k + 1, …, m > (5.9) , Z+(t) . $! l = m – k –1 Z+(t). ; > vi ∈ Z+(0), i ≤ l, ! # , ! vi ∈ Z+*, ! ~ C l . / " " ! : ( Ql (0) = r1out + c1 (0) + d sum (0),..., rlout + cl (0) + d sum (0), ql +1 (0),..., qn (0) ) ; # % dsum(0) ! l > – , (5.6). , c~il > c~im , i = 1 ,…, l, , " (5.6): c (0) ≥ c~ l , i = 1 ,…, l. i 148 i % , - ! p V l ci (0) ≥ c~i p , ! i = 1 ,…, p. <" . ( ) out Q * = r1out + c1 (0) − c~1p ,..., rpout + c p (0) − c~pp , rpout . +1 ,..., rn *>%A)/& ,"J%H#:,)G -A:#:*+,%>% (%(/%G,)G ~ 0. / C m # (5.7). 1. / ci (0) − c~im , i = 1, …, m. K % , (# (5.8)). / . c (0) 2. b > ! β i = ~i m . c i 3. m := m – k –1, " k – c (0) β i = min ~j m ; >" 0. j c > , j W > T, > Z+*, " >", > m – 1. / ( out Q* = r1out + c1 (0) − c~1m ,..., rmout + cm (0) − c~mm , rmout +1 ,..., rn ) ! . # , !! 2.2, ! . 5.2. $ 0 D W > T c $& "$& 0 ( out Q(0) = r1out + c1 (0),..., rmout + cm (0), rmout − d n (0) +1 − d m+1 (0),..., rn ) c (0) & m # 0"& +& % " 0 β i = ~i m . ci $ 0 : 0 : ( ) out Q * = r1out + c1 (0) − c~1p ,..., rpout + c p (0) − c~pp , rpout , +1 ,..., rn 149 ~ C p = Q p (0) − Q*p p = m, ci (0) ≥ c~i , i = 1, … m; " p < m – +$# , , " ci (0) ≥ c~i p , i = 1, … p. " " . 5.5.3. *$/" '! '* :/G ) *%9*%) 6$& ~m )-$ ( !* C – %9&+ %9% ( *%9*% 6 Z–(0) ; 5.2 , <" ! , . ~ / , C m , !" Qm* . " + > vk ∈ Z (0) (k ≤ m) Z+(t). D > #% 1. * ! rkout . # : f kin (t + 1) = (r1out ,..., rmout , qm+1 (t ),..., qn (t ))Rk' , " R k' – k- !% % R'. / > , F in (t + 1) = (r1out ,..., rmout , qm+1 (t ),..., qn (t ))R' . /, %, " . $ Fin(t+1) = Fout(t)R'. / " . 150 (5.10) - F out (t + 1) = (r1out ,..., rmout , qm +1 (t + 1),..., qn (t + 1)) = = (r1out ,..., rmout , qm+1 (t ),..., qn (t ))P = F out (t ) P , " P– !% §E P = ¨¨ m ©O %, R' m !% " ! e1, …, em. K ! %: R1' · ¸ , " Em – % m×m, O – R2' ¸¹ % (n–m)×m, R1', 2 – ! % m×(n–m) (n–m)× (n–m) . J R1' ! ! Z+(t) Z–(t), ! R2' ! Z–(t). !" " h : Fout(t+h) = Fout(t)Ph. Fout(t) = Fout(0)Pt. ;" (5.10) > : Fin(t+1) = Fout(0)PtR'. * % P t, §E P =¨ m ¨O © t ( ) + ... + R (R ) (R ) R1' + R1' R2' + R1' R2' 2 ' 1 ' t 2 / [38, 52] , % " ( t → ∞, , ", % E2 − ¦( ∞ % (n–m)×(n–m), k =0 ( ) 2 ( ) R1' + R1' R2' + R1' R2' + ... + R1' R2' k ' t −1 · 2 ¸ ¸ ¹ ( ) R2' ) −1 R2' , ) = (E k R2' ( : 2 − t → 0 " 2 – ) −1 R2' . + ... = R1' E2 − R2' ) −1 - ;" , 151 % P∞ : ( §E P =¨ m ¨O © R1' E2 − R2' O ∞ G (5.11) ) −1 · ¸. ¸ ¹ (5.11) " : §E Fin* = Fout* = Fout(0)P∞R' = Fout(0) ¨ m ¨O © ( R1' E2 − R2' O ) −1 · ¸ R'. ¸ ¹ (5.12) G # (5.12) , " m . «A » . W > T " T, " . m Fout(0) f i out = riout , i = 1, …, m, .. . " . W > T ~ W = T: Q = (r1out ,..., rnout ) , (5.12) : −1 §E R1' E2 − R2' ·¸ R' = (r1out ,..., rnout ) . F out (0)¨ m ¨O ¸ O © ¹ ( ) ~ / Q = (r1out ,..., rnout ) ! % R' ! λ = 1. ", λ = 1 – ! 1, ! . , −1 §E R1' E2 − R2' ·¸ (5.13) F out (0)¨ m = (r1out ,..., rnout ) . ¨O ¸ O © ¹ ( ) < , ! , Fout(0) (5.13) m . 152 ; ! , (5.13) ( §E (r1out ,..., rmout ,0,...,0)¨ m ¨O © $ R1' E2 − R2' O ) : −1 · ¸ = (r1out ,..., rnout ) . ¸ ¹ < : ( (r1out ,..., rmout )§¨ R1' E2 − R2' © ( ) −1 · out out ¸ = (rm+1 ,..., rn ) . ¹ (5.14) ) §¨ R ' E − R ' −1 ·¸ – % m 2 © 1 2 ¹ ! (n – m) . $! R, !Rnout m (n – m) Rmout −m . ;" (5.14) > : Rmout R c = Rnout −m . / i- Rmout (i = 1, … m) out Rnout −m ri n−m ¦ rijc – ! j =1 i- > < i- % R. > , Z–(0), , .. d sum (0) = n ¦ r jout . ;" > vi (i = 1, … m) j =m+1 riout n−m ¦ rijc . $ m - j =1 ~ C m = Qm (0) − Qm* , ! , > Z+(t), # : c~im = riout n−m ¦ rijc , i =1, …, m. j =1 153 ; ! , , , " > Z–(0) . 9 5.2. ' 0 D c "$& 0 Q(0) = r1out + c1 (0), ..., rmout + cm (0), 0, ...,0 ( ) &: W > T $& " 0 c~im , i =1, …, m, + – # & & Z (0) Z (t), " &%0 : n−m −1 c~im = riout ¦ rijc , i =1, …, m, " R c = §¨ R1' E2 − R2' ·¸ , (5.15) © ¹ j =1 ( $ 0 &0 : ) , " ci(0) ≥ c~im ∀ i =1, …, m, ( ) out Q* = r1out + c1 (0) − c~1m ,..., rmout + cm (0) − c~mm , rmout . +1 , ..., rn $ % P∞. A (5.15) % , " , < ! .. 5.5.1–5.5.2. c~im . 5.4. : > . K % ! : §1 ¨ ¨1 R = ¨6 ¨ ¨1 ¨1 © 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1· ¸ 1¸ 1¸ . ¸ 1¸ 1¸¹ ρ = ((10, 10), (5, 5), (10, 10), (5, 5), (5,5)). rsum = 35. * : Q(0) = (50, 50, 0, 0, 0). W = 100. 154 Z+(0) = {v1, v2}, Z–(0) = {v3, v4, v5}. : > , ! > Z–(t). I < , ! : Q* = (36, 44, 10, 5, 5). ; ! , c~1m = 50 – 36 = 14, c~2m = 50 – 44 = 6. < , 5.2. % R' % P : § 0.1 ¨ ¨ 0.2 R' = ¨ 0.6 ¨ ¨ 0.2 ¨ 0.2 © 0.1 0.2 0.1 0.2 0.2 0.6 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.1 · ¸ 0.2 ¸ 0.1 ¸ , P = ¸ 0.2 ¸ 0.2 ¸¹ §1 ¨ ¨0 ¨0 ¨ ¨0 ¨0 © 0 1 0 0 0 0.6 0.2 0.1 0.2 0.2 0.1 · ¸ 0.2 ¸ 0.1 ¸ , ¸ 0.2 ¸ 0.2 ¸¹ 0.1 0.2 0.1 0.2 0.2 $ § 0.1 0.1 0.1 · ¸ § 0.6 0.1 0.1 · ' ¨ ¸¸ , R2 = ¨ 0.2 0.2 0.2 ¸ . R = ¨¨ © 0.2 0.2 0.2 ¹ ¨ 0.2 0.2 0.2 ¸ © ¹ ' 1 : §6 ¨ § 0.9 − 0.1 − 0.1 · ¨5 ¨ ¸ 2 ' ' −1 E2 − R2 = ¨ − 0.2 0.8 − 0.2 ¸ , E2 − R2 = ¨ ¨5 ¨ − 0.2 − 0.2 0.8 ¸ ¨2 © ¹ ¨ ©5 ( R = c §¨ R ' 1 © (E 2 − ) ) 1 5 7 5 2 5 1· ¸ 5¸ 2¸ , 5¸ 7¸ ¸ 5¹ §4 3 3 · ¨ ¸ = ¨ 5 10 10 ¸ . ¹ ¨2 2 2 ¸ ¨ ¸ ©5 5 5 ¹ −1 R2' ·¸ # (5.14): 155 §4 3 3 · ¨ ¸ 10 ¸ = (10, 5, 5) . : . (10, 5)¨ 52 10 2 2¸ ¨ ¨ ¸ ©5 5 5 ¹ # (5.15) " c~1m, 2 . 14 §4 3 3 · c~1m = 10 ⋅ ¨ + + ¸ = 10 ⋅ = 14 ; 10 © 5 10 10 ¹ 6 §2 2 2· c~2m = 5 ⋅ ¨ + + ¸ = 5 ⋅ = 6 . 5 5 5 5 © ¹ D . ; ! , 5.4 , W > T, > Z–(0) , > Z+(0) , # (5.15), !" !" %. ; " : # % > Z+(0) > " c~im . " , , ! < , !! . Z–(0), % Z+(t) (. 5.5.4), (. 5.5.5). ~m 5.5.4. $& )-$ ( !* C – %9&+ %< *+ 6" Z+(t) : > Z–(0). " : ( ) out Q(0) = r1out + c1 (0),..., rmout + cm (0), rmout − d n (0) , +1 − d m+1 (0),..., rn 156 > vj, j = m+1, … n, : out d j (0) < r j . * > Z–(0) : (5.14) out out (rm+1 , ... , rn ) , > " (dm+1 (0), ..., dn (0)) . : < " > Z–(0): out rm+1 − d m+1 (0), ..., rnout − d n (0) . / > vj ∈ Z–(0) <## % αj ≤ 1: ( ) αj = d j ( 0) r jout . ;" # % ! : (d m+1 (0), ..., d n (0)) = (α m+1rmout+1, ...,α n rnout ) = (rmout+1,..., rnout ) Diag(α m+1, ..., α n ) , " Diag(α m+1, ...,α n ) – " % < α m+1, ..., α n . $ , ! , " # % > , (5.14) # % ! : (r1out ,..., rmout ) R c Diag(α m+1 , ..., α n ) = (d m+1 (0), ..., d n (0) ) (5.16) G (5.16) " , , " > Z–(0) , (5.15) > > Z+(0) : c~im = riout n−m ¦ rijcα m+ j , i =1, …, m. (5.17) j =1 A (5.17) " " < > > Z+(0), ! < > Z+(t) t. G, Z–(t), 157 cj(0) ≥ c~im > Z+(0) " " . K < , " " ! : ( ) ~ Q* = Q(0) − C m = Q(0) − c~1m ,..., c~mm , − d m +1 (0), ...,−d n (0) , ( ) out Q* = r1out + c1 (0) − c~1m ,..., rmout + cm (0) − c~mm , rmout . +1 , ..., rn ; ! , % Z+(t). 5.3. ' D c $& "$& 0 ( out Q(0) = r1out + c1 (0),..., rmout + cm (0), rmout − d n (0) +1 − d m+1 (0),..., rn ) W > T $& " 0 c~im , i =1, …, m, &: # & & Z+(0) Z–(t), " &%0 : c~im = riout α k = n−m ¦ rijcα m+ j , i =1, …, m, (5.18) j =1 d k (0) , k = m+1, …, n, rkout $ 0 &0 : ( , " ci(0) ≥ c~im ∀ i = 1, …, m, ) out Q* = r1out + c1 (0) − c~1m ,..., rmout + cm (0) − c~mm , rmout . +1 , ..., rn | " . * , " > Z (0) , αi %, # (5.18) # (5.15). # . – 158 5.5. - ! % R 5.4. Z+(0) = {v1, v2}, Z–(0) = {v3, v4, v5}. $ > Z–(0) . * : Q(0) = (50, 50, 3, 2, 1). W = 106. ; % c ' ' −1 · § R = ¨ R1 E2 − R2 ¸ , % , © ¹ 5.4, # % , , , " # % , % Diag(α3, α4, α5). ( ) α3 = 10 − 3 7 5−2 3 5 −1 4 , α4 = = = , α5 = = 10 10 5 5 5 5 # (5.16): §7 ¨ § 4 3 3 ·¨ 10 ¨ ¸ 10 ¸¨ 0 (10, 5)¨ 52 10 2 2 ¸¨ ¨¨ ¸ © 5 5 5 ¹¨ 0 ¨ © 0 3 5 0 · 0¸ ¸ 0 ¸ = (7, 3, 4) . ¸ 4¸ ¸ 5¹ : . Rc⋅Diag(α3, α4, α5) = §7 ¨ 4 3 3 ·¨ 10 § ¸ ¨ = ¨ 5 10 10 ¸¨ 0 ¨¨ 2 2 2 ¸¸¨ © 5 5 5 ¹¨ 0 ¨ © 0 3 5 0 · 0¸ ¸ §¨ 28 9 0 ¸ = ¨ 50 50 ¸ ¨ 14 12 4 ¸ ¨© 50 50 ¸ 5¹ 12 · ¸ 50 ¸ = §¨ 0,56 0,18 0,24 ·¸ . 16 ¸ ¨© 0,28 0,24 0,32 ¸¹ ¸ 50 ¹ " c~1m, 2 ! > % Rc⋅Diag(α3, α4, α5). c~1m = 10 ⋅ (0,56 + 0,18 + 0,24 ) = 10 ⋅ 0,98 = 9,8 ; 159 c~2m = 5 ⋅ (0,28 + 0,24 + 0,32) = 5 ⋅ 0,84 = 4,2 . " ! : Q* = (40,2, 45,8, 10, 5, 5). ! < ! . 5.1. t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … v1 50,000 44,400 42,300 41,250 40,725 40,463 40,331 40,266 40,233 40,216 40,208 40,204 40,202 40,201 40,201 40,200 A%/%'%* A"E%/@ (:/) v2 v3 50,000 47,900 46,850 46,325 46,063 45,931 45,866 45,833 45,816 45,808 45,804 45,802 45,801 45,801 45,800 45,800 3,000 7,900 8,950 9,475 9,738 9,869 9,934 9,967 9,984 9,992 9,996 9,998 9,999 9,999 10,000 10,000 + 5.1 v4 2,000 2,900 3,950 4,475 4,738 4,869 4,934 4,967 4,984 4,992 4,996 4,998 4,999 4,999 5,000 5,000 v5 1,000 2,900 3,950 4,475 4,738 4,869 4,934 4,967 4,984 4,992 4,996 4,998 4,999 4,999 5,000 5,000 ! %, , , " , . ~ m 5.5.5. $& )-$ ( !* C – :4 + %9&+ , ! , – " Z+(0), .. ", Z+(t) % " #% . = " " . 5.5.2, > " , ci(0) " c~im . 160 = " " ! Z+(t) ! >" . 1. : " c~im . 2. /! > Z+(0), Z+(t). / % , " > Z+(t) . <" " . 3. > ! > Z–(0). K > , > . 4. % > > Z+(0). ( > , < , > Z–(t) – , " % > ). 5. % > Z–(0) . 6. c~il " " % Z+(0). 7. K > ci (0) ≥ c~il , + . & Z (0) ! 5.5. / 8. K > , ci (0) < c~il , m := l; >" 1. $ > <" " . : > , m > c (0) ! > β i = ~i m , ci < > " > %. c (0) : > vm. β m = m~ m cm , β m < 1 . J , " - βi " > . : , " > , " . βi , i = 1, …, m – 1, : β i > β m , < !" c (0), i = 1, …, m – 1, c (0) > β c~ m , .. ! i i m i 161 " > vi ∈Z+(0) > β m c~im , Z+(t). > vm ! >, > vi ∈Z+(0) , β m c~im , , ! , Z+(t). $! % R c ⋅ Diag(α m +1 , ..., α n ) R c1 . /> vi ∈ Z+(0) > vk ∈ Z–(0) !r c1 " " n − mik . ¦ rijc1 j =1 β m c~im . ; ! , > vk ∈ Z–(0) r c1 r c1 c~ m > vi ∈ Z+(0) n−mik β m c~im = n−mik ~im cm (0) . c ¦ rijc1 ¦ rijc1 m j =1 j =1 G > Z+(0) > vk ∈ Z–(0), , : m r c1 c~ m ¦ n − mik c~im cm (0) = i =1 ¦ rijc1 m j =1 cm (0) m rikc1 ~ m ci . ¦ c~mm i =1 n − m c1 r ¦ ij j =1 * " ! , , : § c (0) cm (0) ~ m out Qnew (0) = ¨¨ r1out + c1 (0) − m~ m c~1m , ... , rmout −1 + cm−1 (0) − ~ m cm−1 , rm , c c m m © rimc1+1 n−m i =1 rijc1 j =1 m c (0) rmout+1 − d m +1 (0) + m~ m ¦ cm ¦ m c ( 0) c~im ,..., rnout − d n (0) + m~ m ¦ cm i =1 . 162 · ¸ m¸ ~ ci ¸ c1 ¸¸ ¦ rij j =1 ¹ rinc1 n−m Qnew(0), Z+(0) ! l > ( , m – 1 > ), c~il , " ! 5.4, ! % . " !! . 5.4 ( $ 0 ). $ 0 D c $& "$& 0 W>T ( out Q(0) = r1out + c1 (0),..., rmout + cm (0), rmout − d n (0) +1 − d m+1 (0),..., rn ) c (0) & m # 0"& +& % # 0 β i = ~i m . ci &: # & ? $& " 0 c~ m , i = 1, …, m, i & Z+(0) Z–(t), " &%0 : c~im = riout n−m ¦ rijcα m+ j , i = 1, …, m, " j =1 $ 0 &0 : αm+ j = d m + j ( 0) rmout+ j , j = 1, …, n – m, , " ci(0) ≥ c~im ∀ i = 1, …, m, ( ) out Q* = r1out + c1 (0) − c~1m ,..., rmout + cm (0) − c~mm , rmout . (5.19) +1 , ..., rn 0 # & vm ∈Z+(0) cm(0) < c~mm , " m $#0 k, "$ 0 0 : ( out out ~m Qnew (0) = r1out + c1 (0) − β m c~1m , ... , rmout −k + cm−k (0) − β m cm−k , rm−k +1 ,..., rm , (5.20) rmout+1 − d m +1 (0) + r c1 β m n −imm +1 i =1 rijc1 j =1 m ¦ ¦ m c~im ,..., rnout − d n (0) + β m ¦ i =1 · ¸ m¸ ~ ci ¸ , c1 r ¸¸ ¦ ij j =1 ¹ rinc1 n−m 163 c (0) β m = m~ m , " k " # , 0 &: cm βm−k +1 = ... = βm . "$ 0 " &0 : , ci(0) – c~im $& . $ 0 &0 (5.20). $ " " Qnew(0). % " . 5.6. & # % % 5.4. §1 ¨ ¨1 R =¨6 ¨ ¨6 ¨1 © 1 1 1 1 1 6 1 1 1 1 6 1 1 1 1 1· ¸ 1¸ 1¸ . ¸ 1¸ 1¸¹ ; ρ = ((15, 15), (5, 5), (10, 10), (10, 10), (5,5)). rsum = 45. , Z+(0) ! > Z+(0) = {v1, v2, v3}, > > !. ! 2: Q(0) = (15 + c1(0), 5 + c2(0), 10 + c3(0), 2, 2). : ! Z+(t). > > c3(0) < c~3m . : ci(0) ≥ c~im i = 1, 2, I! , 5.4. " c~im . " % <" % Rc Diag(α4, α5). % R' % P : 164 6 6 1· §1 1 ¨ ¸ 15 15 15 15 15 ¸ ¨ 1 1¸ ¨1 1 1 ¨5 5 5 5 5¸ ¨6 1 1 1 1¸ R' = ¨ ¸, P = ¨ 10 10 10 10 10 ¸ 1 1¸ ¨6 1 1 ¨ 10 10 10 10 10 ¸ ¨1 1 1 1 1¸ ¨ ¸ 5 5 5¹ ©5 5 § ¨1 ¨ ¨0 ¨ ¨ ¨0 ¨ ¨0 ¨ ¨ ¨0 © 0 0 1 0 0 1 0 0 0 0 6 1· ¸ 15 15 ¸ 1 1¸ 5 5¸ 1 1¸ ¸, 10 10 ¸ 1 1¸ 10 10 ¸ 1 1¸ ¸ 5 5¹ §6 1· ¨ ¸ §1 1· ¨ 15 15 ¸ ¨ ¸ 1 1 ¸ , R ' = ¨ 10 10 ¸ . R1' = ¨ 2 ¨5 5¸ ¨¨ 1 1 ¸¸ ¨1 1¸ ©5 5¹ ¨ ¸ © 10 10 ¹ E2 − ) §8 ¨ =¨7 ¨¨ 2 ©7 § 10 ¨ ¨ 21 − 1 2 ' ' c R = §¨ R1 E2 − R2 ·¸ = ¨ ¹ ¨7 © ¨1 ¨ ©7 1· ¸ 7¸ 2¸ . 7¸ 1¸ ¸ 7¹ R2' 1· § 9 − ¸ ¨ 10 ¸ , E − R ' = ¨ 10 2 2 1 8 ¸¸ ¨¨ − © 5 10 ¹ ( ( / ) −1 1· ¸ 7¸, 8¸ ¸ 7¹ Diag(α4, α5): α4 = 10 − 2 4 5−2 3 = , α5 = = 10 5 5 5 165 § 10 ¨ ¨ 21 2 c R ⋅ Diag (α 4 , α 5 ) = ¨ ¨7 ¨1 ¨ ©7 1· ¸ 7 ¸§ 4 2 ¸¨ 5 ¨ 7 ¸¨ 0 1 ¸¨© ¸ 7¹ 3· § 8 ¨ ¸ · ¨ 21 35 ¸ 0¸ 8 6¸ ¸=¨ 3 ¸ ¨ 35 35 ¸ ¸ 3¸ 5¹ ¨ 4 ¨ ¸ © 35 35 ¹ , (5.16). 3· §8 ¨ ¸ ¨ 21 35 ¸ 8 6¸ (15, 5, 10)¨ = (8, 3) . # ¨ 35 35 ¸ ¨ 4 3¸ ¨ ¸ © 35 35 ¹ % > Z–(0). # (5.17) " c~im , i = 1, 2, 3. 3· §8 c~1m = 15 ⋅ ¨ + ¸ = 7 ; © 21 35 ¹ 6· § 8 c~2m = 5 ⋅ ¨ + ¸ = 2 ; © 35 35 ¹ 3· § 4 c~3m = 10 ⋅ ¨ + ¸ = 2 . © 35 35 ¹ ; , ! , ! Z+(t). : > - ! 50 (.. , ! >), > : q3(0)=11, r3out + c~3m = 10 + 2 = 12 , ! Z+(t) > (10, 12). * , ! , ! : Q(0) = (50, c (0) > : 50, 11, 2, 2). # β m = m~ m cm 166 1 . # (5.21) , 2 , Z+(0) > , > v3 10, ! . : > ! : β3 = q1(0) = 50 – q2(0) = 50 – 1 ⋅7= 46,5; 2 1 ⋅2= 49; 2 q3(0) = 10. * > Z–(0) # (5.20). <" % , > v1, v2, v3 > v4, v5. q4(0) = 2+ 7 § 8 § 8 3 ·· § 8 § 8 6 ·· § 4 § 4 3 ·· ⋅ ¨ : ¨ + ¸ ¸ + 1⋅ ¨ : ¨ + ¸ ¸ + 1⋅ ¨ : ¨ + ¸ ¸ = 2 ¨© 21 © 21 35 ¹ ¸¹ ¨© 35 © 35 35 ¹ ¸¹ ¨© 35 © 35 35 ¹ ¸¹ = 2+ q5(0) = 2+ 20 4 4 28 =6 + + = 2+ 7 7 7 7 § 6 § 8 § 3 § 4 7 § 3 §8 3 ·· 6 ·· 3 ·· ⋅ ¨ : ¨ + ¸ ¸ + 1 ⋅ ¨¨ : ¨ + ¸ ¸¸ + 1 ⋅ ¨¨ : ¨ + ¸ ¸¸ = 2 ¨© 35 © 21 35 ¹ ¸¹ 35 35 35 35 35 35 © ¹¹ © ¹¹ © © = 2+ 21 9 3 3 = 3,5. + + = 2+ 14 7 7 14 * Qnew (0) = (46,5, 49, 10, 6, 3,5). < Z+(t) ! , # (5.19). " % Rc <## % αi, i = 3, 4, 5. Z+(0) , > , % P : 167 § ¨1 ¨ ¨0 ¨ ¨ P = ¨0 ¨ ¨0 ¨ ¨ ¨0 © 0 1 0 0 0 6 6 1· ¸ 15 15 15 ¸ 1 1 1¸ 5 5 5¸ 1 1 1¸ ¸ , " 10 10 10 ¸ 1 1 1¸ 10 10 10 ¸ 1 1 1¸ ¸ 5 5 5¹ §1 1 1· ¨ ¸ §6 6 1· ¨ 10 10 10 ¸ ¨ ¸ 1 1 1¸ R1' = ¨ 15 15 15 ¸ , R2' = ¨ . 1 1 1 ¨ 10 10 10 ¸ ¨¨ ¸¸ ¨1 1 1¸ ©5 5 5¹ ¨ ¸ ©5 5 5¹ § 9 ¨ ¨ 10 1 ' E2 − R2 = ¨ − ¨ 10 ¨ 1 ¨− © 5 R = c 1 10 9 10 1 − 5 − §¨ R ' 1 © α3 = 0, α4 = (E ( − ) §5 ¨ = ¨9 ¹ ¨1 ¨ ©3 −1 R2' ·¸ §7 ¨ ¨6 −1 1 =¨ ¨6 ¨1 ¨ ©3 ) 5 9 1 3 1 6 7 6 1 3 1· ¸ 6¸ 1¸ , 6¸ 4¸ ¸ 3¹ 2· ¸ 9¸. 1¸ ¸ 3¹ 10 − 6 5 − 3.5 = 0,4 , α5 = = 0,3 , 10 5 §5 ¨ Rc⋅Diag(α3, α4, α5) = ¨ 9 ¨1 ¨ ©3 168 2 1· ¸ 10 ¸ 1 − ¸ , E2 − R2' 10 ¸ 4 ¸ ¸ 5 ¹ − 5 9 1 3 2 ·§ 0 0 0 · §¨ 0 2 1 ·¸ ¸¨ 9 ¸ 0 0,4 0 ¸ = ¨ 9 15 ¸ ¸ 1 ¸¨ 2 1¸ ¨ ¸¨ 0 0 0,3 ¸¹ ¨ 0 ¸ 3 ¹© © 15 10 ¹ # (5.17) " c~im , i = 1, 2. § 2 1 · 13 c~1m = 15 ⋅ ¨ + ¸ = = 4, (3) ; © 9 15 ¹ 3 §2 1· 7 c~2m = 5 ⋅ ¨ + ¸ = = 1,1(6) . © 15 10 ¹ 6 " ! : Q* = (46,5 – 4,(3), 49 – 1,1(6), 10, 10, 5) = (42,1(6), 47,8(3), 10, 10, 5) ! . I " # % " Q(0) = (50, 50, 11, 2, 2) " ( ! Z+(t)) Qnew(0) = (46,5, 49, 10, 6, 3,5). t 0 1 2 3 4 5 6 7 8 9 10 11 12 … + 5.2 A%/%'%* A"E%/@ (:/) Q(0) = (50, 50, 11, 2, 2) v1 v2 v3 v4 v5 50,000 44,600 43,240 42,596 42,338 42,235 42,194 42,178 42,171 42,168 42,167 42,167 42,167 50,000 48,600 48,140 47,956 47,882 47,853 47,841 47,836 47,835 47,834 47,834 47,833 47,833 11,000 9,600 9,540 9,816 9,926 9,971 9,988 9,995 9,998 9,999 10,000 10,000 10,000 2,000 8,600 9,540 9,816 9,926 9,971 9,988 9,995 9,998 9,999 10,000 10,000 10,000 2,000 3,600 4,540 4,816 4,926 4,971 4,988 4,995 4,998 4,999 5,000 5,000 5,000 169 + 5.3 A%/%'%* A"E%/@ (:/) Qnew(0) = (46,5, 49, 10, 6, 3,5) t v1 v2 v3 v4 v5 0 1 2 3 4 5 6 7 8 9 10 11 … 46,500 43,800 42,820 42,428 42,271 42,208 42,183 42,173 42,169 42,168 42,167 42,167 49,000 48,300 48,020 47,908 47,863 47,845 47,838 47,835 47,834 47,834 47,833 47,833 10,000 9,300 9,720 9,888 9,955 9,982 9,993 9,997 9,999 10,000 10,000 10,000 6,000 9,300 9,720 9,888 9,955 9,982 9,993 9,997 9,999 10,000 10,000 10,000 3,500 4,300 4,720 4,888 4,955 4,982 4,993 4,997 4,999 5,000 5,000 5,000 G , ! . ##* + ! 5 D – ! > !! . / > ; : riin = riout , . % R ! ! < , " < < % R. / : • " # = rsum; ~ Q " W = • ~ # Q = ( r1out , r2out ,..., rnout ) , 2.1 . W > T " ! " . Q(0) # , > < – , , , " : > Z+*, ! Z+(0) ( < ), Z+ Z–. < Z– >. / , > Z+(0) +* Z , " 170 . > <" Q(0) # % - # % , " . 2. $ > " ! , " " " . 2. K" – " – " 5. ; > , " Z+ % #% . ( , < Q(0)). K > Z+, " % . 171 6. K > B, : • % d- & . • ? & $ . ( &# & ; & , , # & &; & & , W = T; &# W > T; . ( , W > T ; $ &, . , & ! . • ? & & & # & . , t → ∞ d &# , &# . , ∞ R ' d , - &# & & λ = 1 d. • ) & , & W < T & . , ! R'. • ( , , & , &# & & , 1. ) & . • & & d- $ . • & & W ≥ T. / " " . " #% , " – % ! , " " ! . # " ! < ; 172 , - > , " , > " " % &. / < " ! <" " , ! % . / . 2.3 , "# , ! > ! (*$) d % ! > %. D d-% % , " % . : < ! !. "# n > v1, v2, …, vn, " % , .. , > ! . ; ! ! , ! , . . /! > vi, (! ) t = 0. / t = 1 > vi ! ! ; t = 2 > , !> t = 1, ! ! . . $! Nij , ! % , > vj. $ , Nii – < > vi. * , ! i j Nii Njj (< , , , vi % , vj). / " . 1 " [38] , # ! . # > vi, ! > ! Nii d. ;" 1) !" j = 1, 2, …, n kij, 0 V kij < d, , ! < Nij kij d. / !: !" k, 0 V k < d > vj, k d. & ! < Nij ;k. I > k % % d. 2) K > vi t = 0 % ;0, t = k ! > % " Ck . 173 3) :! > % ! > vi; ! " > % % . 4) & , " > "#, , d = 1 ( . 1 2). 5) G . 4 , d > 1 % " ! . ! . % . <" % d. 6) ! % " "# G % , ! " "# G' ! : ) > % " Cj, j = = 0, 1, …, d – 1, > cj; !) ! (cj, cl) , "# G ! > Cj ! > Cl. G .2 , > Cj ! > C(j+1) mod d. D, , "# G' – < % , d > . / "#, . 6.1. 1 2 1 2 4 3 4 3 5 6 5 6 7 Gb Ga : . 6.1. + "# % : "# Ga. " , .. d = 4. > v1 ! : v2 t = 1, v3 t = 2, v4 t = 3, v1 v5 174 t = 4, v2 v6 t = 5 . . < % "# Ga : ;0 = {v1, v5}, ;1 = {v2, v6}, ;2 = {v3}, ;3 = {v4}. K > ! v3, ! , % % 2. 2 > v7, K > v6 % "# Gb, % d 2. / ! % – > , – " . , N22 = {4, 8, 10, 12, 14, …}, N66 = {2, 4, 6, 8, 10, 12, 14, …}, .. v2 v6 % , N22 N66 . D > " Nii Njj . " % " . ! " D & n > . $ n % , #% 2 > . " % " ! , > ! !. J – & &. % % , > , ! . / < % ! ! . K *$ < % %, " % " ; " , , " . $! % – ! ( – < % 1), % , > ! . 6.1. K#*" < !" ) %+% K ! < % , % < !%, > !. < «% » ! < % . % ! ! ! : % !% . : > , ! % , % ! 175 §0 ¨ ¨0 R =¨ 0 ¨ ¨0 ¨r © 51 r12 0 0 0 0 r23 0 0 r34 0 0 0 0 0 0 0· ¸ 0¸ 0 ¸. ¸ r45 ¸ 0 ¸¹ % ! §0 ¨ ¨0 R' = ¨ 0 ¨ ¨0 ¨1 © 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0· ¸ 0¸ 0¸ . ¸ 1¸ 0 ¸¹ / > : 176 §0 ¨ ¨0 2 ¨ (R') = 0 ¨ ¨1 ¨0 © 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0· ¸ 0¸ 1¸ , ¸ 0¸ 0 ¸¹ §0 ¨ ¨0 3 ¨ (R') = 1 ¨ ¨0 ¨0 © 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0· ¸ 1¸ 0¸ , ¸ 0¸ 0 ¸¹ §0 ¨ ¨1 4 ¨ (R') = 0 ¨ ¨0 ¨0 © 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1· ¸ 0¸ 0¸ , ¸ 0¸ 0 ¸¹ : §1 ¨ ¨0 4 ¨ (R') = 0 ¨ ¨0 ¨0 © 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0· ¸ 0¸ 0 ¸ = E, (R')5= R'E= R'. ¸ 0¸ 1 ¸¹ , " > #% 2. ;" ! % " . Q(0) = (q1(0), q2(0), q3(0), q4(0), q5(0)); Q(1) = Q(0)R' = (q5(0), q1(0), q2(0), q3(0), q4(0)); Q(2) = Q(1)R' = Q(0)(R')2 = (q4(0), q5(0), q1(0), q2(0), q3(0)); Q(3) = Q(2)R' = Q(0)(R')3 = (q3(0), q4(0), q5(0), q1(0), q2(0)); Q(4) = Q(3)R' = Q(0)(R')4 = ( q2(0), q3(0), q4(0), q5(0), q1(0)); Q(5) = Q(4)R' = Q(0)(R')5 = (q1(0), q2(0), q3(0), q4(0), q5(0)) = Q(0). ; ! , Q(t) = Q(ti), " ti t 5: ti < 5, ti ≡ t (mod 5). * !! < % n > . " % #% 2 ! n : Q(t) = Q(ti), " ti < n, ti ≡ t (mod n). G < ! , % , #% 2, , " W· §W W > , .. Q(0) = ¨ , ,..., ¸ . n¹ ©n n * ;" ∀tQ(t) = Q(0) Q = Q(0). D . / ! ; " . 177 6.1. : % > ! , 5. §0 ¨ ¨0 R = ¨0 ¨ ¨0 ¨5 © 5 0 0 0· ¸ 0 5 0 0¸ 0 0 5 0¸ . ¸ 0 0 0 5¸ 0 0 0 0 ¸¹ - (6.1) rsum = 25. * : Q(0) = (2, 0, 0, 0, 0). #% 2. . 6.2. : . 6.2. ! " " <" ! ! . 6.1. :, 2, > , > . * > , Q(0) = (5, 5, 5, 5, 5) . > . , ! Q(0) = (W1,W2 ,W3 ,W4 ,W5 ) !, W1, …, W5 > 5. 178 t 0 1 2 3 4 5 6 7 8 9 10 … v1 2,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 2,000 A%/%'%* A"E%/@ (:/) v2 v3 0,000 2,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 + 6.1 v4 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 2,000 0,000 0,000 v5 0,000 0,000 0,000 0,000 2,000 0,000 0,000 0,000 0,000 2,000 0,000 / 0 0 % . 6.1, ( « » , , , , " , 2) > , " " – <" #% % – % " ". – – > > < % . / ! < . $ , ! >, > ( ) < > ! > , , . D , n , , " ", < . ; (" % ), ! &. / "" < % . #% <" % " . < #% 2 % , > < , . : #% . 179 / (6.1) Q(0) = (1,6, 1,6, 1,6, 1,6, 1,6), > #% 2, < . K , 8, % > , #% . 6.2. $ % % (6.1). * Q(0) = (8, 0, 0, 0, 0). ; : 5 % , – ( . 6.3, ! . 6.2). ! % 5. > #% 2, . < #% ( 5) " % 2. : . 6.3. ! " <" ( ) ; ! , , " , , < % , " , " " . ; ! , ! " ! ". 180 t 0 1 2 3 4 5 6 7 8 9 10 … v1 8,000 3,000 0,000 0,000 0,000 5,000 3,000 0,000 0,000 0,000 5,000 A%/%'%* A"E%/@ (:/) v2 v3 0,000 5,000 3,000 0,000 0,000 0,000 5,000 3,000 0,000 0,000 0,000 0,000 0,000 5,000 3,000 0,000 0,000 0,000 5,000 3,000 0,000 0,000 + 6.2 v4 0,000 0,000 0,000 5,000 3,000 0,000 0,000 0,000 5,000 3,000 0,000 v5 0,000 0,000 0,000 0,000 5,000 3,000 0,000 0,000 0,000 5,000 3,000 ! > !" " > > . D > , , ! . " , , . , " . * < > , > "" . < , > . ! > , ! , " " ( ) " , , " . / < < % " " . 6.3. : % (6.1). $ , .. < " . < > – % . * ! , < , !" > riout = 5 % , , , T = rsum = 25. Q(0) = (30, 0, 0, 0, 0), #% . 6.4. 181 : . 6.4. A% W > T t 0 1 2 3 4 5 … + 6.3 A%/%'%* A"E%/@ (:/) -A) Q(0) = (30, 0, 0, 0, 0) v1 v2 v3 v4 v5 30,000 25,000 20,000 15,000 10,000 10,000 0,000 5,000 5,000 5,000 5,000 5,000 0,000 0,000 5,000 5,000 5,000 5,000 0,000 0,000 0,000 5,000 5,000 5,000 0,000 0,000 0,000 0,000 5,000 5,000 G ! . 6.3 , > v2, …, v5 , ! , < > . % #% 2 #% % , % " " % . $ % > , ! > #% 1, % . 182 6.4. : , ! % , % !: §0 5 0 0 0· ¸ ¨ ¨0 0 4 0 0¸ R = ¨0 0 0 3 0¸ . (6.2) ¸ ¨ ¨ 0 0 0 0 4¸ ¨5 0 0 0 0¸ ¹ © rsum = 21. * : Q(0) = (7, 0, 0, 0, 0). ! !, r33 = 3, , > ! % 5: 3, 3 1 ( . 6.5 ! . 6.4). : . 6.5. A% " < " % t 0 1 2 3 v1 7,000 2,000 0,000 0,000 A%/%'%* A"E%/@ (:/) v2 v3 0,000 5,000 3,000 0,000 0,000 0,000 4,000 4,000 + 6.4 v4 0,000 0,000 0,000 3,000 v5 0,000 0,000 0,000 0,000 183 4 5 6 7 8 9 10 … 0,000 3,000 3,000 1,000 0,000 0,000 3,000 0,000 0,000 3,000 3,000 1,000 0,000 0,000 1,000 0,000 0,000 3,000 3,000 1,000 0,000 3,000 1,000 0,000 0,000 3,000 3,000 1,000 3,000 3,000 1,000 0,000 0,000 3,000 3,000 ; ! , < % > , > % , – % . / ( , , ") ! % . / ( ) % « » W » « min r , " ¬⋅¼ – % « »: , W − « min rij » i , j ij ¬ i, j ¼ . * , « » W » W −« min r = min r , « min rij » i , j ij i , j ij ¬ i, j ¼ W = n ⋅ min rij , i, j < ! - . $ , !" " % , ! !" ". ! ! , ! ! % . " ; # : ~ ~ F in = F out = (min rij ,..., min rij ) ; T = n ⋅ min rij, " n – > , min rij – % . 184 !- ~ ~ W > , F in = F out ; fsum = !" " , > > > vk, k = arg min rij . i∈{1,...,n} ;, , 6.5. Q(0) = (15, 0, 0, 0, 0). ! ! . 6.5). % (6.2), = 15. % (6.2), > % ( . 6.6 : . 6.6. : W = = 15 . / " Q*=(3, 3, 3, 3, 3) t 0 1 2 3 4 5 6 7 … + 6.5 A%/%'%* A"E%/@ (:/) -A) Q(0) = (15, 0, 0, 0, 0) v1 v2 v3 v4 v5 15,000 10,000 5,000 0,000 0,000 3,000 3,000 3,000 0,000 5,000 6,000 7,000 3,000 0,000 3,000 3,000 0,000 0,000 4,000 5,000 6,000 6,000 3,000 3,000 0,000 0,000 0,000 3,000 3,000 3,000 3,000 3,000 0,000 0,000 0,000 0,000 3,000 3,000 3,000 3,000 185 / % W > , ! , > ! vk. ; > ! % % . K , . : W – ( . 6.7). $ , % (6.2) % > v3. 6.6. % (6.2), Q(0)=(20, 0, 0, 0, 0). : . 6.7. : W =20. / " Q*=(3, 3, 8, 3, 3) t 0 1 2 3 4 5 6 7 … 186 + 6.6 A%/%'%* A"E%/@ (:/) -A) Q(0) = (20, 0, 0, 0, 0) v1 v2 v3 v4 v5 20,000 15,000 10,000 5,000 0,000 3,000 3,000 3,000 0,000 5,000 6,000 7,000 8,000 4,000 3,000 3,000 0,000 0,000 4,000 5,000 6,000 7,000 8,000 8,000 0,000 0,000 0,000 3,000 3,000 3,000 3,000 3,000 0,000 0,000 0,000 0,000 3,000 3,000 3,000 3,000 G > W – T > > . Q* = (3, 3, 8, 3, 3). G, > v1, ! , " , !. K > ! , " < > % . K " " , ! , ! – " > , , > ! > , ! ! " >. K > " > , ! % , ! " . 6.7. : % > % v2 v5 – ! . §0 ¨ ¨0 ¨0 ¨ R =¨0 ¨0 ¨ ¨0 ¨ ©7 0· ¸ 0¸ 0¸ ¸ 0 ¸ . rsum = 31. = 2⋅7 = 14. 0 0 0 0 2 0 ¸¸ 0 0 0 0 0 6¸ ¸ 0 0 0 0 0 0¹ 5 0 0 0 0 2 0 0 0 0 5 0 0 0 0 4 0 0 0 0 (6.3) W = 17 > T. * : Q(0) = (17, 0, 0, 0, 0, 0, 0). G . 6.8 , Z+* > , !, .. > v2. 187 : . 6.8. + . / " Q*=(2, 5, 2, 2, 2, 2, 2) Q(0) = (0, 0, 0, 17, 0, 0, 0) ! Q*=(2, 2, 2, 2, 5, 2, 2), .. > % v5. K W > T > , " > W – T % , ! !. ;, , % (6.3) Q(0) = (8, 0, 0, 9, 0, 0, 0) ! Q*=(2, 2, 2, 2, 5, 2, 2), .. > v5. I! > v2 >, > v1 ! ! > 8. ;, Q(0) = (9, 0, 0, 8, 0, 0, 0) Q*=(2, 3, 2, 2, 4, 2, 2). $ , " 8, > v4 v3, .. Q(0) = (9, 0, 8, 0, 0, 0, 0), ! Q*=(2, 2, 2, 2, 5, 2, 2) – > ! v5. D ", ! % " : > v1, v2. Q(0) = (9, 0, 8, 0, 0, 0, 0) > v1 ( " ), <" , ! v2 v5. ( . 6.9, ! . 6.8). 188 G , ( 5), > v1, , " ! ! > v2, > v2 , %, .. >. : . 6.9. + . / " Q *= (2, 2, 2, 2, 5, 2, 2) + 6.8 A%/%'%* A"E%/@ (:/) -A) Q(0) = (9, 0, 8, 0, 0, 0, 0) t v2 v3 v4 v5 v6 v7 v1 0 1 2 3 4 5 6 7 8 9 … 9,000 4,000 0,000 0,000 0,000 2,000 2,000 2,000 2,000 2,000 0,000 5,000 7,000 5,000 3,000 1,000 2,000 2,000 2,000 2,000 8,000 3,000 2,000 2,000 2,000 2,000 1,000 2,000 2,000 2,000 0,000 5,000 4,000 2,000 2,000 2,000 2,000 1,000 2,000 2,000 0,000 2,000 4,000 6,000 6,000 6,000 6,000 6,000 5,000 5,000 0,000 0,000 0,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 0,000 0,000 0,000 0,000 2,000 2,000 2,000 2,000 2,000 2,000 $!! , % , . < 189 6.1. 0 " n # , & D & +$% + r, " + : T = rn. 1) W < T +&$ ", $ "$ 0 000 W· §W W 0 0: Q(0)= Q* = ¨ , ,..., ¸ ; %+ "$ n¹ ©n n 0 0 0 ). 2) W = T $& $ 0 )% &. ' $ $ 0 0: Fin* = Fout* = Q* = (r, r, …, r). 3) W > T $ 0 )%, " $& 00 & + : Fin* = Fout* = (r, r, …, r). $ 0 "$ . 6.2. 0 " n # , & D & , " &" 00 : T = n ⋅ rmin , rmin = min rij. 1) W < T " $ 0 W· §W W , " : Q(0) = Q* = ¨ , ,..., ¸ ; n¹ ©n n %+ "$ 0 $ 0 0 ). $ 0 )2) W = T $& % &. ' $ $ 0 0: Fin* = Fout* = Q* = (rmin, rmin, …, rmin). 3) W > T $ 0 )%, " $& 00 & + : Fin* = Fout* = (rmin, rmin, …, rmin). $ 0 $ ", $ & $& . ' " : " 0 W – T "$ 0 0. 4) ' # vk 000 D $ " 0 &00 k = arg min rij . + $&: i∈{1,...,n} & , & 190 000 $ & :; $& & &, 0 k = arg min rij i∈{1,...,n} +0& +&$ $& # . ! < % . 6.2. 9!< * '* 6/") < ! &%! ) %+ '* #") *%9*%) % . N! % % , > / ! . #% 2 " Q(0) %. * < < . + – < > vi, W = 1, > . % R' % d. R'k . $ d # % . < [11], R'k I % . $! Ri'∞ , i = 0,…, d – 1. % R' d-% d ! , %: λ1 = |λ2| =…= |λd| = 1, .. d [11]. # ! %, , " ! % , %, : %. 6.2.1. 9!< * < ! &%!+ % '* $ &# *%9*% 6.8. ( . 6.10). "# 191 1 3 2 5 4 : . 6.10. "# > ,d=2 K % !: §0 ¨ ¨2 R = ¨0 ¨ ¨0 ¨0 © 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0· ¸ 0¸ 0 ¸ , rsum = 16. ¸ 2¸ 0 ¸¹ % (6.4) : 1 0 0 0 · § 0 ¸ ¨ 0 ¸ ¨ 0,5 0 0,5 0 R' = ¨ 0 0,5 0 0,5 0 ¸ ¸ ¨ 0 0,5 0 0,5 ¸ ¨ 0 ¨ 0 0 0 1 0 ¸¹ © * . 6.11 % , Q(0) = (1, 0, 0, 0, 0). #% , . 6.11, ! . 6.9. G . 6.11 ! . 6.9 , > v1, v3 v5, – > v2 v4. / < d = 2, % {v1, v3, v5} {v2, v4}. 192 q(t) 2.5 2 v1 1.5 v2 v3 1 v4 v5 0.5 0 t 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728 : . 6.11. ! Q(0) = (1, 0, 0, 0, 0) + 6.9 A%/%'%* IB,'M)%,)A%C",)G 2-M)'*)$:('%D (:/) ( &"/A)M:D (6.4) ) Q1(0) = (1, 0, 0, 0, 0) v1 v2 v3 v4 v5 ti 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 0 0,5 0 0,375 0 0,313 0 0,281 0 0,266 0 0,258 0 0,254 0 0,252 0 0 1 0 0,75 0 0,625 0 0,563 0 0,531 0 0,516 0 0,508 0 0,504 0 0,502 0 0 0,5 0 0,5 0 0,5 0 0,5 0 0,5 0 0,5 0 0,5 0 0,5 0 0 0 0 0,25 0 0,375 0 0,438 0 0,469 0 0,484 0 0,492 0 0,496 0 0,498 0 0 0 0 0,125 0 0,188 0 0,219 0 0,234 0 0,242 0 0,246 0 0,248 0 193 ti v1 v2 18 19 20 21 22 23 … 0,251 0 0,25 0 0,25 0 … 0 0,501 0 0,5 0 0,5 … v3 0,5 0 0,5 0 0,5 0 … } " +. 6.9 v4 v5 0 0,499 0 0,5 0 0,5 … 0,249 0 0,25 0 0,25 0 … #% , , " ": Q11* = (0,25, 0, 0,5, 0, 0,25) Q21* = (0, 0,5, 0, 0,5, 0). W = 1 > , Q11* Q21* , : Q(0) = (1, 0, 0, 0, 0), Q(0) = (0, 1, 0, 0, 0), Q(0) = (0, 0, 1, 0, 0), Q(0) = (0, 0, 0, 1, 0), Q(0) = (0, 0, 0, 0, 1). d = 2, % R' : R1'∞ 0,5 0 0,5 0 · § 0 ¸ ¨ ¨ 0,25 0 0,5 0 0,25 ¸ =¨ 0 0,5 0 0,5 0 ¸ , ¸ ¨ ¨ 0,25 0 0,5 0 0,25 ¸ ¨ 0 0,5 0 0,5 0 ¸¹ © R2'∞ 0,5 0 0,25 · § 0,25 0 ¸ ¨ 0,5 0 0,5 0 ¸ ¨ 0 = ¨ 0,25 0 0,5 0 0,25 ¸ . ¸ ¨ 0,5 0 0,5 0 ¸ ¨ 0 ¨ 0,25 0 0,25 0 0,25 ¸ ¹ © & % R1'∞ Q21* , 194 R2'∞ Q11* R2'∞ ! R1'∞ : Q11* Q21* , !. 1, 3, 5, > " % " , ; 2, 4, > " % " . $! Q11* Q21* ! % R2'∞ , % R1'∞ Q11* Q21* , Q21* – Q11* . ; % R': Q11* R ' = Q21* , Q21* R ' = Q11* . R1'∞ < b % R' % R2'∞ !. , % % : § 0,25 0,5 0,5 0,5 0,25 · ¸ ¨ ¨ 0,25 0,5 0,5 0,5 0,25 ¸ R1'∞ + R2' ∞ = ¨ 0,25 0,5 0,5 0,5 0,25 ¸ ¸ ¨ ¨ 0,25 0,5 0,5 0,5 0,25 ¸ ¨ 0,25 0,5 0,5 0,5 0,25 ¸ ¹ © /, ! < %, ! ! % R1'∞ R2'∞ , % R'; ! ", % R1' ∞ + R2'∞ , % , I R'k: 1 k 'j ¦R . k → ∞ k j =1 A = lim A= R1'∞ + R2' ∞ 2 § 0,125 ¨ ¨ 0,125 = ¨ 0,125 ¨ ¨ 0,125 ¨ 0,125 © 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 - (6.5) 0,125 · ¸ 0,125 ¸ 0,125 ¸ . ¸ 0,125 ¸ 0,125 ¸¹ 195 & % R' . * % % % ! ( " ) [11]. ! % Q11* Q21* . <" # Q11* R ' = Q21* Q21* R ' = Q11* . / ! 1 # : Q1* = (Q11* + Q21* ) . 2 6.2.2. *$/" !*" < !" d-< ! &%!+ % / ! , d-% <" % &. / [38] , % , I R'k (# (6.5)), : A = 1⋅α, " 1 – - !%, %, α % ! % R', ! λ = 1: αR' = α. (6.6) ; R' = R'= . R' – % <" d% . : : R', …, R'd, R'd+1, … $ d : 1) R', R'd⋅R', R'2d⋅R', R'3d⋅R',… 2) R'2, R'd⋅R'2, R'2d⋅R'2, R'3d⋅R'2,… … d) R'd, R'd⋅R'd, R'2d⋅R'd, R'3d⋅R'd,… 196 ; ! , , R1'∞ , …, Rd'∞ - % Rd'∞ : R1'∞ = Rd'∞ R' ; R2'∞ = Rd'∞ R '2 ; … Rd'∞−1 = Rd'∞ R 'd −1 . % R1'∞ , …, Rd'∞ " . / [11] , % (6.5) # : A= 1 1 ( E + R ' + ... + R ' d −1 ) Rd' ∞ = Rd' ∞ ( E + R ' + ... + R ' d −1 ) d d !" " : α = Q1 (0) A . (6.7) " (6.8) A (6.8) , % % & " # ". α, !" , ! ! Q1* – " : Q1* = Q1(0)A; % n -, Q1*. : % #% 2. d , , %. Q(kd+1)= Q(0)R'kd R', Q(kd+2)= Q(0)R'kd R'2, 197 … Q(kd)= Q(0)R'kd R'd = Q(0)R'(k+1)d k = 0, 1, … , : Q1* = Q(0) Rd'∞ R ' , Q2* = Q(0) Rd'∞ R '2 , …, Qd* = Q(0) Rd'∞ . (6.9) * (6.9) , : Qi*+1 = Qi* R ' , i = 1, …, d – 1, Q1* = Qd* R ' . / Q1* , ..., Qd* ! $& . , " ", ! $& <" . ; ! , . 6.3. ' D " d- " , %) 2, ) $& & d, 0) $&: Q1* , ..., Qd* , 0&: (6.9). / Q1* , ..., Qd* ! % R'. 6.4. 0 D " d- " & $& +& & R' 000 Q1*, 0& : Q1* = Q1* + ... + Qd* , d ⋅W (6.10) Q1* , ..., Qd* – $& & , %) 2, & W "$& 0 Q(0). $ . (6.9), : Q1* + ... + Qd* = Q(0) Rd'∞ ( E + R ' + ... + R ' d −1 ) . 198 ! # (6.7), : Q1* + ... + Qd* = dQ(0) A . (D % [11]). * ! Q(0) , " #% 2, : Q(0)=WQ1(0). $ Q1* + ... + Qd* = dWQ1 (0) A Q1* + ... + Qd* = Q1 (0) A dW Q1* + ... + Qd* . ; % dW n -, # (6.10). = (6.6) , Q1*R' = Q1*. % R', Qi* G # (6.8) : Q1* = Qi*+1 ( d). * %, < . 6.5. $& & D " d " Q1* , ..., Qd* 00%0 +& & Rd'∞ , %) + " λ = 1 d. $ . > (6.9) : Qi* = Q(0) Rd'∞ R 'i , i = 1, …, d. b (6.11) ! (6.11) % Rd'∞ . Qi* Rd'∞ = Q(0) Rd'∞ R 'i Rd'∞ , # (6.7) < : Qi* Rd' ∞ = Q(0) Rd'∞ Rd'∞ R 'i = Q(0) Rd'∞ R 'i ( ) # (6.11) Qi* . ;" Qi* Rd'∞ = Qi* . 199 | " . / , " *$ % %, , ! % ( " ), . / , #% 2, " Q*. $ ! % R' ( Q* ( 6.3), " (6.10): Q1* = W 6.4), ! % R'∞, ! λ = 1 ( 6.5). < " % &. # " 3. 6.2.3. % - :/ *% ( '* #") *%9*%) : " , " +$ , .. * * Q1 , ..., Qd . " %. 9 6.1. ' D " d- " , %) 2, $& & Q1* , ..., Qd* " : : 0 0 # "$ 0 . $ . & % R' d. / [11] , R'd " d %, . D , % > , R'd ! - " . J % . 'd § R11 ¨ ¨ 0 R 'd = ¨ ¨ ¨ 0 © 200 0 'd R22 0 ... 0 · ¸ ... 0 ¸ ¸. ¸ 'd ¸ ... Rdd ¹ % Rii' d , ", < % . " % &. & % ( ) ! ! (R ) ! R Rd' ∞ = lim R 'd k k →∞ 'd ii (R ) 'd ∞ ii . 'd ∞ ii ! πi, ! λ = 1, i = 1, …, d. " #% 2, .. > , " % " . / Q(0) Qi(0), % . ;" % Rii' d " , Wi = 1 !" Qi (0) Rii'∞ = Qdi* = π i . " " W , " #% 2, !" Qi(0) : Qi (0) Rii'∞ = Qdi* = Wiπ i , " Wi – i- % . Qdi* Qd* . Qi(0) $ " % Qd* % R' ! . 9 6.2. $ D " 0 d- " 0 0 $ 2, " & W = 1 " "$ 0 m- " . $& & R 'j∞ = Rd' ∞ ⋅ R ' j , j = 1, …, d – 1, d "&: , " :, %) : # i- " , : 0 Qk* , k ∈ [1, d] : 0 k ≡ m + j + i – 3 (mod d) + 1 , i, j = 1, …, d. (6.12) $ . : , % (m = 1). * 201 > ! , , < > v1. Q(0) = (1, 0, …, 0). $! < " Q1(0). G : Q1* = Q1 (0) R1'∞ = ( R1'∞ )1 , Q2* = Q1 (0) R2' ∞ = ( R2'∞ )1 , … Qd* = ( Rd'∞ )1 , " ( R 'j∞ )1 – % R 'j∞ . 1, > v1 ! ! > " % " . ; ! , % R 'j∞ , > " % " , Q*j . " Qi*+1 = R 'j∞+1 = Qi* R ' , R 'j∞ R ' . Q1* = Qd* R ' ; Qi*+1 (i = 1, …, d – 1) % : D , % R 'j∞ , - > i-" % " , j + i – 1 j + i – 1 ≤ d, j + i – 1 – d j + i – 1 > d. G k Qk* , < , # : k ≡ j + i – 2 (mod d) + 1. $!! < # m, : k ≡ m + j + i – 3 (mod d) + 1. " % . 9 6.3. ' D " d- " , %) 2, $& & Q1* , ..., Qd* %, " : "$ W 0 : 0 " 0 d 202 # & & qi(0) ≤ riout . ' $ 0 0 WQ1* , Q1* – %+0 & , 0 (6.7). $ . : d " , > " % : Qm(0), " m – % " , m = 1, …, d. $! Q *jm , " j – " : . Q*j m = Qm (0) Rd' ∞ R ' j = Q1 (0) Rd' ∞ R ' j + m = Qk* , " Qk* = Qk*1 – m = 1. , , k ∈ [1, d] # (9) Qi(0) . (Q1 (0) + ... + Qd (0)) Rd' ∞ R ' = Q1*1 + ... + Qd*1 = Q1* + ... + Qd* . " " : (Q1 (0) + ... + Qd (0)) Rd'∞ R '2 = Q1*2 + ... + Qd* 2 = Q2* + ... + Qd* + Q1* . / ! m- ! Q1* + ... + Qd* % " ; ! , , d . K . % - W d , > % , ! #% 2. b 6.3 ! . K % , < > 203 #% 1, < % . ; ! , ! ! . 6.1. ' D " d- " , %) 2, " 0 t', $& & Q1* , ..., Qd* % $ , " : t = t' : 0 W . ' $ 0 0 " d WQ1* , Q1* – %+0 & , 0 (6.7). $ . 1. t = t' #% 2 % . Q(t') , 6.3. 2. , #% 2, Q1* , ..., Qd* . " % > : Qi*+1 = Qi* R' , i = 1, …, d – 1, Q1* = Qd* R' . ;" : Qi* = Qi* R' , i = 1, …, d . b % R' " % . % . 6.1 . 6.9. % ! (6.4) Q(0) = (4, 0, 0, 0, 0). A% . 6.12, ! . 6.10. G , , > % , . $ < > > 2, >" % . ! ; 2. !. / : Q* = Q1* = Q2* = (0,5, 1, 1, 1, 0,5). 204 : . 6.12. A% , "# % (6.4), Q(0) = (4, 0, 0, 0, 0) + 6.10 t v1 A%/%'%* A"E%/@ (:/) v2 v3 v4 0 1 2 3 4 5 … 20 21 22 23 … 4,000 2,000 1,000 1,000 0,750 0,750 0,000 2,000 2,000 1,500 1,500 1,250 0,000 0,000 0,000 0,500 0,500 0,750 0,000 0,000 1,000 1,000 1,000 1,000 0,000 0,000 0,000 0,000 0,250 0,250 0,501 0,501 0,500 0,500 1,002 1,001 1,000 1,000 0,998 0,999 1,000 1,000 1,000 1,000 1,000 1,000 0,499 0,499 0,500 0,500 v5 6.3. * 6& ;9!< * < ! &%! ) %+ '* :/G ) *%9*%) 6.3.1. * 6& / " "" " . / Q* 205 W , % , , ! . D " ! " . /> , "> ! W = T, – % . > % >, > . / % d , ! " ". ", < " . K "" . J " , % d ! ( # ), $ 0 Q*: Q1* = ... = Qd* = Q * . 6.2. ' D " d- " ) " , , ": W < T # & " " :0 2, 0 d $&: ; W ≥ T + %0, 0 +$ %+ "$ 0 . $& ) . $ 0 ); "$ 0 0 $ ", $ . $ . / , > #% 2, % d . K > #% 1, N 2, , Q(N+1) , % d . / " % " , > #% 2, . ! . , " . W = T > , ! . < > vj. q*j = r jout d . 206 & % R' d. D , R'd " d " %, % Rii' d ( . 6.1). ! < %. /> vj % i. K " > #% 2, " : '∞ * Qi (0) Rii = Qdi = Wiπ i , " Wi – i- % , πi – % &. , " % Rii' d , " . $! " Ti. ;* out * " Wi = Ti qdi j = r j , " qdi j – j- - ( ) ( ) Qdi* . * ! > vj ! r jout , i-" % " ! Ti . K #% 2, % % , > . K %, % ! ! % . " , > #% 2 t → ∞. ;" t → ∞ % Ti . = " # : T = dTi. , ! , . W > T ( < ! > vj) 1. ; t', t ≥ t' > vj #% 1. * , r jout , , > r jout . ;" ! ! q j (t ' ) − r jout , ! % , q j (t ' ) − r jout . A% < . * ! % , " . / " 207 . > , % . K , . 6.3.2. * * + *! % '< /" *!*" , > d-% , > " . 6.3. ' D " d- " # vj 000 $& , $ out r j = arg min i 1* , Q1* 00 i∈{1,...,n} q i Q1* = 1 d 1* ¦ Qk , d k =1 (6.13) & Qk1* (k = 0, …, d) – $& & W = 1 $ "$ 0 . $ . G 6.2 , W = T ! , d . * W ≤ T : Q1* + ... + Qd* = dWQ1* , " Q1*, # (6.13), – ! % R'. * , Q* = Q1* = ... = Qd* = TQ1* . ; ! , #% " % A, n Q1*: A = 1⋅ Q1*. , #% % , , " . ; ! , ", ! > vj ! , !208 riout (i∈{1,..., n} q1* i j = arg min 4.4, " 4). ; 6.1. ' D &: d- " : 0: +$# : : $ 0 $% "$ , 0 # : – $& . ; 6.2. ' D " d- " r out " 00 : T = min i 1* . i∈{1,...,n} q i 6.3.3. *$/ %%( '*$/"+ '! '* :/G ) *%9*%) $!! , # % W > T, " " . G 6.2–6.3 6.2. 6.4 ( $ 0 ). ' D " d- " W ≥ T " 0 &: $ 0 0 Q* = q1* , ..., qn* &" 0%0 ( ) qi* = qi1* ⋅ T , i ≠ jk, jk – , : 1) Q1* 00 (6.13), riout , i∈{1,...,n} q1* i 2) T = min riout . i∈{1,...,n} q1* i }# 0 00 $& . . 6.11. : #% , % ! ! . 3) jk 0%0 0: jk = arg min 209 1 2 4 3 5 6 : . 6.13. + ! {v3} : ! / < % : {v1, v5}, {v2, v6}, {v4}. % ! §0 ¨ ¨0 ¨0 R =¨ ¨2 ¨0 ¨ ¨0 © 1 0 0 0 0 0 0 3 0 0 0 1 0 0 2 0 0 0 0 0 0 5 0 0 0· ¸ 0¸ 0¸ ¸ . rsum = 18. 0¸ 4 ¸¸ 0 ¸¹ ;" W = 1 ! > > ! : Q11* = (0,286, 0, 0, 0, 0,714, 0), Q21* = (0, 0,286, 0, 0, 0, 0,714), Q31* = (0, 0, 1, 0, 0, 0), Q41* = (0, 0, 0, 1, 0, 0). ! % # (# (6.13)): Q1* = (0,0715, 0,0715, 0,25, 0,25, 0,1785, 0,1785). / 210 > riout qi1* > . r1out 1 ≈ ≈ 14 , 1* 0,0715 q1 r2out 3 ≈ ≈ 42 , 1* 0,0715 q2 r3out 2 ≈ = 8, 1* 0,25 q3 7 r4out ≈ = 28 , 1* 0,25 q4 r5out 4 ≈ ≈ 22,4 , q51* 0,1785 r6out 1 ≈ ≈ 5,6 . q16* 0,1785 riout " > v6. qi1* ; ! , v6 – % < . 6.2 6.2, T ≈ 5,6. W = T ! : & ~ Q = (0,4, 0,4, 1,4, 1,4, 1, 1) . D - . W > T, > , " . * , W = 20, ! Q* = (0,4, 0,4, 1,4, 1,4, 1, 15,4). G > . $ " . 6.5 ( $ ). ' D " d- " W ≥ T $& ), 00 : ~ fiin* = fi out * = qi1*T ; F in* = Fi out * = Q1*T = Q , 1) Q1* 00 (6.13), 211 riout . i∈{1,..., n} q1* i 2) T = min | " . / " « » «! >», " , < " %, . D , W = T " % &, > " , . ; " ! W ≤ T W > T. / % «! >» , W ≥ T , W < T > % d . ##* + ! 6 / < " " – <" (.. ) % . *" ! , " . ; , ! . / , % , , " , " , . < , , ! > . * , , " , ! > , ! > W – T, " % " : ! > % ! – . & , " " " % – < " % . $ < . / " , % "# ! d-% % ! "# < % d. , " % ! < % . D ! %, " 6. 212 D % <" d-% & : W<T " , > . / , " , . , , " > Z–(t), % . / % d, W=T . / " " . / " " J > : W>T , . , " % . / "" W – T " . , . " , " . Q1* , ..., Qd* . 213 , ! d-% ! > < % , ! . , , . * , " W < T < " % # > , % – % . * ! , < % , " # . / d% Q1* , ..., Qd* d , # " ! . 214 7. NON B, : • " ## & . ( , &# &. • , ## . • ## , & & . A R, !# & ! & , 1. ( & , !# & , & & $ . • ) R'∞. • ( R'∞ $ R. • ( & . & Q* = Q(0)R'∞. 7 & &, & & , & . % ## ! & , . • ? & &# & &, ## , . " > , .. > , !, , , . $ , " , ! . 2.3. ; ! , ! , <" , <" " , " <" ! > -. 7.1. +% '404 ) *%9*%") %+ " l 1 l. K % ! ! : 215 §D R = ¨¨ © R1 O1 · ¸, R2 ¸¹ (7.1) " D – " % l × l % " < , ! ( ), }1 – % l × (n – l), R1 – % (n – l) × l, R2 – % (n – l) × (n – l). & % R1 ! !, , % R2 – ! !, > . % R', % R, ! §E R' = ¨¨ 1' © R1 O1 · ¸. R2' ¸¹ (7.2) < % D " < (.. > ), ! E1 % R', D, ! %. /-, # , < % R', -, # % 1 , , . " , " % . ; 7.1. $ 0 )%) : 0: ). & $ 0 0, %) : , & %. $& 0: &: # . / , . : > , > . K , < . !, . G <" , , , .. #% 216 , " " <" " . K , % ; > t → ∞. ; 7.2. " $ : 0 : $ 0 "$ 0 . , , > , !, , > > , ! > . * , !, > . " ! . ; 7.3. " $ :&: # : 0 " : $ 0 "$ 0 . 7.2 7.3 7.2, . X , # " . #% , > . > , > % , !. ; ! , " , > , . 7.1. : > , , v1 v2, . K % ! : §10 0 0 0 0 · ¸ ¨ ¨ 0 20 0 0 0 ¸ R = ¨ 6 1 2 3 5¸ ¸ ¨ ¨ 1 6 6 7 1¸ ¨ 0 0 1 3 4¸ ¹ © / " < < % , .. > . Q(0) = = (0, 0, 30, 10, 10). ! : Q* = (26.428, 23.572, 0, 0, 0). A% . 7.1. 217 : . 7.1. A% " K ! % R : §0 ¨ ¨0 R = ¨6 ¨ ¨1 ¨0 © , " < 0 0 0 0· ¸ 0 0 0 0¸ 1 0 3 5¸ ¸ 6 6 0 1¸ 0 1 3 0 ¸¹ * Q(0) = (0, 0, 30, 10, 10) Q* = (26.428, 23.572, 0, 0, 0), > >", > . < #% ( . 7.2). G < , , ! ! , ! . 218 : . 7.2. A% " ! ; 7.4. ' )%) $ $& & +0 + +) " $ 0 $% "$ %+ . D " . / ! , " , " " , ! " " . $ " , " > . ; , , . 7.2. 404 % % $ %"# '*$/"# %%( # : " , % ! : § D O1 · ¸¸ , (7.3) R = ¨¨ © H R2 ¹ 219 K % (7.1) ! H – ", %: rank H = 1. D , ! !, , % , .. % !% % . 7.1. ' )%) (7.3), rank H = 1, 0 %+ "$ 0 0 Q(0) = = (q1(0), …, ql(0), ql+1(0), …, qn(0)) $ 0 00 : · § hin hin Q* = ¨¨ q1 (0) + 1 W − ,..., ql (0) + l W − ,0,...,0 ¸¸ , hsum hsum ¹ © W − = n ¦ qi (0) , h j in (7.4) – j- + & , hsum – - i = l +1 : D & . $ . 1. / " q1(0), …, ql(0) , . 2. K " % 1, !% % . & % : § h1 ¨ ¨ h H =¨ 2 ... ¨ ¨h © n −l α 2 h1 α 2 h2 ... ... ... α 2 hn − l ... α l h1 · ¸ α l h2 ¸ . ... ¸ ¸ ... α l hn − l ¸¹ K > vj #% 1, ! , ! !: hj, α2hj, …, αlhj. ;.. % 1 : α2 : … : αl. K > #% 2, , § hj · h jα 2 h jαl ¨ q j (t ), out q j (t ),..., out q j (t ) ¸ , out ¨ hj ¸ hj hj © ¹ % 1 : α2 : … : αl. ;" > 1 : α2 : … : αl. , % 220 . ; , > > , ! : αl α2 1 W−, W − , …, W−. 1 + α 2 + ... + α l 1 + α 2 + ... + α l 1 + α 2 + ... + α l / ! : h1in = h1 + h2 +…+ hn-l, hkin = αk(h1 + h2 +…+ hn-l), k = 2, …, l. ! % : hsum = (h1 + h2 +…+ hn-l)(1+α2 + … + αl). hin αk hin αl h1in 1 , k = ,…, l = , = hsum 1 + α 2 + ... + α l hsum 1 + α 2 + ... + α l hsum 1 + α 2 + ... + α l # (7.4). ; 7.1. K , .. q1(0) = … = ql(0) = 0, " > . ; 7.2. G # " , % R2 , rank H = 1, ! !. . 7.1 . 7.2. & % 7×7 v1, v2, v3. §0 ¨ ¨0 ¨0 ¨ R = ¨1 ¨ ¨1 ¨1 ¨ ©1 0 0 0 0 0 0· ¸ 0 0 0 0 0 0¸ 0 0 0 0 0 0¸ ¸ 1 1 2 3 0 4¸ 1 1 6 7 8 0 ¸¸ 1 1 9 1 2 3¸ ¸ 1 1 6 7 8 9¹ 221 & % H < < . : !" W ! % > v4, …, v7 §W W W · Q * = ¨ , , ,0,0,0,0 ¸ . * . 7.3 ©3 3 3 ¹ , " 30, " . : . 7.3. A% " Q(0) = (0, 0, 0, 0, 10, 10, 10) → Q* = (10, 10, 10, 0, 0, 0, 0) : , " ! , " % - %. 7.3. %: §0 ¨ ¨0 ¨0 ¨ R = ¨1 ¨2 ¨ ¨3 ¨ ©4 222 0· ¸ 0¸ 0¸ ¸ 4¸ 4 14 6 7 8 0 ¸¸ 6 21 9 1 2 3 ¸ ¸ 8 28 6 7 8 9 ¹ 0 0 0 2 0 0 0 7 0 0 0 2 0 0 0 3 0 0 0 0 !" W ! % > !: · § W 2W 7W , Q* = ¨ , ,0,0,0,0 ¸ . ¹ © 10 10 10 * . 7.4 #% " Q(0) = (0, 0, 0, 20, 10, 10, 10). : . 7.4. A% " % H, " 1. Q(0) = (0, 0, 0, 20, 10, 10, 10) → Q* = (5, 10, 35, 0, 0, 0, 0) 7.3. 404 % :4 $. * 6& J " , " : ( ) k ! " , .. k Y 1, % R2' " . K % R1 " ! > %, " ". 223 < < % R2 " # " . 7.4. ! % 7.2 . §0 ¨ ¨0 ¨0 ¨ R = ¨1 ¨ ¨1 ¨1 ¨ ©1 0 0 0 0 0 0· ¸ 0 0 0 0 0 0¸ 0 0 0 0 0 0¸ ¸ 1 1 2 3 0 4¸ ¸ 1 1 6 7 8 0¸ 1 1 9 1 2 3¸ ¸ 7 1 6 7 8 9¹ , %, > , . Q(0) = (0, 0, 0, 1, 0, 0, 0) → Q* = (0.280, 0.440, 0.280, 0, 0, 0, 0) Q(0) = (0, 0, 0, 0, 1, 0, 0) → Q* = (0.290, 0.420, 0.290, 0, 0, 0, 0) Q(0) = (0, 0, 0, 0, 0, 1, 0) → Q* = (0.282, 0.436, 0.282, 0, 0, 0, 0) Q(0) = (0, 0, 0, 0, 0, 0, 1) → Q* = (0.232, 0.536, 0.232, 0, 0, 0, 0) < ( rsum >) > % . ; ! , " " ". ! " " < % R2, . G " " " <" – "" . A% " ! : % " , " % . 224 ! "" ! " ( 3.3). " – < , W > T " t' > vi : ∀ t > t' vi ∈ Z+(t). / " > " ! . * > Z+(t) , ! riout . $ !, , , , #% . ! ! ! , , ! 1, #% ! . D " . | " 7.1. / " <" r out # : T = min i 1* , < i∈{1,..., n} q i " > -. / " r out > Ti = i 1* qi ( ) ! ! . / > < > ! . / " ! > Ti – . | " 7.2. <## % , r out T , T = min i 1* " , > χ = i∈{1,..., n} q rsum i ! ! ( 7.2 !). " χ ∈ (0, 1]. / " χ = 0, « » . | " 7.3. / " W V T: 1) > >" 2; 2) ". / " , rank H = 1, " ( " ); rank H > 1, ( " ) 225 ! " . / < "" . 7.4. *$/" %%( ( '404 ) %() 7.4.1. * < R'∞ %+% * % " R'∞ > . 9 7.1. $ )%)0 $ l (7.1). R'∞ – : " & R', 00 : E1 § R'∞ = ¨¨ ' © E2 − R2 ( ) −1 O1 · ¸, O2 ¸¹ R1' (7.5) E2 – "0 (n – l) × (n – l). $ . % R' E1 § R'k = ¨¨ ' ' ' ' 2 ' ' © R1 + R2 R1 + R2 R1 + ... + R2 ( ) % ( ) k −1 R1' : O1 · k ¸. R2' ¸¹ ( ) / " 5 " < . % ( ) k & R2' → O2 % (n – l) × (n – l); ( % E2 − R2' ) −1 k → ∞, " O2 – ¦ (R2' ) ∞ k k =0 ( = E2 − R2' ([38], 3.1.1 ;" : R1' + R2' R1' + % R'∞ : ( ) 2 R2' R1' + ... + E1 § R'∞ = ¨¨ ' © E2 − R2 ( ) −1 R1' ' 1 −1 , 3.2.1). ( ) R + ... = (E k R2' ) 2 − R2' ) −1 R1' , - - O1 · ¸. O2 ¸¹ | " 7.4. G # (7.5) , R'∞ = (P∞)T, " % P∞ # (5.11). 226 | " 7.5. G # (7.5) 7.1. R1 % H, , ! % R'∞ " 1, " !% % > , !% : 1 : α2 : … : αl. 7.2. ' )%) l R'∞ 0 %+&: 0: $&: D & R. $ . & % R, # (7.1), % § E O1 · ¸ R' = ¨¨ ' ' ¸. © R1 R2 ¹ 1. " < ! D % (7.1) . 2. < " < % R2. R2new = R2 – D(Δrii), " D(Δrii) – " % (n – l) × (n – l), < ! . J ", 0 V Δrii V rii, ! > " > vk : Δrkk > 0. K Δrkk = rkk, < > !. ;" % ! ! : §D Rnew = ¨¨ © R1 O1 · § O3 ¸−¨ R2 ¸¹ ¨© O4 · §D ¸=¨ D(Δrii ) ¸¹ ¨© R1 O1 O1 · ¸. R2 new ¸¹ %, % Rnew, ! R'. R1' R2' % % R1' new R2' new : § Δr · · § r out · § ' § r out · ' ¸ ⋅ ¨ R2 − D¨ outii ¸ ¸ , (7.6) ¸ R1 , R2' new = D¨ out i R1' new = D¨¨ out i ¨ r ¸¸ ¸ ¨ ¸ ¨ © i ¹¹ © ri − Δrii ¹ © © ri − Δrii ¹ 227 § r out " D¨¨ out i © ri − Δrii · ¸ – ¸ ¹ " % (n – l) × (n – l) riout . G % riout − Δrii < ! % R'. $! D'; § Δrii · D¨¨ out ¸¸ – " %, © ri ¹ % R2' ! . $! DΔ. ;" (7.6) ! : R1' new = D ' R1' , R2' new = D '⋅ R2' − DΔ . < ( ) O1 · § E ' ¸¸ - % Rnew = ¨¨ ' ' © R1new R2 new ¹ , < : * E § '∞ = ¨¨ Rnew ' © E2 − R2 new ( (E / : 2 (E − R2' new 2 ) −1 − R2' new ) ) −1 O1 · ¸. O2 ¸¹ R1' new R1' new −1 ( %. G (7.6) ( R1' new = E2 − D' R2' − DΔ )) −1 D' R1' . (7.7) / " < % D' 0. D , % D'-1 . ;" (7.7) D' !: (E 2 ( − D' R2' − DΔ ( ( )) −1 = D'−1 − R2' − DΔ 228 ( ( D' R1' = D'−1 E2 − D'−1 D' R2' − DΔ )) −1 ( R1' = D '−1 + DΔ − R2' ) −1 R1' . )) −1 R1' = D'-1 + DΔ. " %. D % D' riout riout − Δrii -1 , " < D' . riout − Δrii riout Δr D DΔ outii . ri / D " i : (D' (E −1 2 + DΔ − R2' − R2' new ) −1 ) −1 ( ) R1' , < , ( ) R1' , R1' = E2 − R2' R1' new = E2 − R2' E § '∞ = ¨¨ Rnew ' © E2 − R2 ( riout − Δrii Δrii + out = 1 . $ riout ri ) −1 −1 −1 , O1 · ¸ = R '∞ . O2 ¸¹ R1' ; ! , ! " < % R % , % . 7.5. : . < , , % R+ " – %, " < (R–). §0 ¨ ¨0 R+ = ¨ 6 ¨ ¨1 ¨0 © 0 0 1 6 0 0 0 2 6 1 0 0 3 7 3 0· §0 0 ¸ ¨ 0¸ ¨0 0 ¸ 5 , R− = ¨ 6 1 ¸ ¨ 1¸ ¨1 6 ¸ ¨0 0 4¹ © 0 0 0 6 1 0 0 3 0 3 %, 0· ¸ 0¸ 5¸ . ¸ 1¸ 0 ¸¹ : 229 0 0 0 0· 0 0 0 0· §1 §1 ¸ ¨ ¸ ¨ 1 0 0 0¸ 0 0 0¸ ¨ 0 ¨0 1 1 2 3 5¸ 3 5¸ ¨ 6 ¨6 1 0 ¨ 17 17 17 17 17 ¸ ¨ 15 15 ' ' 15 15 ¸ . , R = R+ = ¨ 1 6 6 7 1¸ − ¨1 6 6 1¸ 0 ¸ ¨ ¸ ¨ 14 ¸ ¨ 21 21 21 21 21 ¸ ¨ 14 14 14 1 3 4¸ 3 ¨¨ 0 ¨¨ 0 0 1 0 0 ¸¸ ¸ 8 8 8¹ 4 4 ¹ © © * % . ! : , 0 0 § 1 ¨ 1 0 ¨ 0 ∞ ¨ R' = 0.6161 0.3839 0 ¨ ¨ 0.3661 0.6339 0 ¨ 0.4286 0.5714 0 © 0 0 0 0 0 0· ¸ 0¸ 0¸ ¸ 0¸ 0 ¸¹ 7.4.2. !* '*$/ %%( ( %+% 7.3. $ )%)0 $ l (7.1). 0 %+ W %+ "$ 0 0 Q(0) = (q1(0), …, qn(0)) $ 0 " &0 : Q* = Q(0)R'∞, (7.8) R'∞ – $0 , 00 (7.5). $ . 1. K , > #% 2, . " t : Q(t)= Q(0)R't. > , (7.8). 2. > #% 1 ( ! , ! ). * t % ! R(t), % R " 230 < > , #% 1. ; ­rii , qi (t ) ≤ riout , ° rii (t ) = ® q (t ) − ¦ rij , qi (t ) > riout ° i j ≠i ¯ * % R(t), R'(t), a) ∀t Q(t + 1) = Q(t)R'(t); b) ∀t Q(t) % R, = (q1(0), …, qn(0)). ;" #% % % &. < % : , Q(0) = : Q(t + 1) = Q(t ) R' (t ) = Q(0)(R' (0) R' (1) ⋅ ⋅ ⋅ R' (t ) ) . >" m > 2. ;" , >" m + 1, % &: R(t) = R R'(t) = R'. / Q(m+k) : § m · Q(m + k ) = Q(0)¨¨ ∏ R' (t ) ¸¸ R'k . © t =0 ¹ k → ∞ : § m · § m · Q* = Q(0)¨¨ ∏ R' (t ) ¸¸ lim R'k = Q(0)¨¨ ∏ R' (t ) ¸¸ R'∞ . → ∞ k © t =0 ¹ © t =0 ¹ 7.2 % R'∞ ! " < . ;" t = 0, …, m R'(t)R'∞ = R'∞. $ Q* = Q(0)R'∞. ; 7.3. ' $ 0 0 Q* " 0 0 $ # :. 231 ; 7.4. $ )%)0 $ l (7.1). D& i- & R'∞ (i > l) & $ 0 0 "$ 0 Qi(0) = (0, …, 0, 1, 0, …, 0), i-0 : § e1T · ¸ ¨ ¨ ... ¸ ¨ T ¸ e R '∞ = ¨ *l ¸ , ¨ Ql +1 ¸ ¸ ¨ ¨ ... ¸ ¨ Q* ¸ © n ¹ (e1, …, el – & l -+ " & (E)n×n). $ # (7.8). | " 7.6. % R'∞ ! % L = E – R', 1.2.4. ; < % "#, " " "# !. N "# " , <" , ! % > . % R'∞ ! !" " " % L. " ! !" L [3, 63]. 7.6. %: §0 ¨ ¨0 R = ¨6 ¨ ¨1 ¨0 © 0 0 1 6 0 0 0 2 6 1 0 0 3 7 3 0· ¸ 0¸ 5¸ . ¸ 1¸ 4 ¸¹ %, : 232 0 0 0 0· § 1 ¸ ¨ 1 0 0 0¸ ¨ 0 1 2 3 5¸ ¨ 6 ¨ 17 17 17 17 17 ¸ . R' = ¨ 1 6 6 7 1¸ ¸ ¨ ¨ 21 21 21 21 21 ¸ 1 3 4¸ ¨¨ 0 0 ¸ 8 8 8¹ © : , – " ! . Q1(0) = (0, 0, 1, 0, 0) → Q1* = (0.6161, 0.3839, 0, 0, 0); Q2(0) = (0, 0, 0, 1, 0) → Q2* = (0.3661, 0.6339, 0, 0, 0); Q3(0) = (0, 0, 0, 0, 1) → Q3* = (0.4286, 0.5714, 0, 0, 0). ;" R'∞ ! : 0 0 § 1 ¨ 1 0 ¨ 0 ∞ ¨ R' = 0.6161 0.3839 0 ¨ ¨ 0.3661 0.6339 0 ¨ 0.4286 0.5714 0 © 0 0 0 0 0 0· ¸ 0¸ 0¸ ¸ 0¸ 0 ¸¹ 7.4.3. + 6# '*#-9&") %%( + 7.3 " " . K Q(0) = αQ1(0) + βQ2(0), ! Q* = αQ1* + βQ2*, " " t Q(t) = αQ1(t) + βQ2(t) " . D #% > . , . / % !: 233 §0 ¨ ¨0 R = ¨6 ¨ ¨3 ¨1 © 0 0 0 0· ¸ 0 0 0 0¸ 1 4 5 7¸ . ¸ 6 5 1 7¸ 1 1 2 4 ¸¹ 7.7.a. * Q1(0) = (0, 0, 100, 0, 0), Q1* = (62.5, 37.5, 0, 0, 0). . 7.5. : . 7.5. > Q1(0) = (0, 0, 100, 0, 0) 7.7.b. * Q2(0) = (0, 0, 0, 100, 0), Q2* = (46.154, 53.846, 0, 0, 0). . 7.6. 234 : . 7.6. > Q2(0) = (0, 0, 0, 100, 0) 7.7.c. : "# , > . $ – "# , . 7.5–7.6; – " Q3(0) = Q1(0) + Q2(0) = (0, 0, 100, 100, 0). G . 7.7. 7.7.! > , "# > . $ . * " " , " ! > > ! #% 1. K > #% 2, >, " . 235 120 100 80 v1 v2 60 v3 40 v4 v5 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 : . 7.7.. : Q1(0)+ Q2(0), Q1(t)+ Q2(t). Q1*+ Q2* = (108.654, 91.346, 0, 0, 0) 120 100 80 v1 v2 60 v3 40 v4 v5 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 : . 7.7.+. A% Q3(0) = Q1(0)+ Q2(0) = (0, 0, 100, 100, 0). Q* = (108.654, 91.346, 0, 0, 0) 236 ##* + ! 7 " ! " : % # " ( <" ), % # . $ " , " ( , " 0): ! " #% . K T = 0, <## % , T > χ = " rsum (0, 1], " . " . / . D , " . > ; > t → ∞. K , , .. #% , " ! " <" . * " " . G , " , ! !, , % , .. % !% % # (7.3). ;" . * # Q* = Q(0)R'∞, " R'∞ – % R'. #, ( 7.2): < , % . 237 8. @ Q @ BBB @A B BA DR @, : • & . • ( , & : ΔW = W – T ! , &# ## (& & ), &# & , # & & . • &; , . • " , & &. : " . K > , , W > T > "" ! . % , < , " , , < " . $ " " . ;, " , , ! . / " < . % <" #% % . 8.1. * (n = 5) v1 v2 %: 238 §1 ¨ ¨1 R =¨6 ¨ ¨1 ¨1 © 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1· ¸ 1¸ 1¸ . ¸ 1¸ 1¸¹ (8.1) $ . ρ = ((10, 5), (10, 5), (5, 10), (5, 10), (5, 5)); W = 1: Q1* = (0,250, 0,250, 0,1(6), 0,1(6), 1(6)); " - ~ : T = 20; Q = (5, 5, 3,(3), 3,(3), 3,(3)). v5 v3 v4 v1 v2 : . 8.1. , % (8.1) G . 8.1 , < " . : Q(0) = (0, 5, 20, 0, 0). W = 25 ! > "" , , > . = v2 , v1 – . " Q(0) ! Q* = = (10, 5, 3,(3), 3,(3), 3,(3)). , > > ( , ! 239 > , ! ! > !). /> v2 ! > ", . , > !, % ! ! Z+*. 25 : Q(0) = (0, 8, 17, 0, 0). < ! : Q* = (10, 5, 3,(3), 3,(3), 3,(3)). K 8 > v4 ( , v2 ! ! > !), , ! ! Q(0) = (0, 0, 17, 8, 0), ! : Q*= = (9,75, 5,25, 3,(3), 3,(3), 3,(3)). ; < > ! , " ! , " ". ; ! , " , " , . / < " ! , 1. / > , « » ! > . 8.1. 404( %/, %%904( % ##* &+, ''*! *9(*%/ δW G % W > T. / " 4 ! > ! " , > . K , . K % , . $ > " " , < ! < " . : , % (8.1). Q1*=(0,250, 0,250, 0,1(6), 0,1(6), 0,1(6)), T = 20. 1 / , , !! , > , . * ! > " # . 240 W > T . * ΔW = W – T W. : : Q(0)=(0, 0, 50, 0, 0) → Q*= (29,3, 10,7, 3,(3), 3,(3), 3,(3)). (8.2) Q(0)=(0, 0, 90, 0, 0) → Q*= (59,3, 20,7, 3,(3), 3,(3), 3,(3)). (8.3) > , Z–*, 10. Q(0) = (0, 0, 50, 0, 0) Q(0) = = (0, 0, 90, 0, 0) Z+* , 40 80 . 40 , 30 10, .. 0,75ΔW 0,25ΔW, .. % 3:1. ! > % 3:1 ΔW . / ( . 8.1), (> v4), " % 0,25ΔW 0,75ΔW (, 1:3). = > , 0,5ΔW, 0,5ΔW, .. % 1:1. !^ <" # " , , .. , < % R, ! , . & % ! ! Rabsorb. §0 ¨ ¨0 Rabsorb = ¨ 6 ¨ ¨1 ¨1 © 0 0 1 6 1 0 0 1 1 1 0 0 1 1 1 0· ¸ 0¸ 1¸ . ¸ 1¸ 1 ¸¹ % ! R '∞absorb . * < %, > 241 # 7.4 (" 7). <" " , > : Q(0) = (0, 0, 1, 0, 0) → Q*= (0,75, 0,25, 0, 0, 0); Q(0) = (0, 0, 0, 1, 0) → Q*= (0,25, 0,75, 0, 0, 0); Q(0) = (0, 0, 0, 0, 1) → Q*= (0,5, 0,5, 0, 0, 0). ;" 0 0 § 1 ¨ 1 0 ¨ 0 ∞ ¨ R'absorb = 0,75 0,25 0 ¨ ¨ 0,25 0,75 0 ¨ 0,5 0,5 0 © 0 0 0 0 0 0· ¸ 0¸ 0¸ . ¸ 0¸ 0 ¸¹ (8.4) G % ΔW - > . / , < % % R, ! " ! ! , . ! " . $ ! > W % , R '∞absorb , > ? < , ! % R. ! ! , ! ( . 8.1) ! >. 8.2. $ $# . % § 0,5 0,5 0,5 0,5 0,5 · ¸ ¨ ¨ 0,5 0,5 0,5 0,5 0,5 ¸ 1 1 1 1 ¸. R =¨ 6 ¸ ¨ 6 1 1 1 ¸ ¨ 1 ¨ 1 1 1 1 1 ¸¹ © 242 (8.5) < = 10; Q1* = (0,250, 0,250, 0,1(6), 0,1(6), 1(6)); ~ Q =(2,5, 2,5, 1,(6), 1,(6), 1,(6)). A% : Q(0)=(0, 0, 85, 0, 0) → Q*= (60,5, 19,5, 1,(6), 1,(6), 1,(6)); Q(0)=(0, 0, 45, 0, 0) → Q*= (30,5, 9,5, 1,(6), 1,(6), 1,(6)). :, 5, Z–*; . : < ΔW = 40 % 30:10, .. 3:1, >. D > ! . * ! ! > % , ! . * ! ! , ! !, > v5 " " . 8.3. '&+ "& 0 D : : : & R. % §3 ¨ ¨1 R =¨6 ¨ ¨1 ¨1 © 1 8 1 6 1 1 1 1 1 1 1 1 1 1 1 0· ¸ 0¸ 1¸ . ¸ 1¸ 1 ¸¹ : = 23; Q1* = (0,261, 0,478, 0,116, 0,116, 0,029); ~ Q = (6, 11, 2,(6), 2,(6), 0,(6)). , ; ~ % Q . / Z–* , 6. 243 : ( → ): Q(0) → Q*. Q(0)=(0, 0, 86, 0, 0) → Q*= (56,910, 23,090, 2,(6), 2,(6), 0,(6)). Q(0)=(0, 0, 46, 0, 0) → Q*= (26,910, 13,090, 2,(6), 2,(6), 0,(6)). : ΔW = 40 % 3:1, > " . D % " . " " , , . : Q(0) → Q*: Q(0)=(0, 0, 86, 0, 0) → Q*= (56,910, 23,090, 2,(6), 2,(6), 0,(6)). r1out = 6, r2out = 11. Δq1 = q1* − r1out = 50,910, Δq2 = q2* − r2out = 12,090 Δq1 : Δq 2 = 50,910 : 12,090 > 4. % / % (8.1) . G 8.1 : < - Q(0)=(0, 0, 100, 0, 0) → Q*= (66,8, 23,2, 3,(3), 3,(3), 3,(3)). < % r1out = 5, r2out = 5. Δq1 = q1* − r1out = 61.8, Δq2 = q2* − r2out = 18,2. , % 3:1 . / Δ q1 − 3Δq 2 : Δq1 − 3Δq2 = 61,8 – 18,2 ⋅ 3 = 61,8 – 54,6 = 7,2. 244 , < " W. G (8.2), (8.3) , W = 50 W = 90 : Δq1 − 3Δq2 = 7,2. (8.6) ! > W , % (8.1), (8.6) . $! " δW. * " Wmin ≥ T, δW = const. " δW = 0. " " (.. !), δW . J δW 0 $. $ > % δW l " " Q(0), , ! > Wmin, - > . R – % ! , 1 l. Q* – " W > 2rsum ( ~ 2rsum ! > Wmin). ΔQ = Q* – Q . K" n – l , l , !. Rabsorb – % " , l , n – l % R. : " " < " #% Q(0) = QW(0), Q* = Q*W. J W ( % QW(0)) " ε > 0 , - ! Q*W U ΔQ. $! < W'. ;" ΔQ – Q*W' % . G " δW. D , > % , " , . D . G ! , # . 0 $ δW , >" % , % Rabsorb: ~ δW = (Q* – Q – Q*W')⋅1, " 1 – - !% n %. 245 " ! Wmin !^ , δW, > % , , #% W > T, ! " , .. , W – T ≤ δW. 8.4. % (8.1). * W = T, ! , " > . < = 20. / > . ~ Q(0)=(0, 0, 20, 0, 0) → Q = (5, 5, 3,(3), 3,(3), 3,(3)). Q(0)=(0, 0, 25, 0, 0) → Q*= (10, 5, 3,(3), 3,(3), 3,(3)). Q(0)=(0, 0, 27, 0, 0) → Q*= (12, 5, 3,(3), 3,(3), 3,(3)). Q(0)=(0, 0, 27,2, 0, 0) → Q*= (12,2, 5, 3,(3), 3,(3), 3,(3)). Q(0)=(0, 0, 27,21, 0, 0) → Q*= (12,2075, 5,0025, 3,(3), 3,(3), 3,(3)). G < , W – T ≤ 7,2 % , . : " r2out = 5 W = 27,2, , , δW= 7,2. W > 27,2 Z+*, > : (q1* − 5 − 7,2) : (q2* − 5) = 1 : 3 . / ! ( ! !) , . 8.1, c v1 v2, v3 v4 , . K > v3, < " W ≥ T+δW, > : '∞ '∞ (q1* − r1out − δW ) : (q2* − r2out ) = rabsorb 31 : rabsorb32 , 246 " % R'∞absorb # (8.4). ; , δW, . 9 8.1. $ 0 " 0 v1 v2 W > T "$ 0 '∞ '∞ : 0 " vj, 0 rabsorb j1 = max rabsorb k 1 . k ∈{3,... n} $ 0 0 : ~ ­°Q + (W − T , 0, 0, ..., 0), W ≤ T + δW Q* = ® ~ '∞ '∞ °̄Q + (δW + rabsorb j1 ⋅ ΔW , rabsorb j 2 ⋅ ΔW , 0,...,0), W > T + δW (8.7) ΔW = W − (T + δW ) , R '∞absorb – $0 )%) , %) 0 . $ . ! . v2 ! ! , #% 2, .. . = v1 #% 1 ! , ! > <" . G > v1. ; ! , δW , " , ! 1, " ! 2. K " W ≤ T + δW, δW v2 r1out , v2 Z+(t), (8.7) . K W > T + δW, ! Z+(t). / t' : q2(t' – 1) ≤ r2out q2(t') > r2out . ;" q1(t') = r1out + δW . , " Z+(t) % , R 'absorb . / : Z+(t) ! out out r1 r2 – ! ! . * , ! > ". $ % ! ! , 247 ! ( ) : f1in* = f1out* = r1out , f 2in* = f2out* = r2out . K ! , %, ! , < % Rabsorb . ; ! , T + δW % , % R '∞absorb . N " !! " . l v1, …, vl, W > T vj, j > l. $! δWi – vi ! W ≥ T – ! > , ! % R '∞absorb . P, δWi = const, " , Z+(t), ! ! % , % R '∞absorb . 8.1. $ 0 " l v1, …, vl W > T "$ 0 : 0 " vj, j > l. $ 0 0 : ~ ­Q + (0, ..., W − T , 0, ..., 0), W ≤ T + (δWm − δW− m ) °° ~ Q* = ®Q + (δW1^ , ..., δWl ^ , 0,...,0), T + (δWm − δW− m ) < W ≤ T + δW °~ '∞ '∞ °¯Q + (δW1 + rabsorb j1 ⋅ ΔW , ..., δWl + rabsorb jl ⋅ ΔW , 0,...,0), W > T + δW (8.8) (0, …, W – T, 0, …, 0) % '∞ m ≤ l, m : 0 0: m = arg max rabsorb km ; k ∈{1,..., l } 0 ≤ δWi^ < δWi – T + (δWm – δW–m) < W < T + δW; δWm = max δWk – , %)0 vm; k∈{1,...,l } δW− m = max δWk ∈{δW1 ,...,δWl }\δWm , δWk – 0 " " vj; l δW = ¦ δWi ; ΔW = W − (T + δW ) ; i =1 " ) vi, 0 δWi = 0, i ≤ l. 248 - $ . # (8.8) . 1. # W < T + (δWm − δW−m ) 8.1. = vm 1 ! > , δWm^ = (W – T). K ( δWi) 1, > > vm. " , 1 , " vm (δWm − δW−m ) . $ ~ Q* = Q + (0, ..., W − T , 0, ..., 0) . 2. , δW, #% Z+(t), δWi^ =δWi^(W) ! , " ! ~ out out ~ ~ Q = (r1 , ..., rl , ql +1(0), ..., qn (0)) . " T + (δWm − δW−m ) , " " Z+(t). K % , ! ! δWi, .. δW1 := δWm, δW2 := δW–m, . ., W, k ! δWk^(W) > 0. <" ! , ! , > k, . :! " W > T Z+(t) " . 1) T < W ≤ T + (δW1 – δW2): v1 #% 1. / ! : T + (δW1 – δW2) = T1. " % ! ! Ti. 2) T1 < W ≤ T + (δW1 – δW2) + 2(δW2 – δW3) = T + δW1 + δW2 – 2δW3 = T2: v1 v2 #% 1. 3) T2 < W ≤ T + (δW1 – δW2) + 2(δW2 – δW3) + 3(δW3 – δW4) = T + δW1 + δW2 + δW3 – 3δW4 = T3: v1, v2 v3 #% 1. … l – 2) Tl–3 < W ≤ T + δW1 + … + δWl–1 – (l – 1)δWl = Tl–2: v1, v2, …, vl–2 #% 1. 249 l – 1) Tl–2 < W ≤ T + δW1 + … + δWl–1: v1, v2, …, vl–1 #% 1, vl–1 " " " . l) W > T + δW1 + … + δWl–1 = T + δW " . Z+(t), < , vl : δWl = 0, ! > , . 3. ; # (8.8) l). W > T + δW Z+(t), ! . % R '∞absorb . |" 8.1. K > -, '∞ m = arg max rabsorb km , , W – T k∈{1,..., l } # (8.8) < . | " 8.2. "# # 1) ÷ l). * . 8.2, , – !% . $ , . I , ! > > - . («" ») !% > . > > ! % , % R '∞absorb . " " , ! , % . y " !% . * . 8.2, + % . D " " " 1) ÷ l). ; 8.1. * , l % , > - vj, j > l, " W > T ! l + 1 , " δWi ! i – 1 > (i = 1, …, l + 1). ' % # . 1) ÷ l). 250 δW1 δW2 δW3 … δWl–1 v1 v2 v3 … vl–1 : . 8.2, . " . : δWi ! (δW1 – δW2) – < > > Z+(t). δW1 δW2 (δW1 + δW2 – 2δW3) δW3 (δW1 + δW2 + δW3– 3δW4) … δWl–1 v1 v2 v3 … vl–1 : . 8.2, +. " . Z+(t), 251 W > T + δW1 + … + δWl = T + δW > , T + δW % R ' ∞absorb . δWi < ! . I! , δWi % !, . K < , " . 8.2. % #%/ δW ")$") '*'9%!") %'%:%+ *!* / % . δW > , < δW1 = δW δW. δW ! > -: δW = δW riout , i = 1, 2, , % R , % (8.1) (8.5). 8.5. / % ( ) §r ¨ ¨r R = ¨6 ¨ ¨1 ¨1 © r r 1 6 1 r r 1 1 1 r r 1 1 1 r· ¸ r¸ 1¸ ¸ 1¸ 1 ¸¹ ! ! r >" . < ! . 8.1. + 8.1 "A"'/:A)(/)') -A:#:*+,%>% (%(/%G,)G -A) A"K,@J C@J%#,@J -A%-B(',@J (-%(%E,%(/GJ "//A"'/%A%C ~ R r δW r1out = r2out T Q 1. 2. 3. 4. 5. 252 0 0,05 0,1 0,15 0 0 0,25 0,5 0,75 0 0 1 2 3 0 (0,25, 0,25, 0,1(6), 0,1(6), 0,1(6)) (0,5, 0,5, 0,(3), 0,(3), 0,(3)) (0,75, 0,75, 0,5, 0,5, 0,5) 0 0,875 1,75 2,625 0 R r 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1 1,05 1,1 1,15 1,2 1,25 1,3 1,35 1,4 1,45 1,5 out 1 r 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75 4 4,25 4,5 4,75 5 5,25 5,5 5,75 6 6,25 6,5 6,75 7 7,25 7,5 =r out 2 } " +. 8.1 δW T ~ Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (0,25, 0,25, 0,1(6), 0,1(6), 0,1(6)) (0,5, 0,5, 0,(3), 0,(3), 0,(3)) (0,75, 0,75, 0,5, 0,5, 0,5) (1, 1, 0,(6), 0,(6), 0,(6)) (1,25, 1,25, 0,8(3), 0,8(3), 0,8(3)) (1,5, 1,5, 1, 1, 1) (1,75, 1,75, 1,1(6), 1,1(6), 1,1(6)) (2, 2, 1,(3), 1,(3), 1,(3)) (2,25, 2,25, 1,5, 1,5, 1,5) (2,5, 2,5, 1,(6), 1,(6), 1,(6)) (2,75, 2,75, 1,8(3), 1,8(3), 1,8(3)) (3, 3, 2, 2, 2) (3,25, 3,25, 2,1(6), 2,1(6), 2,1(6)) (3,5, 3,5, 2,(3), 2,(3), 2,(3)) (3,75, 3,75, 2,5, 2,5, 2,5) (4, 4, 2,(6), 2,(6), 2,(6)) (4,25, 4,25, 2,8(3), 2,8(3), 2,8(3)) (4,5, 4,5, 3, 3, 3) (4,75, 4,75, 3,1(6), 3,1(6), 3,1(6)) (5, 5, 3,(3), 3,(3), 3,(3)) (5,25, 5,25, 3,5, 3,5, 3,5) (5,5, 5,5, 3,(6), 3,(6), 3,(6)) (5,75, 5,75, 3,8(3), 3,8(3), 3,8(3)) (6, 6, 4, 4, 4) (6,25, 6,25, 4,1(6), 4,1(6), 4,1(6)) (6,5, 6,5, 4,(3), 4,(3), 4,(3)) (6,75, 6,75, 4,5, 4,5, 4,5) (7, 7, 4,(6), 4,(6), 4,(6)) (7,25, 7,25, 4,8(3), 4,8(3), 4,8(3)) (7,5, 7,5, 5, 5, 5) 0,875 1,75 2,625 3,5 4,375 5 5,375 5,75 6,125 6,5 6,875 7,2 7,28 7,3 7,31 7,32 7,335 7,35 7,365 7,2 6,945 6,67 6,4 6,13 6,155 6,16 6,04 5,78 5,515 5,18 ;! % . ! , ( ! " 4), % §1,5 1,5 1,5 1,5 1,5 · ¸ ¨ ¨1,5 1,5 1,5 1,5 1,5 ¸ R =¨ 6 1 1 1 1 ¸ ¸ ¨ ¨1 6 1 1 1¸ ¨1 1 1 1 1¸ ¹ © 253 % . D > v1, v2 v5. / , > v1, v2 v5 : r5out r1out r2out 7,5 5 = 30; = 30; = = = 1* 1* 1* 0,25 1/ 6 q1 q2 q5 < ! . 8.1 , < T = 30. ; ! , 4.4 < > . , ! % "# ( . 8.3). G " , δW ! . < , , " ; !, ! 0,95, " , !. $ !, 1,25 1,3, >. : . 8.3. δW ! ( "" ) 254 8.3. $*$( <'/ *!, $ # ! %)% &%! ) #* < "& % δW A% , ! > "" , % &. * t % ! R(t), % R " < > , t #% 1. ; ­rii , qi (t ) ≤ riout , ° rii (t ) = ® q (t ) − ¦ rij , qi (t ) > riout ° i j ≠i ¯ * % R(t), R'(t), % &. / % t Q(t + 1) = Q(0) ∏ R ' (m) m =0 , % R, Q(0). K j, % R(0) ! % R j- . / % #% > " Z+(t), " % R(t) ! % R. >" Z+(t) ! , % . / % R(t) % R'(t) % R R'. $ > %, , " > #% . % . W > T + δW. ;" , , , , #% : 1, , ! , 2. 255 : <, #% . 0. / Z+(0) > – W > T. 1. > -. < , , < > #% 2. I < > 1. Z+(t) > : . 2. / 1. Z+(t) > : . / ! . 3. G Z+(t). / Z+(t) . * 1 2 # δW. * 2 3 # , R'∞absorb . K 2 , , ! > ! . . 3 Z+(t) ! % R'(t), > , #% 1, . : %, " . $ 1-3, % . % R' : R' = (r1 ' , r2 ' ,..., rn ') , " rk' – !% R'. vj – > - , , v1, v2 – ; Z+(t) v1. ;" " < 0-3 ! : ( ) ( ) 0. F out (t + 1) = F out (t ) r1 ' , r2 ' , r3 ' ,...,e j ,..., rn ' , t < t1; 1. F out (t + 1) = F out (t ) e1 , r2 ' , r3 ' ,...,e j ,..., rn ' , t1 V t < t2; ( ) ( ) 2. F out (t + 1) = F out (t ) e1 , e2 , r3 ' ,...,e j ,..., rn ' , t2 V t < t3; 3. F out (t + 1) = F out (t ) e1 , e2 , r3 ' ,..., r j ' ,..., rn ' , t Y t2. 256 $! %, Fout(t), Pj, P1j, P12j P12, . " < # : F in (t + 1) = F out (t ) R' . G " > , δW : t2 ( ) t2 ( ) δW = ¦ F in (t + 1) − F out (t + 1) = ¦ F out (t ) R '− F out (t ) P1 j = t =t1 t2 ( t =t1 ) = ¦ F out (t ) R '− P1 j ; t =t1 & % (R' – P1j) !% 1 j. ! < , > " . / " < F out (t + 1) = F out (t ) P1 j , , F out (t ) = F out (t1 )(P1 j )t −t1 ;" § · δW = F out (t1 )¨¨ ¦ ( P1 j ) t −t1 ¸¸(R'− P1 j ). t2 © t =t1 ¹ 1 j, / δW . δW = δW 1 . δWi l (i = 1, …, l) " . ! l + 1 – . ( ) 8.4. *$/ %%( % '* fsum(t) ≥ T , δWi (i = 1, …, l) , " > , .. " . 257 " δW ! >. / δW = 0. ;, , < , > , ! > " W = T, > ! % , % R '∞absorb . , < ! " . 8.2. $ 0 0 "0 0 $ l $& (l > 1) & W > T, "$ 0 Q(0) : ~ ~ Q(0) = Q + ΔQ(0) , Q – $ 0 W = T, ΔQ(0) – $& $& , %) # W – T. $ 0 & : : ~ Q* = Q + ΔQ(0) R'∞absorb . (8.9) $ . " " > , > ~ ~ Q , : F out (t ) = F + ΔF out (t ) , ~ " ! F ! W > T, ! ΔFout(t), > , > ΔQ(t). W = T ! ! > ", ΔFout(t) – , ΔQ(t), , . ; ! , > : §E ' ' ΔQ(t+1) = ΔQ(t) Rabsorb , " Rabsorb = ¨¨ ' © R1 / O1 · ¸. R2' ¸¹ : E O1 · § '∞ ¸¸ = ΔQ(0) Rabsorb ΔQ* = ΔQ(0) ¨¨ . ' −1 ' ( E − R ) R O 2 1 2 ¹ © 2 (8.10) 258 8.5. &/" %%( (, %6$04 ''*!9 ; 8.2 ", % , " . $ , . # (8.9) " . K , " , δWi , i = 1, …, l, . D " +: &: $&: # . k l+1, …, l+k. " Q(0), ! > , ΔW j # ΔW j = ¦ i∈{1,...,l ,l + k +1,...,n} d i (0) riin− r ji , (8.11) " riin − – ! > Z–(0) ! > - , di(0) – # % > Z–(0): i = 1,…, l, l+k+1,…n. / ΔW j ! ! > . $! # (8.11) . 8.3. $ 0 " l $& 1, …, l k " l+1, …, l+k, "$ 0 : Q(0) = (q1 (0),..., ql (0), q~l +1 + ΔWl +1 + ΔQl +1 ,..., q~l +k + ΔWl +k + ΔQl +k ,...,q n (0) ), " & ΔW j (j = l+1, …, l+k) – +: & $& # " , & (8.11), ΔQ j ≥ 0 , j = l+1,…, l+k. $ 0 : ~ Q* = Q + ΔQ ⋅ R'∞absorb , 259 Δ Q – & n & ΔQ j (j = l+1, …, l+k). $ . I! % , , ! > , 8.3. * , " #% Z–(t) Z+(t): Z+(t) , , Z–(t), . ! > 1 (< (" 4)). , δW =0. * ! > > - . > vi, Q(0) # % , ! riin − ! > - . # % > vi ! , , di(0). ;" , ! # % ~ > , Q , vj ¦ d i (0) r ji , " i !" riin− > , # % . d i (0) r ji . $ # (8.11): ΔW j = ¦ in− i∈{1,...,l ,l + k +1,...,n} ri Δ Q # : ΔQ j = q j (0) − q~ j − ΔW j . , ! " . 8.6. % (8.1) ( . 8.1). W > T , , " ": Q(0) = (0, 0, 20, 40, 0). ;" < ! Q* = (20, 30, 3,(3), 3,(3), 3,(3)). $ > " Q*. / " , ~ , Q , # % > i∈{1,...,l ,l + k +1,...,n} 260 % < # % ! , > . 1 3 5 > 3 = 2 3 r1out r2out > - 5 % – ! % . G" 20 10 ! 3,(3) = . 3 3 ΔW3, 4 = 20 ~ 10 , q3, 4 = 3 3 20 10 – = 3 3 = 20 – 10 = 10, > v4 > ΔQ4 = 40 – 10 = 30. D > > % , , 3:1 1:3 ( . 8.4). G : q1* = 5 + 7.5 + 7.5 = 20; q2* = 5 + 2.5 + 22.5 = 30. D " . G > > v3 ΔQ3 = 20 – 8.6. <! ''*! δW ; 8.2–8.3 , " δWi = 0. " δWi ", . 8.4. $ 0 " l $& (l Y 2), %) 1, …, l, & W > T + ΔW j (0) (ΔW j (0) ≥ δW ) "$ 0 : 0 # - " v j . - $ 0 : ~ Q* = Q + ΔQR'∞absorb +(δW1, δW2, …, δWl, 0, …, 0), l § · ΔQ = Q(0) − ¨¨ 0,...,0, ¦ δWi ,0,...,0 ¸¸ , 0 i =1 © ¹ j. 261 v3 ΔQ3 = 10 v4 ΔQ4 = 30 2,5 7,5 v1 r1out=5 : . 8.4. : 7,5 22,5 v2 r2out=5 > " 0 l0 = arg min r '∞absorb jk &k 00: δWl0 = 0 , $& " 0 δWi :00 : δWi = ( qi* − riout ) − (ql*0 − rl0out ) '∞ rabsorb ji '∞ rabsorb jl0 . (8.12) $ . ; 8.4 8.1. /> - l 0 = arg min r '∞absorb m0 j j 1. G > δWi , ! #% 2. ; ! , > , > > 1 , >. A (8.12) – 8.1. " #% 1, % , % R '∞absorb . G > > - " , , " δWl0 = 0 . 262 ; !^ , 8.4. : 8.2– Q1 (0) = (q1 (0), q2 (0), ..., q~l +1 + ΔWl +1 ,..., q~l +k + ΔWl +k ,...,q n (0)) , Q2 (0) = (q1 (0), q2 (0), ..., q~l +1 + 2ΔWl +1 ,..., q~l +k + 2ΔWl +k ,...,q n (0)) , " ΔWi – ! ! > ( , ΔWi > T). : , ~ Q1* = Q + ΔQ1R'∞absorb +(δW1, δW2, …, δWl, 0, …, 0), ~ Q2* = Q + ΔQ2 R'∞absorb +(δW1, δW2, …, δWl, 0, …, 0), : : ~ Q2* − Q1* = Q + (ΔQ2 − ΔQ1 ) R'∞absorb . ; ! , . " , % , . 8.5. $ 0 0 "0 0 $ $& & 1, …, l. $ : & W > T + ΔW j (0) "$ 0 0 - &: # :. 0 $&: & 0 # : ¦ (outf iin (t ) − riout ) = qi* − riout (8.13) qi (t )>ri $ . N (8.13) , ! > " #% – " " " , < qi* − riout . ; 8.2. K Q(0) > , " 263 W > T , % , ! : q m* = rmout , m ≤ l, ! q m* > rmout , " : - ¦ (outf iin (t ) − riout ) = δWi . qi ( t )> ri $ # (8.13). $ , δWi = qi* − riout . 8.7. % (8.2), W = T + δW1 = 27.2 > v3: Q(0) = (0, 0, 27,2, 0, 0). < ! Q* = (7.2, 5, 3.(3), 3.(3), 3.(3)). δW1 = 7.2 ! "# : f(t) 9 8 7 6 5 4 f_in1(t) 3 f_out1(t) 2 1 0 1 2 3 4 5 : . 8.5. : " 264 6 7 8 " t G . 8.5 , δWi #% . ##* + ! 8 G " , " 3 4, ! %: ! ! , .. , > ΔW = W – T . D ! " 8, " . 7 " . $, , " , ! " , " . " , % ! R ! , , % Rabsorb " . , " Q(0) , . : > ΔW > δW, " , % : < #% 1. K ΔW > δW, ΔW − δW % , " , % Rabsorb. / ! l ΔW > δW 1 , δW. D % . 8.3 % &, % R'(t), " 1. / δW " . $ , " Q(0) . D 8.1, 8.4. " , , δW = 0. $ ! Q(0) > . ; 8.2, 8.3. / , " , !! , " Q(0) , > , . 265 @ B @ B A %/%'%C@: &%#:*). : , " , < ! . $ , – , # % , % – ( 1) % ( ). ", < , , % , – , .. > ! « , !…» / % : , < " ! "#, % . ", , % " % . $ – " , ! , .. > ! « ! , …» *B$"D,@: E*BH#",)G ) A"((:G,): ," >A"I"J. , > #% 2, " . 3, % &. $ " , , , > #% 1. " , , ! , ! > > > " 1. * > , #% , > , . " . / " . A% % &. < (" . 5) " (" . 7) < . $ " 1 « », A –A # % , > , . 2.4 " . 266 , > > ">; > " (" . 8). ; ! , " ! > 1, % & < %. >A" C@(/A:*)C",)G I)F:'. K , #% 2, < "#, > , #% 1, > " chip-firing. $ . – : -< , > #% 1, , > 2. / : chip-firing games . < " : ! , > . / chip-firing ! " " # >, . G < " . G" % ". K> # > , . / [77] ", mass-firing game, ! ( ! ). " : > , ! >, !. * , % % ! " chip-firing, " > % % . / #% . : ! , > , ! " ! . ; # " %, " 267 . K , , chip-firing > ! %, , % , – " ", #% . ;, , , " , , . G % . "" [26]. '# < ! " >. ! !, % % – ! > . ! [26]. 268 B O @DBB " – . $ < , > ": • ; " " • > , " ; ( • " " ); • " " ; • " ( % ! R, W, Q(0)). / . 2.3, 2.4 # % : " , .. "# , ! !. D " , "# . D" 0 , *$ % %. d- " ( % ), *$ % d ! > %. )%) , – > ! !. " , % ! ; " , ! > vi ! ! ! !: riin = riout ; " , ! > vi in out ri ≠ ri . D # % " : " > > " . #% ! > Z–(t) Z+(t). Z–(t) – < > , t #% 2 ( % ! 269 !); > Z+(t) t #% 1 ( > ! ! riout !, < «U, »; > ). $ ! . 1. , , " , " " W. (W V ) #% % &, .. % , % ! . 2. ! > (W > T) " # % > . > ! > ( riout > riin ), ( riout < riin ) > ( riout = riin ). / " > " – > , > W – T ; " W = T: – , W = T. " , " T " ! . %*,@: %#,%A%#,@: (:/) ("# – , ! r, n > ). " T ! !: T = rsum = rn2. " : > Z–(t), > . W ! ! 2 . ! > n " 2.2 (# (2.6)–(2.9)). :>B*GA,@: ,:()&&:/A)$,@: (:/) ("# , ). 270 " < rsum, " > ! . D > (. 3.5): <## % χ % ! > , > χ, .. > rsum. G , " t, " Z–, " . K < ( . 3.3), > ( Z+, ! ). = , .. > , ! Z– Z+*, " ! . . / " T 4.3 (# (4.5)). " - ! W > T ! W = T 4.5 (# (4.9)). / ! " " . / > W – T . / > W – T , " - > ( . " . 8). > ( 4.4). & % " 4.1. / " " " T. :>B*GA,@: QD*:A%C@ (:/) ( " ). / > . ", , # = rsum. ~ W = Q " ~ out out out # Q = ( r1 , r2 ,..., rn ) . W > T " Q(0). $ " Q(0). A>%#)$:('): M)'*)$:('): (:/). " ; # " . 271 W < T , , " > Z–(t), % . / % d, Q1* , ..., Qd* . W = T . / " " . W > T , . " , " . %>*%S"?S): (:/). " : ! " #% . / , " 0. " # Q* = Q(0)R'∞, " R'∞ – % R'. / . > . K , 0. / " . 7, " , , ( ) <" . / . 2.3 , <" <" . ", , " > ! , # ! . > , #% " U , ! [35, 36]. 272 B B@ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. =" :.., Ie! .H. & % "# // = . – 2000. – 9. – . 15–43. =" :.., Ie! .H. $ "# // = . – 2001. – 3. – . 108– 133. =" :.., Ie! .H. $ !" % // = . – 2002. – 10. – . 3–12. =" :.., I! .H. " (! ! ) / b ! > . % 30.1 « ». – &.: Gb :=*, 2010. – . 470–505. =" :.., Ie! .H. & % " % // = . – 2011. – 12. – . 38–59. = -/ '.&., % K.=., =./. " . – &.: *, 1975. – 119 . J .=., / . – 2- .. – ; , 1977. – 280 . J H.&. &" ; , & . ., . 3, 11, – &.: &+*&$, 2007. – . 47–60. J" K.$., K P.&. > "# // . /G*G;G. – 1982. – 5892-82. J" K.$., K P.&. : > // = "! . D , 'b. – 1985. – . 70–75. ' A.:. ; %. – &.: A , 2004. – 560 . '! .=., * .=., I > =.'. % . & # % " , !. – &.: G - # - , 2010. – 228 . '! .=., * .=. & # % " # % " % / b ! > . % 30.1 273 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 274 « ». – &.: Gb :=*, 2010. – . 722–742. K =.G., ; G.G. ! " // ! . – 2006. – ;. IX, 4 (28). – . 50–63. K =.G., ; G.G. : // ! . – 2005. – ;. VIII, 3(23). – . 58–68. K P.&. // G . - " . K. . – 2012. – 1. – . 5–7. K P.&. $! > "# // G /b. " . K . – 2000. – 3. – . 62–63. K P.&., =.'. &" // G /b. - " . K . . – 2005. – 6. – . 8–16. K P.&., =.'. % ! " // G /b. " . K . . – 2005. – 11. – . 10–16. K P.&., /.=. $! "#.// G . .- . :" . K. * . 2005, %. ##% ! # . — . 64–67. K P.&., /.=. '# . & % // G /b. - " . K . – 2003. – 2. – . 3–5. K P.&., /.=., &./., =.'. '# : , . – : /.: H # , 2009. – 195 c. K P.&., / *.*. *% // /. ';b. – 2009. – ;. 9. – 3. – C. 402–409. K P.&., / *.*. & !^U // G. /b. - . " . K. . – 2010. – 6. – C. 9–13. 25. N.H. * . I. % ! % // = . – 2011. – 4. – . 133–143. 26. N.H. // ! . – 2011. – 2. – . 46–51. 27. N.H. . " // G. /b. - . " . K. . – 2011. – 4 (164). – . 14–18. 28. N.H. * . II. ! > ! % // = . – 2012. – 6. – . 103–118. . III. G 29. N.H. * // = . – 2012. – 7. – . 67–77. 30. N.H. G < / b ! > . – /. 41. – &.: Gb :=*, 2013. – . 28–50. 31. N.H. D" % . I. ! / b ! > . – /. 43. – &.: Gb :=*, 2013. – . 34–54. 32. N.H. D" % . II. J > / b ! > . – /. 45. – &.: Gb :=*, 2013. – . 6–29. 33. N.H. b " // ! . – 2013. – 3. – . 51–59. 34. N.H. '# // = . – 2015. – 8. – . 115 – 139. 35. N.H. : " U // b ! > . – /. 58. – &.: Gb :=*, 2015. – . 67–89. 36. N.H. : " U . A // b ! > . – /. 59. – &.: Gb :=*, 2016. – . 72– 119. 37. N.H. : " // b ! > . – /. 60. – &.: Gb :=*, 2016. – . 82– 118. 275 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 276 ., . % &. – &.: *, 1970. – 272 . =.=., " &.J., :.=. & > % / b ! > . – /. 17. – &.: Gb :=*, 2007. – . 103–120. =.=., " &.J., D N.&. " > // ! . – 2007. – 5. – . 21–26. % $.. $ . I. "# // = . – 2009. – 11. – . 136–147. % $.., N.H. – // = *. – 2010. – ;. 433, 5. – . 609–612. % $.., N.H. ! // b ! > . % 30.1 « ». – &.: Gb :=*, 2010. – . 640–664. &./. $" " "# // G /b. - " . K . . – 2006. – 6. – . 12–26. *., =. = ! % " . I. 2: & ! < // ! # . – 2003. – 4. – . 83–88. N =.=., '# K.:. ; . G > > " : / &.: / % . =.=. % :=*. – 2007. – 80 . N . ; %. – &.: *, 1982. – 272 . N N., &. "#. ; , # , : . " . – &.: & , 1998. – 653 . * .=. " % . – &.: Gb :=*, 2003. =.'. " // ! - 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. " . – : /., 2005. – C. 334– 340. =.'. ! // G /b. - " . K . . – 2006. – 3. – . 32–37. :! A.. % , ! " < " . – &.: *, 1986. – 496 . : /.G. % &. – &.; N.: ' - , 1949. – 436 . &., ; . '#, " : . " . – &.: & , 1984, – 454 . J.=. / %. – &.: *, 1971. :. A " ++. = " "#. – !.: #H, 2002. – 496 c. /.=. '# " . & % // . /G*G;G, 2003, 410-/2003 A > '. D "# : . " . – &.: & , 2002. – 176 . A N.P., A .:. : . " . – &.: & , 1996. – 334 . A< '., A > G. , : . " . / . .=. . – &.: , 1978. – 448 . X :., I. & . – &.: & , 1989. – 655 . I! .H., =" :.. " "" % "# // = . – 2009. – 3. – . 136–151. I! .H., =" :.. $! . – URL: http://ubs.mtas.ru/bitrix/components/bitrix/forum. interface/show_file.php?fid=7640 Aiello, W., Awerbuch, B., Maggs, B. and Rao, S. Approximate load balancing on dynamic and asynchronous networks, Proc. 25th ACM Symp. of Theory of Computing. 1993. P. 632–634. Ahuja, R.K., Magnanti, T.L., Orlin, J.B. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, United States, 1993. Aldous, D.J. Lower bounds for covering times for reversible Markov chains and random walks on graphs. J. Theoret. Probab. 2, no. 1. 1989. P. 91–100. 277 67. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász L., and C.W. Rackoff. Random walks, universal travelling sequences, and the complexity of maze problem // Proc. 20th Ann. Symp. on Foundations of Computer Science. P. 218–223, 1979. 68. Anderson, R.J., Lovász L., Shor, P.W., Spencer, J., Tardos, E. and Winograd, S. Disks, balls, and walls: analysis of a combinatorial game // Amer. Math. Monthly 96. 1989. pp. 481–493. 69. Bak, P. How Nature Works: The Science of Self-Organized Criticality. New York: Copernicus. 1996. (:. .: ! : ; " . – &.: b:: N ! , 2013. – 276 .) 70. Bak, P., Tang, C. and Wiesenfeld, K. Self-organized criticality, Physical Review A 38. 1988, P. 364–374. 71. Bak, P., Chen K. Self-organized criticality. Scientific American 264, January 1991 issue. P. 46–53. 72. Barabási A.-L., Albert R. Emergence of scaling in random networks / Science. 1999. V. 286. No. 5439. P. 509–512. 73. Bayer, D. and Diaconis, P. Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2. 1992, P. 294–313. 74. Biggs, N.L. Chip-Firing and the Critical Group of a Graph // Journal of Algebraic Combinatorics 9 (1999), pp. 25–45. Kluwer Academic Publishers. Netherlands. 1999. 75. Biggs, N. The Tutte-polynomial as a growth function // J. Algebraic Combinatorics 10. 1999, pp. 115–133. 76. Björner, A., Lovász L., and Shor, P. Chip-firing games on graphs // Europ. J. Comb. 12 (1991), 283–291. 77. Björner, A. and Lovász L. Chip-firing games on directed graphs, J. Algebraic Combinatorics 1. 1992, pp. 305–328. 78. Blanchard, Ph., Volchenkov, D. Random Walks and Diffusions on Graphs and Databases: An Introduction (Springer Series in Synergetics). Springer-Verlag – Berlin–Heidelberg. 2011. 79. Brin, S., Page, L. The PageRank Citation Ranking: Bringing Order to the Web. URL: http://infolab.stanford.edu/~backrub/pageranksub.ps 80. Chebotarev P., Agaev R. Forest matrices around the Laplacian matrix // Linear Algebra and its Applications. – 2002. – Vol. 356. – P. 253–274. 81. Chung, F., Ellis, R. A chip-firing game and Dirichlet eigenvalues // Discrete Math. 257. 2002. pp. 341–355. 82. Chung, F. Laplacians and the Cheeger inequality for directed graphs. Ann. Comb. 9, 1. 2005. 278 83. Cori, R. and Rossin, D. On the sandpile group of dual graphs // Europ. J. Comb. 21. 2000, pp. 447–459. 84. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A. Social Ties and their Relevance to Churn in Mobile Telecom Networks // Proceedings of the 11th international conference on Extending database technology EDBT'08: Advances in database technology ACM New York, NY, USA. 2008. 85. De Groot M.H. Reaching a Consensus // J. Amer. Statist. Assoc. – 1974. – Vol. 69, No. 345. – P. 118–121. 86. Dhar, D. Self-organized critical state of sandpile automaton models, Physical Review Letters 64. 1990, P. 1613–1616. 87. Dhar, D. The abelian sandpile and related models // Physica A: Statistical Mechanics and its Applications. Volume 263, Issues 1–4, 1 February 1999, pp. 4–25. 88. Dhar, D., Sadhu, T., Chandra, S. Pattern formation in growing sandpiles // Euro. Phys. Lett. Volume 85, Number 4, 48002. 2009. arXiv:0808.1732 [cond-mat.stat-mech] 89. Dhar, D., Ruelle, P., Sen, S., Verma, D.-N. Algebraic Aspects of Abelian Sandpile Models. 1994. arXiv:cond-mat/9408020 90. Engel, A. The probabilistic abacus, Educ. Stud. in Math. 6. 1975. pp. 1–22. 91. Engel, A. Why does the probabilistic abacus work? Educ. Stud. in Math. 7. 1976. pp. 59–69. 92. Fleischer, L., Skutella, M. Minimum Cost Flows Over Time without Intermediate Storage. // Proc. 35th ACM/SIAM Symp. on Discrete Algorithms (SODA), Baltimore, MD, January 2003, pp. 66– 75. 93. Hajnal J. The ergodic properties of non-homogeneous finite Markov chains // Proc. Cambridge Philos. Soc. – 1956. – Vol. 52. – P. 67–77. 94. Hajnal J. Weak ergodicity in non-homogeneous Markov chains // Proc. Cambridge Philos. Soc. – 1958. – Vol. 54. – P. 233–246. 95. Hu, T.C. Multy-commodity network flows. – J. ORSA, 1963. 11 (3). P. 344–360. 96. Ivashkevich, E.V., Priezzhev, V.B., Introduction to the sandpile model. Physica A 254, 97–116. 1998. 97. Kuznetsov, O.P., Zhilyakova, L.Yu. Flows and Limit States in Bidirectional Resource Networks// Preprints of the 18th IFAC World Congress. Milano (Italy) August 28 – September 2, 2011, pp. 14031–14035 279 98. Kuznetsov, O.P., Zhilyakova, L.Yu. Nonsymmetric resource networks. The study of limit states // Management and Production Engineering Review. Volume 2, Number 3, September 2011, pp. 33– 39. 99. Lancaster P., Tismenetsky M. The Theory of Matrices, 2nd ed. New York: Academic Press, 1985. 100. Lopez, C.M. Chip firing and the Tutte polynomial // Annals of Combinatorics, 1. 1997. pp. 253–259. 101. Lovász, L. and Winkler, P. Mixing of Random Walks and Other Diffusions on a Graph // Surveys in Combinatorics, 1995 (ed. P. Rowlinson), London Math. Soc. Lecture Notes Series 218, Cambridge Univ. Press. pp. 119–154. 102. Maes, C., Redig, F., and Saada, E., The Abelian sandpile model on an infinite tree // Ann. Probab. Volume 30, Number 4 (2002), 2081–2107. 103. Maes, C., Redig, F., and Saada, E., Abelian Sandpile Models in In nite Volume. March, 2005. 24 p. URL: http://www. academia.edu/2491250/Abelian_sandpile_models_in_infinite_volume 104. Maes, C., Redig, F., Saada E., The in nite volume limit of dissipative abelian sandpiles, Commun. Math. Phys. 244, No. 2, 395–417. 2004. 105. Meester, R., Redig, F., and Znamenski, D. The Abelian sandpile; a mathematical introduction. 2008. 20 p. URL: http://www.cs.vu.nl/~rmeester/onderwijs/introduction_spatial_mod els/sandpile2.pdf 106. Meshbahi M., Egerstedt M. Graph Theoretic Methods in Multiagent Networks. Princeton, NJ: Princeton University Press, 2010. 107. Meyer, C.D., Jr., Limits and the Index of a Square Matrix, SIAM J. Applied Math., 1974, vol. 26, pp. 469–478. 108. Meyn, S., Tweedie, R. L. Markov Chains and Stochastic Stability. Cambridge University Press. 2009. 594 p. 109. Norris, J. R. Markov Chains. Cambridge University Press. 1998. 237 p. 110. Priezzhev, V.B., Structure of two-dimensional sandpile. I. Height probabilities. Journal of Stat. Phys. 74, 955–979 (1994). 111. Prisner, E. Parallel Chip Firing on Digraphs // Complex Systems 8. 1994. pp. 367–383. 112. Redig, F., Mathematical aspects of the abelian sandpile model. June, 2005. 60 p. URL: http://www.math.leidenuniv.nl/~redig/ sandpilelectures.pdf 280 113. Ren W., Cao Y., Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. London: Springer, 2011. 114. Rothblum, U.G. Computation of the eigenprojection of a nonnegative matrix at its spectral radius // Stochastic Systems: Modeling, Identification and Optimization II, ser. Mathematical Programming Study, R.J.-B. Wets, ed. Amsterdam: North-Holland. – 1976. – Vol. 6. – P. 188–201. 115. Seneta, E. Non-negative Matrices and Markov Chains. Springer. 2006. – 279 p. 116. Speer, E. R. Asymmetric abelian sandpile models // Journal of Statistical Physics. April 1993, Volume 71, Issue 1–2, pp. 61–74. 117. Spencer, J. Balancing vectors in the max norm. Combinatorica, v. 6. 1986, pp. 55–66. 118. Turcotte, D.L., Self-Organized Criticality, Rep. Prog. Phys. 62, pp. 1377–1429. 1999. 119. Volchenkov D., Volchenkova L., Blanchard P. Epidemic spreading in a variety of scale free networks. // Physical Review E 66, 046137. – 2002. 120. Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks // Nature. 1998. V. 393. No. 6684. P. 440–442. 121. Ye, N. A Markov chain model of temporal behavior for anomaly detection // Proceedings of the 2000 IEEE Workshop on Information Assurance and Security United States Military Academy, West Point, NY, 6–7 June, 2000. P. 171–174. 281 B @B D = 3.6 — — — % 3.6 /> — 2.4 — 2.4 — 2.4 — 2.3 Z–(t) 2.1 Z+(t) 2.1 ( ) 2.3 — < 3.3 — <" 2.3 <## % 3.5 ! ! % : — # % 2.2 — " " . 2, . 3.4 — 2.1 — # % 2.2 — : 2.1 — 2.4 — 2.2 — " 2.3 — " 2.3 — 2.4 — % 2.3 — < 2.4 — <" 2.3 2.1 — 2.1 — 6.1 — 2.1 A% — 1 — 2 + " . 6 ( ) 282 R – % ! riin , riout – ! > – i–" !% i– % R, rsum – ! R' – %, % ! R ( % R, ) W – – " Q(t) – t Q* – " Q1* – " W = 1 ~ Q – " W = F(t) – % t Fin(t), Fout(t) – " " > fsum(t) – Fin*, Fout* – ~ ~ F in , F out – W = – t , Z (t) – > vi, out ri ( # % ) t , Z+(t) – > vi, out ri ( # % ) D(t), C(t) – # % # % > ~ C m – # % > < ρ – , > > ! χ – <## % δW – " " 283