Введение Arduino — аппаратная вычислительная платформа, основными компонентами которой являются простая плата ввода-вывода и среда разработки на языке Processing/Wiring. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере (например, Adobe Flash, Processing, Max (англ.), Pure Data,SuperCollider). На концептуальном уровне все платы программируются через RS-232 (последовательное соединение), но реализация этого способа отличается от версии к версии. Плата Serial Arduino содержит простую инвертирующую схему для конвертирования уровней сигналов RS-232 в уровни ТТЛ, и наоборот. Текущие рассылаемые платы, например, Diecimila, программируются через USB, что осуществляется благодаря микросхеме конвертера USB-to-Serial FTDI FT232R. В версии платформы Arduino Uno в качестве конвертера используется микроконтроллер Atmega8 в SMDкорпусе. Данное решение позволяет программировать конвертер так, чтобы платформа сразу определялась как мышь, джойстик или иное устройство по усмотрению разработчика со всеми необходимыми дополнительными сигналами управления. В некоторых вариантах, таких как Arduino Mini или неофициальной Boarduino, для программирования требуется подключение отдельной платы USB-to-Serial или кабеля. Платы Arduino позволяют использовать большую часть I/O выводов микроконтроллера во внешних схемах. Например, в плате Diecimila доступно 14 цифровых входов/выходов, 6 из которых могут выдавать ШИМ сигнал, и 6 аналоговых входов. Эти сигналы доступны на плате через контактные площадки или штыревые разъемы. Также доступны несколько видов внешних плат расширения, называемых «англ. shields» (дословно: «щиты»), которые присоединяются к плате Arduino через штыревые разъёмы. 3 Интегрированная среда разработки — Arduino это кроссплатформенное приложение на Java, включающее в себя редактор кода, компилятор и модуль передачи прошивки в плату. Среда разработки основана на языке программирования Processing и спроектирована для программирования новичками, не знакомыми близко с разработкой программного обеспечения. Язык программирования аналогичен используемому в проекте Wiring. Строго говоря, это C++, дополненный некоторыми библиотеками. Программы обрабатываются с помощью препроцессора, а затем компилируется с помощью AVR-GCC. Оригинальные платы Arduino производит Smart Projects. На данный момент доступны 15 версий плат Документация, прошивки и чертежи Arduino распространяется под лицензией Creative Commons Attribution ShareAlike 2.5 и доступны на официальном сайте Arduino. Рисунок печатной платы для некоторых версий Arduino также доступен. Исходный код для интегрированной среды разработки и библиотек опубликован и доступен под лицензией GPLv2. 4 1. Инфракрасный датчик движения (PIR сенсор) 1.1 Шаг 1: Расходные материалы Данный проект показывает использование датчиков PIR с Arduino при построении простого детектор движения. Для этого нам понадобиться (рис. 1): Контроллер Arduino [1] макетная плата [1] Светодиод (любого цвета) [1] PIR сенсор фирмы «Parallax» [1] Провода Рис. 1 Необходимые компоненты 1.2 Шаг 2: Установка Подключение довольно простое. PIR-сенсор имеет 3 вывода: плюс, минус и выход. К 7-му выводу Arduino подключаем выход PIR-сенсора. Также, присоединим светодиод к выводу 8 Arduino и GND. 5 Рис. 2 Схема подключения датчика движения (PIR) к контроллеру Arduino Рис. 3 Фотография контроллера с датчиком движения в сборе 6 Шаг 3: Исходный код /* * ////////////////////////////////////////////////// * //making sense of the Parallax PIR sensor's output * ////////////////////////////////////////////////// * * Switches a LED according to the state of the sensors output pin. * Determines the beginning and end of continuous motion sequences. * * @author: Kristian Gohlke / krigoo (_) gmail (_) com / http://krx.at * @date: 3. September 2006 * * kr1 (cleft) 2006 * released under a creative commons "Attribution-NonCommercial-ShareAlike 2.0" license * http://creativecommons.org/licenses/by-nc-sa/2.0/de/ * * * The Parallax PIR Sensor is an easy to use digital infrared motion sensor module. * (http://www.parallax.com/detail.asp?product_id=555-28027) * * The sensor's output pin goes to HIGH if motion is present. * However, even if motion is present it goes to LOW from time to time, * which might give the impression no motion is present. * This program deals with this issue by ignoring LOW-phases shorter than a given time, * assuming continuous motion is present during these phases. * */ ///////////////////////////// //VARS //Время калибровки датчика (10-60 сек. по даташиту) int calibrationTime = 30; //the time when the sensor outputs a low impulse long unsigned int lowIn; //the amount of milliseconds the sensor has to be low //before we assume all motion has stopped long unsigned int pause = 5000; 7 boolean lockLow = true; boolean takeLowTime; int pirPin = 7; //вывод подключения PIR сенсора int ledPin = 8; ///////////////////////////// //SETUP void setup(){ Serial.begin(9600); pinMode(pirPin, INPUT); pinMode(ledPin, OUTPUT); digitalWrite(pirPin, LOW); //дадим датчику время на калибровку Serial.print("calibrating sensor "); for(int i = 0; i < calibrationTime; i++){ Serial.print("."); delay(1000); } Serial.println(" done"); Serial.println("SENSOR ACTIVE"); delay(50); } //////////////////////////// //LOOP void loop(){ if(digitalRead(pirPin) == HIGH){ digitalWrite(ledPin, HIGH); //the led visualizes the sensors output pin state if(lockLow){ //makes sure we wait for a transition to LOW before any further output is made: lockLow = false; Serial.println("---"); Serial.print("motion detected at "); Serial.print(millis()/1000); Serial.println(" sec"); delay(50); } 8 takeLowTime = true; } if(digitalRead(pirPin) == LOW){ digitalWrite(ledPin, LOW); //the led visualizes the sensors output pin state if(takeLowTime){ lowIn = millis(); //save the time of the transition from high to LOW takeLowTime = false; //make sure this is only done at the start of a LOW phase } //if the sensor is low for more than the given pause, //we assume that no more motion is going to happen if(!lockLow && millis() - lowIn > pause){ //makes sure this block of code is only executed again after //a new motion sequence has been detected lockLow = true; Serial.print("motion ended at "); //output Serial.print((millis() - pause)/1000); Serial.println(" sec"); delay(50); } } } 9 Заключение В скетче Arduino видно, что датчик проводит самодиагностику, а затем переходит в режим отслеживания движений. Когда движение обнаружено, то загорается светодиод. По Serial Monitor вы можете отслеживать сколько по времени длилось движение. Данный проект можно использовать как основу для обнаружения движения в охранных сигнализациях, для включения освещения, в робототехнике и т.п. 10 Список используемых источников 1. http://ru.wikipedia.org/wiki/Arduino 2. http://cxem.net/arduino/arduino15.php 3. http://www.instructables.com/id/Arduino-Basics-PIR-Sensor/ 11