РЕФЕРАТ На тему: «Ультрацентрифугия» Содержание Введение ........................................................................................................................... 3 Типы ультрацентрифугии……………………………………………………...………4 Метод ультрацентрифугии…………………………………………………………….5 Заключение…………………………………………………………………………...…8 Список использованной литературы………………………………………………….9 2 Введение Ультрацентрифугирование — метод разделения и исследования высокомолекулярных соединений, вирусов и субклеточных частиц с помощью ультрацентрифуги. Идея ультрацентрифугирования была предложена А. В. Думанским в 1913, однако разработка современной теории седиментационного анализа стала возможной только после того, как Т. Сведберг в 1926 сконструировал высокоскоростную ультрацентрифугу, обеспечивавшую ускорение 105 g. Метод заключается в том, что белки в центрифужной пробирке помещают в ротор ультрацентрифуги. При вращении ротора скорость оседания белков пропорциональна их молекулярной массе: более тяжёлые белки образуют фракции, расположенные ближе ко дну кюветы, более лёгкие — к поверхности. 3 Типы ультрацентрифугии Принято различать 2 типа ультрацентрифугирования: препаративное и аналитическое. Препаративное ультрацентрифугирование применяют для фракционирования и выделения биополимеров в количествах, достаточных для практических целей. Широко используют ультрацентрифугирование в градиенте плотности растворов сахарозы, глицерина, декстринов; оно позволяет разделять смеси веществ на отдельные компоненты, различающиеся эффективной массой и коэффициентом трения частиц или молекул. Применение зональных и проточных роторов дало возможность значительно повысить объёмы растворов фракционируемых частиц и использовать их для очистки вируса гриппа при изготовлении вакцин. Аналитическое ультрацентрифугирование используют для исследования гомогенности (чистоты) препаратов биополимеров (белков, нуклеиновых кислот, полисахаридов), а также для определения констант седиментации, молекулярной массы, констант ассоциации и размеров макромолекул. Ультрацентрифугирование применяется в медицине при клинической диагностике, для приготовления кровезаменителей и т.п. 4 Метод ультрацентрифугии Крупные частицы, суспендированные в воде, оседают на дно под действием силы тяжести, если их плотность выше плотности растворителя. Однако хотя плотность биологических макромолекул намного выше плотности воды, они остаются во взвешенном состоянии в растворе сколь угодно долго, так как гравитационной силе в этом случае успешно противостоит тепловое движение (диффузия). Для усиления гравитационной составляющей скорости движения макромолекул применяют седиментацию с помощью ультрацентрифуги. Седиментация - это общий термин для обозначения движения в поле центробежной силы. Измерение движения молекул вдоль направления действия центробежной силы называется определением скорости седиментации, в результате чего рассчитывается коэффициент седиментации, значение которого дает информацию о молекулярной массе и форме частицы. Когда создаются такие условия центрифугирования, при которых распределение частиц вдоль центрифужной пробирки не изменяется во времени, т.е. частицы достигли седиментационного равновесия, то этот метод равновесного ультрацентрифугирования дает сведения о молекулярной массе и плотности частиц. При конструировании ультрацентрифуг - приборов, в которых исследуемый раствор вращается со скоростями вплоть до 70 тыс. оборо- тов/мин, было проявлено немало изобретательности. При обычно используемых скоростях трение между вращающимся ротором и воздухом может вызвать недопустимый разогрев ротора. Поэтому в камере, в которой вращается ротор, необходимо создать высокий вакуум. Чтобы избежать конвекционного перемешивания, температура исследуемого образца должна поддерживаться на постоянном уровне с довольно высокой точностью, а это может оказаться нелегкой задачей. Силы, которые развиваются внутри ротора, огромны, и случается, что при больших скоростях ротор разлетается на куски. Чтобы эти осколки не разлетелись, камеру с находящимся в ней ротором должны окружать толстые стальные защитные цилиндры. Крайне важно, чтобы ротор был механически сбалансирован. Допустим, что массы двух ячеек с веществом, расположенных симметрично относительно оси ротора, различаются на 1 мг. При 400 000 g возникшая за счет этого разность сил, действующих на ротор, составит 400 г. Это весьма ощутимая сила, которая приведет к вибрации ротора. Но, как ни важно уравновесить ячейки ротора, этого нельзя сделать идеально. Поэтому в любой ультрацентрифуге используется гибкий вал, чтобы ротор мог сам найти точное положение своего центра масс и вращаться вокруг оси, проходящей через этот центр. Это позволяет уравновешивать образцы с допуском 0.5г без нежелательных последствий. Коэффициент седиментации определяют измеряя с помощью специальной оптической системы скорость перераспределения макромолекул в центрифужной пробирке непосредственно в ходе ультрацентрифугирования. Хотя теоретически значение коэффициента седиментации при одной и той же температуре должно быть постоянным для частицы в данном растворителе, на практике для 5 макромолекул s оказывается зависящим от концентрации макромолекул, скорости центрифугирования и ионной силы растворителя. Как правило, наблюдается уменьшение наблюдаемой скорости седиментации с увеличением концентрации макромолекул, свя- занное с нелинейным увеличением вязкости раствора и с увлечением крупными макромолекулами за собой молекул растворителя и других более медленно седиментирующих молекул (эффект Джонстона-Огстона). Увеличение скорости центрифугирования приводит к увеличению измеряемого значения s и связано с тем, что при большой скорости крупная макромолекула оставляет после себя след (подобный кильватерной струе, образующейся при движении корабля), увеличивающий скорость движения макромолекул непосредственно позади нее. Часто такой процесс сопровождается агрегированием макромолекул и изменением их формы, что тоже приводит к увеличению s. Поскольку макромолекулы заряжены, то при низкой ионной силе нейтрализующие ионы, седиментирующие медленнее, чем макромолекулы, отстают, и это приводит к воз- никновению тормозящего макромолекулы электрического поля. Это осложнение легко устраняется использованием избытка противоионов при высокой ионной силе. Измерив s20,w и D20,w, можно по уравнению Сведберга рассчитать молекулярную массу макромолекулы. Учтя все перечисленные выше зависимости, значение s для ДНК можно измерить с точностью до 2%, что приводит к получению значения M с ошибкой в 4%, а для белков s может быть измерен с точностью до 1%, что дает ошибку в определении M, равную примерно 1.5%. Если для макромолекулы известны s20,w, D20,w и M, то из уравнения Сведберга можно рассчитать ее vмол. Гораздо более точно определять молекулярную массу макромолекул (ошибка не превышает 1%) позволяет метод седиментационного равновесия, заключающийся в том, что центрифугирование проводится при относительно низкой скорости, при которой седиментация макромолекул настолько медленна, что уравновешивается диффузией. В этом случае отпадает необходимость определения коэффициента диффузии, но для достижения равновесия обычно требуется не менее суток. Равновесное центрифугирование в градиенте плотности растворителя является чрезвычайно эффективным методом разделения макромолекул. Здесь равновесие устанавливается в градиенте плотности тяжелой соли типа CsCl. Данная макромолекула в таком растворе либо всплывает, либо погружается, пока не достигнет изопикнической точки, в которой плотность рас творителя равна плавучей плотности макромолекулы (которая не совпадает с плотностью собственно макромолекул из-за сложных термодинамических эффектов). 6 Если плотность раствора линейно изменяется на небольшом расстоянии, то макромолекулы с данной молекулярной массой оказываются в узкой зоне с центром в изопикнической точке и шириной, обратно пропорциональной корню квадратному из значения молекулярной массы. Большое достоинство этого метода состоит в том, что после разделения компонентов смеси макромолекул пробы раствора можно отбирать на разной всоте центрифужной пробирки и определять содержание в них исследуемых компонентов химически (и, следовательно, очень селективно). 7 Заключение Основное назначение медицинской центрифуги – разделение биологических жидкостей на вещества, различные по консистенции. К таким жидкостям относится кровь, лимфа, моча и материнское молоко. Чаще всего применение центрифуг требуется для анализов пациентов. Все биологические жидкости имеют неоднородную структуру, поэтому отделение отдельных фракций с помощью центрифуги не представляет сложности. В основном медицинские центрифуги применяются для проведения анализа крови. Считается, что данное оборудование является универсальным, но существуют специальные приспособления, которые предназначены именно для исследования крови и используют их в основном для подготовки биологической жидкости к процедуре переливания. Лабораторное оборудование и приборы для отделения веществ, различающихся по структуре, имеют сложное устройство. Центрифуги оснащены вместительным контейнером, куда помещается жидкость. В процессе вращения контейнера на жидкость действуют различные центробежные силы, в результате чего более плотные вещества перемещаются ближе к оси вращения. 8 Список использованной литературы 1. https://ru.wikipedia.org/wiki/%D0%A3%D0%BB%D1%8C%D1%82%D1%80% D0%B0%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D1%84%D 1%83%D0%B3%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D 0%B8%D0%B5 2. Шпикитер О. В., Методы исследования биополимеров с помощью аналитической ультрацентрифуги, в кн.: Современные методы в биохимии, М., 1964; 3. Боуэн Т., Введение в ультрацентрифугирование, пер. с англ., М., 1973; Schachman Н. К., Ultra centrifugation in biochemistry. - L., 1959 4. http://www.xumuk.ru/bse/2826.html 5. https://temp78.ru/sfera-primeneniya-medicinskih-centrifug.html 9