ÌÅÒÎÄÈ×ÅÑÊÈÅ ÓÊÀÇÀÍÈß ïî òåìå Íàõîæäåíèå ïðåäåëîâ Ì î ñ ê â à 2 0 0 4 ÌÈÍÈÑÒÅÐÑÒÂÎ ÎÁÐÀÇÎÂÀÍÈß ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ ÌÈÍÈÑÒÅÐÑÒÂÎ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ ÏÎ ÀÒÎÌÍÎÉ ÝÍÅÐÃÈÈ ÌÎÑÊÎÂÑÊÈÉ ÈÍÆÅÍÅÐÍÎ-ÔÈÇÈ×ÅÑÊÈÉ ÈÍÑÒÈÒÓÒ (ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÓÍÈÂÅÐÑÈÒÅÒ) ÌÅÒÎÄÈ×ÅÑÊÈÅ ÓÊÀÇÀÍÈß ïî òåìå Íàõîæäåíèå ïðåäåëîâ Ìîñêâà 2004 ÓÄÊ 519.2(07) ÁÁÊ 22.171ÿ7 Ì 54 Ìåòîäè÷åñêèå óêàçàíèÿ ïî òåìå Íàõîæäåíèå ïðåäåëîâ. Ì.: ÌÈÔÈ, 2004. 25 ñ. Ðàññìîòðåíû íåêîòîðûå ñïîñîáû ðåøåíèÿ çàäà÷, ïðåäëàãàåìûõ ñòóäåíòàì ïåðâîãî ñåìåñòðà âñåõ ôàêóëüòåòîâ â äîìàøíåì çàäàíèè ÄÇ 27: íàõîæäåíèå ïðåäåëîâ è âûäåëåíèå ãëàâíûõ ÷ëåíîâ ó ÷èñëîâûõ ïîñëåäîâàòåëüíîñòåé è ôóíêöèé îäíîé ïåðåìåííîé. Ïðèâåäåíà êðàòêàÿ òàáëèöà ñâîéñòâ ýêâèâàëåíòíûõ âåëè÷èí. Äàíî 30 ïðèìåðíî îäèíàêîâûõ ïî òðóäíîñòè âàðèàíòîâ äîìàøíèõ çàäàíèé. Ïðåäíàçíà÷åíû äëÿ ñòóäåíòîâ ïåðâîãî êóðñà âñåõ ôàêóëüòåòîâ. Àâòîðû: À.Ï. Ãîðÿ÷åâ, Þ.Í. Ãîðäååâ, Ä.Ñ. Òåëÿêîâñêèé/ Ïîä ðåäàêöèåé äîöåíòà À.Ï. Ãîðÿ÷åâà. Ðåêîìåíäîâàíî ê èçäàíèþ ðåäñîâåòîì ÌÈÔÈ c Ìîñêîâñêèé èíæåíåðíî-ôèçè÷åñêèé èíñòèòóò (ãîñóäàðñòâåííûé óíèâåðñèòåò), 2004 ã. 1. Âû÷èñëåíèå ïðåäåëà ïîñëåäîâàòåëüíîñòè 1.1. Ïðèìåð ðåøåíèÿ çàäà÷è Íàéòè ïðåäåë ïîñëåäîâàòåëüíîñòè èëè äîêàçàòü, ÷òî îí íå ñóùåñòâóåò. Ðàññìîòðèì ïîñëåäîâàòåëüíîñòü {xn }∞ n=0 , çàäàííóþ ðåêóððåíòíûì ñîîòíîøåíèåì: r x0 = 0; xn+1 = x2n + 4xn + 5 , n = 0, 1, 2, . . . . 10 (1.1) Äîêàæåì, ïîëüçóÿñü ìåòîäîì ìàòåìàòè÷åñêîé èíäóêöèè, ÷òî ïîñëåäîâàòåëüíîñòü (1.1) îãðàíè÷åíà, à èìåííî: 0 6 xn < 1. (1.2) Ëåâîå èç íåðàâåíñòâ (1.2) âûïîëíÿåòñÿ ñîãëàñíî îïðåäåëåíèþ ïîñëåäîâàòåëüíîñòè (1.1), îòêóäà òàêæå âûòåêàåò è ïðàâîå èç íåðàâåíñòâ (1.2) äëÿ n = 0. Ïðåäïîëîæèì, ÷òî íåðàâåíñòâî (1.2) ñïðàâåäëèâî äëÿ íåêîòîðîãî íàòóðàëüíîãî n, è óñòàíîâèì, ÷òî îíî áóäåò âûïîëíÿòüñÿ è äëÿ n + 1. Äåéñòâèòåëüíî, x2n+1 − 1 (xn − 1) (xn + 5) = < 0, xn+1 − 1 = xn+1 + 1 10 (xn+1 + 1) òî åñòü xn+1 < 1. Òåì ñàìûì íåðàâåíñòâî (1.2) ïîëíîñòüþ äîêàçàíî äëÿ âñåõ n = 1, 2, 3, . . . . 3 Ïîêàæåì, ÷òî ïîñëåäîâàòåëüíîñòü (1.1) ÿâëÿåòñÿ ìîíîòîííîé. Ðàçíîñòü x2n+1 − x2n (1 − xn ) (9xn + 5) = , xn+1 − xn = xn+1 + xn 10 (xn+1 + xn ) è ïîñêîëüêó xn < 1 ñîãëàñíî (1.2), òî xn+1 > xn , òî åñòü ïîñëåäîâàòåëüíîñòü {xn }∞ n=0 ÿâëÿåòñÿ ìîíîòîííî âîçðàñòàþùåé. Òàêèì îáðàçîì, ïîñëåäîâàòåëüíîñòü (1.1) ìîíîòîííà è îãðàíè÷åíà. Ñëåäîâàòåëüíî, ïî òåîðåìå î ñõîäèìîñòè ìîíîòîííûõ è îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòåé ñóùåñòâóåò ïðåäåë b = lim xn . (1.3) n→∞ Îòìåòèì, ÷òî èç (1.1) è (1.3) ñîãëàñíî òåîðåìàì î ïðåäåëüíîì ïåðåõîäå â íåðàâåíñòâàõ ñëåäóåò, ÷òî (1.4) 0 6 b 6 1. Äëÿ íàõîæäåíèÿ b ðåêóððåíòíóþ ôîðìóëó (1.1) çàïèøåì â âèäå 10x2n+1 = x2n + 4xn + 5. Ïåðåõîäÿ â ýòîì ðàâåíñòâå ê ïðåäåëó, ïîëó÷èì: 10 · lim xn+1 · lim xn+1 = lim xn · lim xn + 4 lim xn + 5. n→∞ n→∞ n→∞ n→∞ n→∞ Òàê êàê b = lim xn = lim xn+1 , òî âåëè÷èíà b óäîâëån→∞ n→∞ òâîðÿåò êâàäðàòíîìó óðàâíåíèþ 5 10b2 = b2 +4b+5, ⇐⇒ 9b2 −4b−5 = 0, ⇐⇒ b = 1 èëè b = − . 9 Îòñþäà è èç (1.4) ñëåäóåò, ÷òî b = 1. Èòàê, lim xn = 1. n→∞ 4 1.2. Âàðèàíòû çàäàíèé. Íàéòè ïðåäåë ïîñëåäîâàòåëüíîñòè èëè äîêàçàòü, ÷òî îí íå ñóùåñòâóåò 1 x0 = 0, 2 x0 = 0, 3 x0 = 0, 4 x0 = 1 , 2 5 x0 = 1 , 3 Ïîñëåäîâàòåëüíîñòü r x2n + xn + 1 xn+1 = , 3 r x2n + 2xn + 3 xn+1 = , 6 r x2n + xn + 2 xn+1 = , 4 r 3x2n + 2xn + 1 xn+1 = , 6 r 3x2n + 1 xn+1 = , 4 1 x0 = − , xn+1 = xn + x2n + x3n , 2 1 7 x0 = , xn+1 = xn − x2n , 2 r x2n + xn + 1 5 xn+1 = , 8 x0 = , 2 3 r x2n + 2xn + 3 , 9 x0 = 2, xn+1 = 6 r x2n + xn + 2 10 x0 = 2, xn+1 = , 4 6 n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . ïðîäîëæåíèå íà ñëåäóþùåé ñòðàíèöå 5 ïðîäîëæåíèå 11 x0 = 3, 12 x0 = 2, Ïîñëåäîâàòåëüíîñòü r 3x2n + 2xn + 1 , xn+1 = 6 r 3x2n + 1 xn+1 = , 4 1 13 x0 = − , xn+1 = xn + 2x2n + 3x3n , 3 p 1 xn+1 = xn − x2n , 14 x0 = , 4 n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . 15 x0 = 0, xn+1 = x2n + xn + 1 , 3 n = 0, 1, 2, . . . 16 x0 = 0, xn+1 = x2n + 2xn + 3 , 6 n = 0, 1, 2, . . . x2n + xn + 2 = , 4 17 x0 = 0, xn+1 18 x0 = 0, xn+1 = 3x2n + 2xn + 1 , 6 n = 0, 1, 2, . . . 19 x0 = 0, xn+1 = 3x2n + 1 , 4 n = 0, 1, 2, . . . 1 20 x0 = − , xn+1 = xn + 3x2n + 2x3n , 3 p 3 21 x0 = , xn+1 = xn − x2n , 5 n = 0, 1, 2, . . . n = 0, 1, 2, . . . n = 0, 1, 2, . . . îêîí÷àíèå íà ñëåäóþùåé ñòðàíèöå 6 îêîí÷àíèå Ïîñëåäîâàòåëüíîñòü 22 x0 = 2, 3 23 x0 = , 2 xn+1 = xn+1 x2n + 2xn + 3 , 6 x2n + xn + 2 = , 4 n = 0, 1, 2, . . . n = 0, 1, 2, . . . 24 x0 = 3 , 4 xn+1 = 3x2n + 2xn + 1 , 6 n = 0, 1, 2, . . . 25 x0 = 1 , 2 xn+1 = 3x2n + 1 , 4 n = 0, 1, 2, . . . 1 26 x0 = − , xn+1 = xn + x2n + 2x3n , 3 n = 0, 1, 2, . . . 1 27 x0 = − , xn+1 = xn + 2x2n , 3 n = 0, 1, 2, . . . 1 28 x0 = − , xn+1 = xn + 4x2n + 2x3n , 4 n = 0, 1, 2, . . . 29 x0 = 1 , 2 xn+1 = xn + x2n − x3n , 30 x0 = 1 , 2 xn+1 = p 2 − x2n , n = 0, 1, 2, . . . n = 0, 1, 2, . . . 2. Âû÷èñëåíèå ïðåäåëà ôóíêöèè Äëÿ íàõîæäåíèÿ ïðåäåëîâ ôóíêöèé (à òàêæå äëÿ âûäåëåíèÿ ãëàâíûõ ÷ëåíîâ ïîñëåäîâàòåëüíîñòåé è ôóíêöèé) íàì ïîòðåáóþòñÿ àñèìïòîòè÷åñêèå ðàçëîæåíèÿ íåêîòîðûõ 7 îñíîâíûõ ýëåìåíòàðíûõ ôóíêöèé ïðè x → 0 (òàáë. 1), à òàêæå ñâîéñòâà ñèìâîëà o ìàëîå (òàáë. 2). Òàáëèöà 1 (1 + x)α = 1 + αx + o(x) sin x = x + o(x) cos x = 1 − x2 + o x2 2 tg x = x + o(x) ln(1 + x) = x + o(x) sh x = x + o(x) ex = 1 + x + o(x) ch x = 1 + ax = 1 + x ln a + o(x) x2 + o x2 2 th x = x + o(x) Ïóñòü C íåêîòîðàÿ ïîñòîÿííàÿ, íå ðàâíàÿ íóëþ, à α, β è γ ïðîèçâîëüíûå âåùåñòâåííûå ÷èñëà. Òîãäà ñïðàâåäëèâû ñîîòíîøåíèÿ: Òàáëèöà 2 o(f ) ± o(f ) = o(f ) o(Cf ) = o(f ) Co(f ) = o(f ) o(o(f )) = o(f ) γ fα · o fβ = o f (α+β)γ o(f + o(f )) = o(f ) 8 2.1. Ïðèìåð ðåøåíèÿ çàäà÷è Íàéòè ïðåäåë ôóíêöèè èëè äîêàçàòü, ÷òî îí íå ñóùåñòâóåò : lim (cos x)ctg x→0 2 x (2.1) .  ýòîì ïðèìåðå ìû èìååì äåëî ñ íåîïðåäåëåííîñòüþ âè2 2 äà 1∞ . Òàê êàê (cos x)ctg x = ectg x·ln cos x , òî âîñïîëüçîâàâøèñü íåïðåðûâíîñòüþ ïîêàçàòåëüíîé ôóíêöèè, áóäåì èñêàòü ïðåäåë ïîêàçàòåëÿ. Ñîãëàñíî ïðèâåä¼ííûì âûøå òàáëèöàì ïðè x → 0 èìååì: x2 1 2 2 = +o x ctg x · ln cos x = 2 ln 1 − tg x 2 x2 x2 1 o (x2 ) − + o x2 − + o x2 − + 2 x2 → − 1 , = 2 = 2 2 = 2 2 o (x2 ) x + o (x ) 2 (x + o(x)) 1+ 2 x 1 1 ctg2 x òî åñòü ïðåäåë (2.1) ðàâåí lim (cos x) = e− 2 = √ . x→0 e 2.2. Âàðèàíòû çàäàíèé. Íàéòè ïðåäåë ôóíêöèè èëè äîêàçàòü, ÷òî îí íå ñóùåñòâóåò 1. lim 23x + 32x − cos x x→0 2. lim (2x − sin 2x)ctg x . x→0 ctg x 1 2x . 2 + 33x + 45x sin x . 4. lim x→0 3 ctg 2x . 5. lim ex − e2x + e3x x→0 3. lim x→0 2x + 3x 2 2 ctg x . 6. lim 23x + 3 sin 2x x→0 9 ctg 3x . 7. lim ex + cos x + cos 2x 3 3x + cos 3x + sin 2x 2 x→0 8. lim x→0 9. lim 2x −32x +cos 3x 3 sin x 2 x . . 1 x→0 x. 10. lim (2x + 3x − 4x )ctg x . x→0 x 22 11. lim x→0 12. lim x→0 + 2 x 33 ! 12 sin x . e2x + e3x + e4x 3 13. lim 22x + 2 sin x ctg 2x ctg 2x x→0 14. lim ex + cos 2x 2 3x + cos x − sin 2x 2 ex + e3x 2 2x + 22x + 23x 3 x→0 16. lim x→0 17. lim x→0 . x→0 15. lim 2 x cos 2x sin x . . 2 sin x . ctg x . 10 . 18. lim x→0 2x + cos 2x + sin x 2 19. lim 23x +32x −4x cos 3x sin x x→0 x 23 20. lim x→0 21. lim x→0 + 2 x 32 x→0 2x + 3x + cos x 3 25. lim x→0 . 3 x . 1 sin x . 22x + 33x + cos 4x 3 24. lim e2x −2 sin 3x x→0 . . x→0 23. lim x !24 ctg 2x 22. lim 23x − 32x + 4x 2 3 sin x . 1 sin 2x . 24x + 33x + cos 4x 3 cos 2x sin x cos 2x sin 3x sin x x . 26. lim e + x→0 3 27. lim (ex−cos x+cos 2x)ctg x. x→0 1 sin 2x sin 2x 3x 28. lim e − . x→0 2 11 . 2 ctg x 30. lim ex − tg x . 29. lim (ex + sin x)ctg 2x . x→0 x→0 3. Âûäåëåíèå ãëàâíîãî ÷ëåíà ôóíêöèè 3.1. Ïðèìåð ðåøåíèÿ çàäà÷è Íàéòè äëÿ ôóíêöèè äà f (x) ïðè α C (x − x0 ) : f (x) = (cos 2x)3 tg 2 x x → x0 − 1, ãëàâíûé ÷ëåí âè- åñëè x → 0. (3.1) Çàïèøåì ôóíêöèþ (3.1) â âèäå f (x) = e3 tg 2 x·ln cos 2x −1 (3.2) è, âîñïîëüçîâàâøèñü òàáëèöàìè 1 è 2, ïðåîáðàçóåì ïîêàçàòåëü ó ýêñïîíåíòû â âûðàæåíèè (3.2). Ìû èìååì: 2 3 tg2 x · ln cos 2x = 3 x + o(x) ln 1 − 2x2 + o (x2 ) = = 3 x2 + o (x2 ) −2x2 + o (x2 ) = = 3 −2x4 + o (x4 ) = −6x4 + o (x4 ) . Îòñþäà è èç (3.2) ïîëó÷àåì f (x) = e−6x 4 +o (x4 ) −1 = = −6x4 + o (x4 ) + o −6x4 + o (x4 ) = −6x4 + o (x4 ) , òî åñòü f (x) − g(x) = o x4 , 12 ãäå g(x) = −6x4 . Ñëåäîâàòåëüíî, f (x) ∼ −6x4 . Òàêèì îáðàçîì, C = −6, à α = 4. 3.2. Âàðèàíòû çàäàíèé Íàéòè äëÿ ôóíêöèè ÷ëåí âèäà f (x) α ïðè x → x0 ãëàâíûé C (x − x0 ) 1. f (x) = (cos x)cos x − 1, x → 0. 2. f (x) = xctg x − 1, x → 1. sin x 3. f (x) = (cos x) − 1, x → 0. π x→ . 2 π x→ . 2 π x→ . 4 π x→ . 2 x → 0. π x→ . 4 x → 1. π x→ . 2 x → 2π. π x→ . 4 4. f (x) = (sin x)x − 1, 5. f (x) = (sin x)sin x − 1, 6. f (x) = xtg x − π , 4 7. f (x) = (sin x)ctg x − 1, 8. f (x) = (cos x)x − 1, 9. f (x) = (tg x)tg x − 1, 10. f (x) = xsin x − 1, 11. f (x) = (sin x)cos x − 1, 12. f (x) = (cos x)x − 1, 13. f (x) = (ctg x)ctg x − 1, 13 1 , π 15. f (x) = (tg x)ctg x − 1, 14. f (x) = xcos x − x → π. π x→ . 4 π x→ . 4 x → 1. π x→ . 4 π x→ . 2 π x→ . 2 π x→ . 4 x → 1. 16. f (x) = (tg x)x − 1, 17. f (x) = xcos x − 1, 18. f (x) = (ctg x)tg x − 1, 19. f (x) = xsin x − π , 2 20. f (x) = xcos x − 1, 21. f (x) = (ctg x)x − 1, 22. f (x) = xtg x − 1, 23. f (x) = (cos x)tg x − 1, 2 , 24. f (x) = xsin x − 3π 26. f (x) = xsin x − 1, x → 0. 3π x→ . 2 3π . x→ 2 x → π. 27. f (x) = xcos x − 2π, x → 2π. 25. f (x) = xcos x − 1, 28. f (x) = x sin x − 1, x → 2π. π x→ . 2 5π . x→ 4 29. f (x) = xctg x − 1, 30. f (x) = (tg x)ctg x − 1, 14 Íàéòè äëÿ ôóíêöèè ÷ëåí âèäà 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. f (x) ïðè x → x0 ãëàâíûé C (x − x0 )α √ x+1−1 f (x) = , ln cos x √ 1 − cos x · cos 2x f (x) = , sin x3 1 + sin2 x − ch x , f (x) = ex − cos x 1 , f (x) = ln tg x tg x , f (x) = √ 3 1 − sin x ln x f (x) = 3 , x − 3x + 2 √ ctg 3 x √ , f (x) = 1 − cos 3 x 1 √ f (x) = √ , 1 − 2x − 3 1 − 3x arcsin x f (x) = x2 , e − cos x sh x , f (x) = 2 sin x − tg 2x tg x √ f (x) = √ , ch x − 1 − x2 √ √ x−1− 3x−1 f (x) = , sin2 πx 1 √ , f (x) = sin x2 + 5 − 3 15 x → 0. x → 0. x → 0. π . 4 π x→ . 2 x→ x → 1. x → 0. x → 0. x → 0. x → 0. x → 0. x → 2. x → 2. 14. f (x) = 15. f (x) = 16. f (x) = 17. f (x) = 18. f (x) = 19. f (x) = 20. f (x) = 21. f (x) = 22. f (x) = 23. f (x) = 1 √ , 1 − cos x · cos 2x 1 √ , 1 − cos 2x · ch x cos x q , 2 3 (1 − sin x) 1 √ , 1 + x − ln(e +x) √ 3 1 + sh 3x − 1 √ , 1 − cos x √ √ 3 sin x − 5 sin x , cos3 x arcsin x √ , √ 2 − 1 + cos x 1 √ √ , 3 cos 3x − 5 cos 5x 1 √ , 1 + sin 3x + cos 5x 1 , cosec x − ctg x x → 0. x → 0. x→ x → 0. x → 0. x→ 16 π . 2 x → 0. x → 0. x → π. x → 0. 2 (1 − tg2 x) 24. f (x) = √ , 2 cos x − 1 π − 4 arcctg x , 25. f (x) = 2 ln x √ √ 5 sin x − 3 sin x 26. f (x) = , cos4 x 1 − tg πx 27. f (x) = 2 , ln tg πx π . 2 x→ π . 4 x → 1. π . 2 1 x→ . 4 x→ 28. f (x) = √ 1 x→ 2 , 3 − 2 cos x 1 , 29. f (x) = 1 − cos x · cos 2x · cos 3x √ tg2 3 x √ 30. f (x) = , 5 x2 sin x3 Íàéòè äëÿ ôóíêöèè ÷ëåí âèäà 1. 2. 3. 4. f (x) ïðè π . 6 x → π. x → 0. x → ∞ ãëàâíûé Cxα √ x √ f (x) = √ √ , x+2−2 x+1+ x √ 2x − 4x2 + 1 √ f (x) = , 3x − 9x2 − 4x + 1 √ x + x2 − x √ , f (x) = √ x 3− x2 3 f (x) = (x + 3)2 sin e x −1 , ln (x + 2x ) √ , 5. f (x) = √ x+2− x−2 1 3 3 6. f (x) = x cos − cos , x 3x 1 1 7. f (x) = sin − tg , x x 1 x → +∞. x → +∞. x → +∞. x → ∞. x → +∞. x → ∞. x → ∞. 1 4 x − 4 x+1 8. f (x) = , x π 9. f (x) = x3 ln cos , x x → ∞. x → ∞. 17 1 · ln ch x, x2 x+1 , f (x) = x2 ln x−2 r r 3 4 4 3 f (x) = 1 + − 1 + , x x π 2 f (x) = − arctg x , 2 √ x2 + x + x , f (x) = √ 2+1+x x r 2 4 4 1 + 7x + x f (x) = − 1, 1 − x3 + x4 10. f (x) = sin x → ∞. 11. x → ∞. 12. 13. 14. 15. 16. f (x) = π − arcctg x, r 17. f (x) = 3 1 + arcsin 18. f (x) = x2 ch x → ∞. x → +∞. x → −∞. x → −∞. x → −∞. 2 1 x +1 − , x x2 − 1 1 , x x → ∞. x → ∞. x4 + 4x3 − 2 x3 + , 2x + 1 1 − 2x2 q √ √ f (x) = x4 + x2 x4 + 1 − 2x4 − 1 , r 5 2 3 x + x + 1 f (x) = ln sh x, x2 − x − 1 √ x2 + 1 √ f (x) = √ , 4 x4 + 1 − 5 x5 + 1 √ √ f (x) = x 3 x + 1 − 4 x − 1 , √ f (x) = arcsin2 x2 + 1 + x , 19. f (x) = x → ∞. 20. x → ∞. 21. 22. 23. 24. 18 x → +∞. x → +∞. x → +∞. x → −∞. 25. 26. 27. 28. √ ln (3 + 3 x ) √ ln ch x, f (x) = ln (6 + 6 x ) √ f (x) = 4x2 + 1 − 2x, r √ 1 3 f (x) = cos − 1 x + 1, x √ √ f (x) = x4 − x2 − 7 − x4 + x3 − 2 , x → +∞. x → −∞. x → +∞. x → +∞. 1 1 · sin , x x √ 30. f (x) = (x − ln ch x) x4 − 1 , x → +∞. 29. f (x) = arcctg x → +∞. 4. Âûäåëåíèå ãëàâíîãî ÷ëåíà ïîñëåäîâàòåëüíîñòè 4.1. Ïðèìåð ðåøåíèÿ çàäà÷è Íàéòè äëÿ ïîñëåäîâàòåëüíîñòè {xn }∞ n=1 ãëàâíûé ÷ëåí C . nα Ïóñòü ïîñëåäîâàòåëüíîñòü {xn }∞ n=1 çàäàíà ôîðìóëîé: âèäà xn = q √ n2 +1+n− q √ (4.1) n2 − 1 + n. Ïðåîáðàçóåì ôîðìóëó (4.1) ê âèäó sr xn = √ n 1+ 1 +1− n2 19 sr 1− 1 + 1 . n2 Äàëåå, âîñïîëüçîâàâøèñü òàáëèöàìè 1 è 2, ïîñëåäîâàòåëüíî èìååì: s # "s √ 1 1 1 1 xn = n +1− 1− 2 +o +1 = 1+ 2 +o 2n n2 2n n2 "s s # √ 1 1 1 1 = 2n 1+ 2 +o − 1− 2 +o = 2 4n n 4n n2 √ 1 1 1 1 1 = 2n 1 + +o − +o +o 2 2 2 2 4n n 4n n2 1 1 1 1 1 −1 − − 2 +o +o − 2 +o = 2 2 4n n 4n n2 √ 1 1 1 1 1 √ = √ · √ +o , +o = 2n 4n2 n2 n n 2 2 n n 1 1 òî åñòü xn ∼ √ · 3 . 2 2 n2 3 1 Ñëåäîâàòåëüíî, C = √ è α = . 2 2 2 4.2. Âàðèàíòû çàäàíèé. Íàéòè äëÿ ïîñëåäîâàòåëüíîñòè ãëàâíûé ÷ëåí âèäà 1. xn 2. xn 3. xn 4. xn √ 3 {xn }∞ n=1 C nα √ √ = n + 1 + 3 n − 1 − 2 3 n. √ √ = n2 + 1 + 3 n3 − n − 2n. √ √ √ = 4 n + 1 + 4 n − 1 − 2 4 n. √ √ = 3 n3 + n2 − n + 3 n3 − n2 + n − 2n. 20 √ √ n2 + 2n + 3 n3 − 3n2 + 5n − 2n. √ √ √ 3 = 3 n2 + 1 + 3 n2 − 1 − 2 n2 . √ √ = n2 + 2 + 3 n3 − 3n − 2n. √ √ √ = 4 n2 + 1 + 4 n2 − 1 − 2 n . √ √ = 3 n3 + n2 + n + 3 n3 − n2 + n − 2n. √ √ = n2 + 2n + 3 n3 − 3n2 + 4n − 2n. √ √ √ 3 = 3 n2 + n + 3 n2 − n − 2 n2 . √ √ = n2 − 2 + 3 n3 + 3n − 2n. √ √ √ = 4 n2 + n + 4 n2 − n − 2 n . √ √ = 3 n3 + n2 + n + 3 n3 − n2 − n − 2n. √ √ = n2 + 2n + 3 n3 − 3n2 + 3n − 2n. √ √ = 3 n3 + 1 + 3 n3 − 1 − 2n. √ √ = n2 + 2n + 3 n3 − 3n2 − 2n. √ √ √ 4 = 4 n3 + 1 + 4 n3 − 1 − 2 n3 . √ √ = 3 n3 + n2 − n + 3 n3 − n2 − n − 2n. √ √ = n2 + 2n + 3 n3 − 3n2 + 2n − 2n. √ √ = 3 n3 + n + 3 n3 − n − 2n. √ √ = n2 − 2n + 3 n3 + 3n2 − 2n. √ √ = 3 n3 + n2 + 1 + 3 n3 − n2 + 2 − 2n. √ √ √ 4 = 4 n3 + n + 4 n3 − n − 2 n3 . 5. xn = 6. xn 7. xn 8. xn 9. xn 10. xn 11. xn 12. xn 13. xn 14. xn 15. xn 16. xn 17. xn 18. xn 19. xn 20. xn 21. xn 22. xn 23. xn 24. xn 21 25. xn = 26. xn 27. xn 28. xn 29. xn 30. xn √ 3 √ 3 n3 − n2 − 2n. √ √ = n2 + 2n + 3 n3 − 3n2 + n − 2n. √ √ = 3 n3 + n2 + n + 3 n3 − n2 + 1 − 2n. √ √ √ 4 = 4 n3 + n2 + 4 n3 − n2 − 2 n3 . √ √ = n2 + 1 + 3 n3 − 2n − 2n. √ √ = n2 + 2n − 3 n3 + 3n2 . n3 + n2 + 22 Ñîäåðæàíèå 1. Âû÷èñëåíèå ïðåäåëà ïîñëåäîâàòåëüíîñòè . . 3 1.1. Ïðèìåð ðåøåíèÿ çàäà÷è . . . . . . . . . . . . 1.2. Âàðèàíòû çàäàíèé. Íàéòè ïðåäåë ïîñëåäîâàòåëüíîñòè èëè äîêàçàòü, ÷òî îí íå ñóùåñòâóåò 3 5 2. Âû÷èñëåíèå ïðåäåëà ôóíêöèè . . . . . . . . 7 2.1. Ïðèìåð ðåøåíèÿ çàäà÷è . . . . . . . . . . . . 2.2. Âàðèàíòû çàäàíèé. Íàéòè ïðåäåë ôóíêöèè èëè äîêàçàòü, ÷òî îí íå ñóùåñòâóåò . . . . . . 9 3. Âûäåëåíèå ãëàâíîãî ÷ëåíà ôóíêöèè 9 . . . . 12 3.1. Ïðèìåð ðåøåíèÿ çàäà÷è . . . . . . . . . . . . 3.2. Âàðèàíòû çàäàíèé . . . . . . . . . . . . . . . . Íàéòè äëÿ ôóíêöèè f (x) ïðè x → x0 ãëàâíûé ÷ëåí âèäà C (x − x0 )α . . . . . . . . . . . . . . Íàéòè äëÿ ôóíêöèè f (x) ïðè x → x0 ãëàâíûé C . . . . . . . . . . . . . . . ÷ëåí âèäà (x − x0 )α Íàéòè äëÿ ôóíêöèè f (x) ïðè x → ∞ ãëàâíûé ÷ëåí âèäà Cxα . . . . . . . . . . . . . . . . . . 12 13 13 15 17 4. Âûäåëåíèå ãëàâíîãî ÷ëåíà ïîñëåäîâàòåëüíîñòè . . . . . . . . . . . . . . . . . . . . . . 19 4.1. Ïðèìåð ðåøåíèÿ çàäà÷è . . . . . . . . . . . . 4.2. Âàðèàíòû çàäàíèé. Íàéòè äëÿ ïîñëåäîâàòåëüC . . . . . íîñòè {xn }∞ n=1 ãëàâíûé ÷ëåí âèäà nα 19 23 20 Àëåêñàíäð Ïåòðîâè÷ Ãîðÿ÷åâ Þðèé Íèêîëàåâè÷ Ãîðäååâ Äìèòðèé Ñåðãååâè÷ Òåëÿêîâñêèé Ìåòîäè÷åñêèå óêàçàíèÿ ïî òåìå: Íàõîæäåíèå ïðåäåëîâ Ïîä ðåäàêöèåé äîöåíòà À.Ï. Ãîðÿ÷åâà Ðåäàêòîð Í.Â. Øóìàêîâà Îðèãèíàë-ìàêåò èçãîòîâëåí À.Ï. Ãîðÿ÷åâûì Ïîäïèñàíî â ïå÷àòü . Ôîðìàò 60 × 841/16 . Ó÷.-èçä. ë. 1,5. Ïå÷. ë. 1,5. Òèðàæ 2000 ýêç. Èçä. 030 1. Çàêàç . Ìîñêîâñêèé èíæåíåðíî-ôèçè÷åñêèé èíñòèòóò (ãîñóäàðñòâåííûé óíèâåðñèòåò). Òèïîãðàôèÿ ÌÈÔÈ. 115409, Ìîñêâà, Êàøèðñêîå ø., 31