Контрольная работа № 3 по теме: «Перпендикулярность прямых и плоскостей». Система выставления отметок представлена в таблице 1. Таблица1 Отметка «3» «4» «5» Количество баллов 4 балла 5 баллов 7 баллов 1 вариант 1(2б). Диагональ куба равна 6 см. Найдите: а) Ребро куба; б) Косинус угла между диагональю куба и плоскостью одной из его граней. 2(3б). Через середину М стороны AD квадрата ABCD проведен к его плоскости перпендикуляр МК, равный 6 3 см. Сторона квадрата равна 12 см. Вычислите: а) расстояние от точки К до прямой ВС; б) площади треугольника АКВ и его проекции на плоскость квадрата; в) расстояние между прямыми АК и ВС. 3 (3б). Сторона АВ ромба ABCD равна a, один из углов равен 60°. Через сторону АВ проведена плоскость α на расстоянии a от точки D. 2 а) Найдите расстояние от точки С до плоскости α; б) Покажите на рисунке линейный угол двугранного угла DABM, М 𝜖 α. в) Найдите синус угла между плоскостью ромба и плоскостью α. 4 (2б). Дан прямоугольный параллелепипед ABCDA1B1C1D1 АС =13 см, DC =5 см, АА1 = 12 3 см. Вычислите градусную меру двугранного угла ADCA1. Контрольная работа № 3 по теме: «Перпендикулярность прямых и плоскостей». Система выставления отметок представлена в таблице 1. Таблица1 Отметка «3» «4» «5» Количество баллов 4 балла 5 баллов 7 баллов 2 вариант 1(2б). Основанием прямоугольного параллелепипеда служит квадрат, диагональ параллелепипеда равна 2 6 см, а его измерения относятся как 1:1:2. Найдите: а) Измерения параллелепипеда; б) Синус угла между диагональю параллелепипеда и плоскостью его основания. 2 (3б). Через середину Е гипотенузы АВ прямоугольного треугольника ABC проведен к его плоскости перпендикуляр ЕМ, равный 4 5 см. АВ = ВС = 16 см, <C = 90°. Вычислите: а) расстояние от точки М до прямой АС; б) площади треугольника АСМ и его проекции на плоскость данного треугольника; в) расстояние между прямыми ЕМ и ВС. 3 (3б). Сторона квадрата ABCD равна а. Через сторону AD проведена плоскость α на расстоянии a от точки В. 2 а) Найдите расстояние от точки С до плоскости α. б) Покажите на рисунке линейный угол двугранного угла BADM, М 𝜖 α. в) Найдите синус угла между плоскостью квадрата и плоскостью α. 4 (2б). Дан прямоугольный параллелепипед ABCDA1B1C1D1, основание которого квадрат. АС = 6 2 см, АВ1 = 4 3 . Вычислите градусную меру двугранного угла B1ADB.