Презентация по теме: «Лазер» Выполнили ученики 11»Б» класса: Монаков Алексей Труфанова Екатерина Черных Оксана Коршикова Светлана Понятие «Лазер» ЛА́ЗЕР -(оптический квантовый генератор) (аббревиатура слов английской фразы: Light Amplification by Stimulated Emission of Radiation — усиление света в результате вынужденного излучения)источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Существуют газовые лазеры, жидкостные и твердотельные (на диэлектрических кристаллах, стеклах, полупроводниках) Предпосылки к созданию лазера Фактически предпосылки к появлению лазеров появились еще в начале 20-ого столетия. Например, Альберт Эйнштейн в своих трудах предполагал, что вынужденное излучение существует, затем эта теория была обоснована квантовыми физиками в конце 1920-ых – начале 1930-ых годов на основании экспериментов Ладенбурга и Копферманна 1928-ого года. В 1950-ых годах произошел прорыв преобразовании энергии накачки, и в 1954 году появился мазер (прародитель лазера, микроволновой генератор), став основой для развития лазера. Первый лазер в лабораторных условиях был продемонстрирован в 1960-ом году. Еще в 1917 году Альберт Эйнштейн создал теоретические основы для последующего изобретения лазера и квантового генератора.. В конце 1920-ых годов ученый Рудольф В. Линдберг подтвердил существование явлений стимулируемой эмиссии и отрицательного поглощения. В конце 1930-ых годов Валентин Фабрикант предсказал использование стимулируемой эмиссии для усиления коротких волн, в то время как в середине 1940-ых годов ученый У. Лэмб нашел очевидную стимулируемую эмиссию в водородных спектрах и произвел первую демонстрацию стимулируемой эмиссии, а спустя три года Альфред Кастлер предложил использовать метод оптической накачки. Этот метод был экспериментально подтвержден через два года учеными Бросселем, Кастлером и Винтером. История создания В 1952 г. Н.Г. Басов и А.М. Прохоров впервые в мире обосновали возможность создания усилителей и генераторов электромагнитного поля за счет индуцированного излучения квантовыми системами, находящимися в состоянии инверсной населенности. В 1955 г. они же предложили эффективный метод получения инверсной населенности при селективной накачке трехуровневой системы, который теперь широко используется в лазерах и квантовых усилителях. В этот период были созданы принципиально новые приборы квантовые генераторы (мазеры) и малошумящие усилители радиочастотного диапазона. История создания За открытие нового принципа генерации и усиления электромагнитного излучения на основе квантовых систем в 1959 г. Н.Г. Басову и А.М. Прохорову была присуждена Ленинская премия. В 1964 г. им же совместно с американским ученым Ч. Таунсом присуждается Нобелевская премия по физике за фундаментальные исследования в области квантовой электроники, приведшие к созданию мазеров и лазеров. Разработав к 1956 г. первые приборы квантовой электроники - мазеры - и успешно использовав их для стандартов частоты, Н.Г. Басов выступает с инициативой создания квантовых генераторов света лазеров. В качестве активных сред впервые в мире предлагается использовать полупроводники при различных методах возбуждения, в том числе при инжекции через р-n-p переход (1961 г.). Этот метод привел к появлению самых распространенных и широко используемых в науке и технике инжекционных (диодных) лазеров. Принцип работы Атомы вещества, поглощая энергию, например, при нагревании вещества, переходят в возбужденное состояние. Их электроны поднимаются на верхний энергетический уровень E1; через какое-то время они вновь опускаются на основной уровень E0, отдавая энергию в виде квантов электромагнитного излучения. Частота излучения определяется разностью энергий этих двух уровней: E1 – E0 = h, В обычной среде излучение отдельных атомов происходит самопроизвольно, независимо друг от друга, в разные моменты времени и в разных направлениях. Количество атомов обычного вещества в основном состоянии больше, чем в возбужденном. Вещество, предназначенное для лазерной генерации, имеет большинство атомов в возбужденном состоянии. Такая ситуация называется инверсной населенностью. Чтобы она осуществилась, атомы вещества должны непрерывно получать энергию, а их электроны достаточно долго находиться на верхних энергетических уровнях (такие уровни называются метастабильными). С метастабильного уровня электрон, как правило, не успевает опуститься сам — его «сбрасывает» вниз пролетевший мимо фотон той же частоты Лазер состоит из трех основных компонентов: активная среда, в которой осуществляется инверсная населенность атомных уровней и происходит генерация, система накачки, создающая инверсную заселенность, и оптический резонатор — устройство, создающее положительную обратную связь. Активная среда — смесь газов, паров или растворов, кристаллы и стекла сложного состава. Компоненты активной среды подобраны так, что энергетические уровни их атомов образуют квантовую систему, в которой есть хотя бы один метастабильный уровень, обеспечивающий инверсную населенность. Накачка — внешний источник энергии, переводящий активную среду в возбужденное состояние. В газовых лазерах накачку обычно осуществляет тлеющий электрический разряд, в твердотельных — импульсная лампа, в жидкостных — свет вспомогательного лазера, в полупроводниковых — электрический ток или поток электронов. Оптический резонатор — пара зеркал, параллельных одно другому. Одно зеркало сделано полупрозрачным или имеет отверстие; через него из лазера выходит световой луч. Резонатор выполняет две задачи. За счет отражения фотонов в зеркалах он заставляет световую волну многократно проходить по активной среде, повышая эффективность ее использования. В момент начала генерации лазера в нем одновременно и независимо появляется множество волн. После отражения от зеркал резонатора усиливаются по преимуществу те, для которых выполняется условие образования стоячих волн: на длине резонатора укладывается целое число полуволн. Все остальные частоты будут подавлены, излучение станет когерентным. Процесс генерации Система накачки создает в активной среде инверсную заселенность. Почти сразу атомы среды начинают спонтанно излучать фотоны в случайных направлениях. Фотоны, испущенные под углом к оси резонатора, порождают короткие каскады вынужденного излучения, быстро покидающего среду. Фотоны же, испущенные вдоль оси резонатора, отражаются от зеркал и многократно проходят сквозь активную среду, вызывая в ней все новые акты вынужденного излучения. Генерация начинается в тот момент, когда увеличение энергии волны за счет ее усиления при каждом проходе резонатора начнет превосходить потери, которые складываются из внутренних потерь (поглощение и рассеяние света в активной среде, зеркалах резонатора и др. элементах) и той энергии, которая поступает наружу сквозь выходное зеркало. Режимы генерации В зависимости от конструкции, способа накачки и состава активной среды лазеры излучают либо в непрерывном, либо в импульсном режиме. Непрерывное излучение дают газовые лазеры, импульсное — твердотельные; полупроводниковые и жидкостные лазеры могут работать как в том, так и в другом режиме. Импульсный режим генерации обычно обусловлен импульсным режимом накачки (лампой-вспышкой, лазерной вспышкой). Если не приняты специальные меры, в активной среде возникает режим свободной генерации, при котором за время продолжения вспышки в активной среде успевает возникнуть целая серия импульсов. Чтобы лазер в каждом акте генерации излучал отдельный импульс, перед одним из зеркал его резонатора ставят оптический затвор, который открывается на время 10-4 — 10-10 с, в момент, когда активная среда уже находится в состоянии инверсной заселенности. Вся энергия, накопленная в среде (от долей джоуля до нескольких сот джоулей), излучается в виде очень короткого, длительностью до фемтосекунд (10-15 с) и соответствующей мощностью порядка гигаватт (109 Вт), так называемого гигантского импульса. Затвором для получения сверхкоротких лазерных импульсов может, например, служить кювета с раствором веществ, которые под действием светового импульса на короткое время становятся прозрачными. Типы лазеров В зависимости от вида активной среды и способа ее возбуждения лазеры несколько условно можно разделить на несколько типов — твердотельные, жидкостные, газовые, полупроводниковые, в каждом из которых имеются свои особенности, связанные с конструкцией, способом возбуждения и т. п. Отдельное место занимают т. н. квантовые усилители — лазеры, состоящие из активной среды и системы накачки, но без резонатора. Усилитель ставится на выходе лазера; его импульс вызывает индуцированную генерацию в активной среде усилителя, приводящее в росту энергии излучения. Твердотельные лазеры Рабочим веществом этих лазеров служат кристаллы или стекла, активированные посторонними ионами. Широко используются лазеры на кристалле рубина — оксида алюминия (Al2O3), в котором около 0,05% атомов алюминия замещены ионами хрома Cr3+, на алюмоиттриевом гранате (Y3Al5O12), на стеклах с примесью ионов неодима (Nd3+), тербия (Tb3+), иттербия (Yb3+) и др. Вынужденное излучение различных частот дают более 250 кристаллов и около 20 стекол. Для их накачки используют лампы-вспышки. Твердотельные лазеры работают как правило в импульсном режиме с частотой повторения импульсов от долей герца до десятков мегагерц. Энергия отдельного импульса достигает нескольких джоулей. РУБИНОВЫЙ ЛАЗЕР - усовершенствованная схема конструкции Т.Меймана (1960). Основные его элементы - цилиндрический рубиновый стержень с плоскими посеребренными торцами, кожух охлаждения (его не было в устройстве Меймана) и газоразрядная лампа накачки. 1 - посеребренный торец стержня (глухое зеркало); 2 - рубиновый стержень; 3 - охлаждающая жидкость; 4 - газоразрядная лампа накачки; 5 - кожух (трубка) охлаждения; 6 слабо посеребренный торец стержня (полупрозрачное зеркало). Газовые лазеры Источником вынужденного излучения в газах служат возбужденные нейтральные атомы, молекулы или слабоионизованная тлеющим электрическим разрядом плазма. Число возникающих в столбе разряда электрон-ионных пар в точности компенсирует потери заряженных частиц на стенках газоразрядной трубки. Поэтому количество возбужденных атомов постоянно, а их излучение как правило непрерывно. Поскольку газовая среда весьма однородна, световой луч в ней рассеивается слабо и на выходе расходится очень мало. Мощность излучения газовых лазеров в зависимости от типа и конструкции может составлять от милливатт до десятков киловатт. Семейство газовых лазеров наиболее многочисленно. Жидкостные лазеры Их активной средой служат растворы органических соединений, комплексных соединений редкоземельных элементов (Nd, Eu), неорганические жидкости. Эти материалы в определенной мере сочетают преимущества твердых сред (высокая плотность) и газов (большая однородность). При необходимости рабочие параметры среды поддерживают, прокачивая жидкость в процессе работы через холодильник и фильтр. Инверсная населенность создается облучением кюветы с жидкостью светом лазера или газоразрядной лампы. Лазеры на красителях — наиболее распространенный тип жидкостных лазеров. Активной средой служат органические красители на основе бензола и ряда других соединений. Мощность излучения достигает десятков ватт, длина волны может меняться в пределах от 322 до 1260 нм простой заменой кюветы с раствором. Лазеры на красителях генерируют как непрерывное излучение, так и последовательности ультракоротких импульсов длительностью до 210-13с. Жидкостные лазеры Полупроводниковые лазеры Активной средой лазеров служат полупроводниковые кристаллы (GaAs, InSb, PlS и др.). В отличии от всех других активных сред, уровни энергии в которых дискретны и поэтому генерируют монохроматичное излучение, полупроводники имеют довольно широкие энергетические зоны; их излучение происходит в широком диапазоне длин волн и обладает малой когерентностью. В активной среде движутся либо избыточные электроны (n-проводимость, от англ. negativ — отрицательный) либо дырки, их нехватка (pпроводимость, от positiv — положительный). При их рекомбинации в слое p-n-p перехода энергия электрического тока непосредственно преобразуется в излучение. Накачка производится электрическим током, пучками быстрых электронов, световым потоком. Лазеры имеют очень высокий КПД (до 50%, а отдельные модели — около 100%) и большой коэффициент усиления. Благодаря этому размеры активного элемента лазеров исключительно малы (менее 1 мм). Широкий набор полупроводниковых материалов дают возможность получать излучение в диапазоне длин волн от 0,3 до 40 мкм. Лазеры разных типов работают и в непрерывном, и в импульсном режиме, развивая мощность от долей мВт до 1 МВт (только в импульсе). Лазеры на свободных электронах Действие лазеров основано на излучении электронов, которые колеблются под действием внешнего магнитного и/или электрического поля и перемещаются с околосветовой скоростью в направлении излучаемой волны. Из-за эффекта Доплера частота излучения во много раз превышает частоту колебаний электронов и попадает в диапазон длин волн от рентгеновского (менее 6 нм) до СВЧ-радиоизлучения. Наиболее коротковолновое излучение дают лазеры, в которых колебательные движения электронам сообщает поле мощной электромагнитной волны (комптоновский лазер или скаттрон) или периодическое поле т. н. ондулятора (предложен академиком В.Л.Гинзбургом в 1947). Возможны и другие способы получения вынужденного излучения — вращение электронов в однородном магнитном поле (т. н. циклотронный резонанс), колебания в неоднородном электростатическом поле, различные виды черенковского излучения. Частота излучения лазеров на свободных электронах может плавно меняться в широких пределах простым изменением скорости движения электронов. Применение лазеров Широкое применение лазеров обусловлено свойствами их излучения — малой расходимостью луча, монохроматичностью и когерентностью излучения. Полупроводниковые лазеры используются в качестве прицелов ручного оружия и указок, в проигрывателях компакт-дисков, как мощные источники света в маяках. Газовые лазеры применяются в геодезических нивелирах, дальномерах и теодолитах; в метрологии — как эталоны частоты и времени; для записи голограмм. Лазеры на красителях и других рабочих средах используются для зондирования атмосферы. Мощные технологические лазеры на парах металлов и молекулах (в основном на CO2) — для резки, сварки и обработки материалов. Эксимерные лазеры применяются в медицине для терапевтического воздействия и хирургического вмешательства. Лазеры используют для осуществления термоядерной реакции (т. н. «инерциальный способ»), сортировки изотопов, в тонких физических и химических экспериментах.