Двухуровневая редукция моделей паразитных цепей высокого

реклама
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
«Алгоритмы редукции многопортовых линейных цепей
с индуктивностями
на базе селективных методов исключения»
Авторы:
М.М.Гурарий, ИППМ РАН
М,М.Жаров , ИППМ РАН
С.Г.Русаков , ИППМ РАН
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Разработка метода понижения порядка моделей линейных схем,
основанного на последовательном исключении малых индуктивностей.
Разработка критерия пассивности редуцированной схемы, который
может быть легко верифицирован.
Решение задачи предложено представлять как расширение известных
селективных алгоритмов.
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Селективные методы

yi y j g i  sci  g j  sc j
~
yij 

Yn
Gn  sC n
здесь

(1)
yi  g i  sci , Yn   jS yi  Gn  sC n
n
После отбрасывания членов высшего порядка относительно лапласовской переменной s в разложении
Тейлора (1), получим выражения для проводимостей и емкостей, которые добавляются к схеме после
исключения узла
gi g j ~
g i c j  g j ci g i g j
~
g ij 
, cij 
 2 Cn
Gn
Gn
Gn
------------------------------- TICER
Требуемая точность достигается благодаря оценке степени
малости постоянных времени и её использовании в качестве
критерия исключения узловых переменных
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Один из известных вариантов исключения индуктивности
(Amin, C.S., Chowdhury, M.H., Ismail, Y.I.: Realizable Reduction of
Interconnect Circuits Including Self and Mutual Inductances. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 2,
pp. 271 - 277, (2005)) представлен правилами слияния двух
ветвей любых типов, присоединенных к исключаемому
узлу, имеет следующие недостатки:
- не гарантирует первый порядок точности лапласовских
проводимостей, что приводит к недостаточной точности в
случае малых индуктивностей;
-правило слияния LR-ветви (с малым L) и C-ветви эквивалентно отбрасыванию индуктивности;
-для узла с подсоединенной индуктивностью гауссовское
исключение узлового напряжения и последующее
пренебрежение членами высокого порядка приводит к
эквивалентной схеме с асимметричной матрицей емкостей.
Такая схема не обеспечивает пассивность, и поэтому не может
использоваться при моделировании ИС
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Amin, C.S., Chowdhury, M.H., Ismail, Y.I.: Realizable Reduction of Interconnect
Circuits Including Self and Mutual Inductances. IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, no. 2, pp. 271 - 277, (2005).
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
•предлагаемый в данной работе метод
основан на одновременном исключении
двух схемных переменных - узлового
напряжения и тока индуктивности;
•приводит к редуцированной схеме, из
которой удалены
индуктивности и
добавлены емкости, чем обеспечивается
первый порядок точности
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Алгоритм исключения индуктивности
c~i   sLm g i Gn , c~ij  sLm g i g j
Предлагается критерий пассивности полученной цепи
Сii  0, cij  Сii С jj
- условие неотрицательной определенности
симметричной матрицы
эквивалентно следующим условиям на величины
узловых емкостей и емкостей ветвей: где
cijNEW  сij  с~ij .
СiNEW  0, cijNEW  СiNEW С jNEW ,
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Пример редуцирования RLC-цепи с помощью
предлагаемого алгоритма
Условие пассивности для рассматриваемой цепи:
с  2L / r .
2
-соответствует отсутствию колебательности в контуре
Подобный результат был получен в работе Русакова С.Г. и Гурария М.М. в 1977г.
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Алгоритм исключения связанной индуктивности
MNA- матрицы проводимости и емкости общей RLCK схемы
 G
G MNA   T
 I
I  MNA  C
,C
 T

0


0 
Условие пассивности
СiNEW  0, ik 
Lk Ci , ik 
Lk C j
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Экспериментальные результаты
Пример 1:
RLC – цепь из 10 идентичных секций
(r=1ом, L=0.4pH, C=1pF)
Частотный и временной отклики RLC – цепи
Ошибки откликов редуцированной RLC-цепи
при исключения (1) и пренебрежении (2)
индуктивностей
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Экспериментальные результаты
Пример 2
Связанные RL-ветви
Перекрестные помехи (cross-talk)
в связанных RL-ветвях,
полученные моделированием
полной (1) и редуцированной
(2) схем в частотной (a)
и временной областях (b).
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Результаты
Представлен новый класс алгоритмов редуцирования линейных
схем методом исключения.
Предложенные алгоритмы обеспечивают редукцию RLCK схем,
сохраняя первый порядок точности передаточных характеристик
схемы.
Получено условие пассивности редуцированной схемы, которое
легко контролируется на каждом шаге процесса исключения.
ИП
ПМ
ИНСТИТУТ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ В МИКРОЭЛЕКТРОНИКЕ РАН (ИППМ)
Скачать