Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ ОСНОВНЫЕ ТРЕБОВАНИЯ К РЧ-СИСТЕМАМ Радиочастотные системы (РЧ-системы) предназначены для возбуждения в исследуемом образце ядерного магнитного резонанса и приема этого сигнала. Они могут использоваться в режиме передачи, приема и как приемопередающие. РЧ-системы состоят из радиочастотных катушек (РЧ-катушек) и элементов согласования с приемопередающим трактом. К РЧкатушкам предъявляются два основных требования: высокое отношение сигнал-шум при работе в режиме приема и обеспечение достаточной однородности магнитной составляющей радиочастотного поля для правильной передачи контрастности изображения. Кроме того, РЧ-катушки должны обеспечивать ориентацию вектора магнитной составляющей радиочастотного поля перпендикулярно вектору индукции поляризующего поля. Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Выражение, характеризующее отношение сигнал-шум РЧ-системы, получено Хоултом • s n B1V 3/ 2 Q B0 , • где B1 – индукция магнитного поля, генерируемого приемной катушкой при единичном токе в последней; V– возбужденный объем образца; Q – добротность РЧ-системы; B0 – индукция поляризующего магнитного поля; – полоса принимаемых частот. • Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ B1 определяет чувствительность катушки. По принципу взаимности, ЭДС, индуцируемая в приемной катушке колеблющимся в любой точке рабочего объема диполем, пропорциональна магнитному полю в точке , создаваемому той же катушкой при единичном токе. Поэтому необходимо максимально увеличивать относительный рабочий объем катушек с тем, чтобы их проводники находились как можно ближе к исследуемому объекту. Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Возбужденный объем образца – величина фиксированная, зависящая от объема образца или объема исследуемого среза образца. Индукция поляризующего поля определяется характеристиками магнитной системы. Полоса принимаемых частот связана с условиями эксперимента, в частности, с величинами используемых градиентных полей. Поэтому, с целью увеличения отношения сигнал-шум, при синтезе РЧ-систем необходимо стремиться к максимальным значениям индукции и добротности РЧ-системы Q. Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ МЕТОДЫ СИНТЕЗА РЧ-СИСТЕМ Для получения качественного изображения с правильной передачей контрастности элементов, в рабочем объеме необходимо поддерживать индукцию максимально постоянной. На практике относительная неоднородность в рабочем объеме может составлять 10-15% . Синтез РЧ-катушек можно проводить локально-интегральным методом в приближении, что по катушке пропускается постоянный ток . Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Проведем локально-интегральным методом синтез РЧ-катушки, состоящей из двух седлообразных проводников, расположенных напротив друг друга. Пусть центр декартовой системы координат (рис.2.6.1) расположен в центре системы катушек. Линейные проводники расположены вдоль продольной оси магнитной системы Z. Вектор магнитной составляющей радиочастотного поля B X параллелен оси X. Соединяющие дуги радиуса r0 лежат в плоскостях, параллельных плоскости X0Y, на расстояниях z 0 от последней. Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Рис. 2.6.1. Конфигурация седлообразной РЧ-катушки Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Для повышения однородности поля , определим значения и угловые размеры дуг, компенсируя вторые производные выражения для индукции магнитного поля линейных проводников и дуг с целью устранения соответствующих членов разложений этих выражений в степенной ряд. В первом приближении будем считать линейные проводники бесконечно длинными. Поперечная составляющая поля линейного проводника бесконечной длины, расположенного в координатах x0 , y 0 , в точке x, y определяется выражением 0 I y y0 B XL , (2.6.1) 2 2 2 x x 0 y y 0 • где I – ток в проводнике. Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Дважды дифференцируя по x и вводя относительную координату y 0 x0 , получим значение второй производной поля в центре координат в виде • • 2 B XL x 2 0 I 2 3 2 2x03 1 2 3 . (2.6.2) Приравнивая числитель к нулю, получим • (2.6.3) x0 y 0 tg 3 . Отсюда • . (2.6.4) arctg 3 600. Следовательно, полный угловой размер дуговых участков 2 120 0 • . (2.6.5) Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Определим длину линейных проводников, то есть величину 2z 0 . Для этого найдем положения дуговых проводников из условия максимальной однородности составляющей B XD их поля. • Пусть R– вектор, проведенный из точки наблюдения к элементу дуги dl , x, y, z – координаты точки наблюдения. По закону Био-Саварра-Лапласа r0 0 z 0 0 I dl R 0 I dB d l r d l d l z 3 3 3 4R R 4R Rr R Rz . (2.6.6) Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Так как дуга круговая и расположена в плоскости z z 0 с центром на оси Z, то • • и • • dl r dl z 0 (2.6.7) dl dl . (2.6.8) Из (2.6.6), с учетом (2.6.7), получим dB 0 I dl r0 Rz z 0 Rr 3 4R . (2.6.9) Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ Поле B дугового проводника РЧ-катушки находится интегрированием • B dB L 0 I Rz R 3 dl r0 z3 dl z 0 . 4 L R R L (2.6.10) Для поперечной составляющей магнитного поля РЧ-катушки • BXD 0 I Rz dl 3 3 4R L R (2.6.11) Расчет и проектирование магнитных систем. Лекция 16 РАСЧЕТ РЧ-СИСТЕМ • • • • • • • Получим выражения для R z и R , используя следующие обозначения: R – вектор, опущенный из dl в точку наблюдения; R XY – проекция на плоскость x z 0 y ; Rr – проекция R XY на ось r0 (т.е. вектор, соединяющий центр дуги с dl ); r0 – радиус дуги; r – расстояние от центра витка до проекции точки наблюдения на плоскость x z 0 y ; – угловая координата направления от центра витка к проекции точки наблюдения на плоскость ; 0 – угловая координата направления от центра витка к . dl Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Отсюда найдем B XD 0 I r0 z 0 z cos 0 4 0 r 2 r 2 2rr cos z z 2 0 0 0 0 3/ 2 d 0 . (2.6.18) • Вводя относительные координаты f x r0 , y r0 z r0 , получим выражение для поперечной составляющей индукции в виде • B XD 0 cos0 0 I 4 0 f cos2 cos2 2 0 3/ 2 d0 , . (2.6.19) Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Дважды дифференцируя по 0 , найдем вторую производную радиальной составляющей индукции в начале координат при f 0 в виде 2 B XD 3 0 I 0 3 2 0 cos0 d0 . 2 7 / 2 2r0 0 0 1 02 Приравнивая (2.6.20) к нулю, определим 0 z0 r0 1,26 . (2.6.20) Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Таким образом, предварительно синтезированная катушка имеет дуговые проводники с центральным углом 120° и линейные проводники длиной 1.26 диаметра дуговых проводников. Проведенный расчет поля этой катушки показывает, что ее относительный рабочий объем с неоднородностью поля менее 10% составляет 30% ее диаметра. Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Проведем оптимизацию конфигурации катушки интегральным методом. При этом учтем конечную длину линейных проводников, используя выражение (2.2.27), которое в принятой системе координат можно записать в виде B XLK • где 0 I y y 0 z0 z z0 z 2 2 2 2 4r 2 r z z r z z 0 0 r 2 x x0 z z 0 . 2 2 , (2.6.21) Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Суммарная поперечная составляющая индукции поля РЧ-катушки определяется полем четырех линейных (2.6.21) и четырех дуговых (2.6.18) проводников • (2.6.22) BS 4B XLK B XD Использование оптимизации позволило определить окончательную конфигурацию катушки. При этом угловой размер дуговых проводников составляет 60°, а длина линейных проводников – 1.58 диаметра катушки. Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ На рис.2.6.2 приведена карта поля оптимизированной седлообразной РЧкатушки. По карте можно определить ее относительный рабочий объем с отклонением индукции не более 10%, который составляет 55% и в 1.8 раза превышает относительный рабочий объем известных седлообразных катушек . Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Рис. 2.6.2. Карта поля оптимизированной седлообразной катушки Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Как было показано в разделе 2.6.2, в соответствии с принципом взаимности, чувствительность РЧ-катушек можно характеризовать величиной поперечной составляющей индукции ее магнитного поля, создаваемой единичным током при единичном радиусе катушки. Для предварительно синтезированной седлообразной РЧ-катушки чувствительность составляет 6.5 мкТ/А. для оптимизированной – 6,3 мкТ/А при диаметре 200 мм. Некоторое снижение чувствительности оптимизированной системы объясняется увеличенным размером оптимизированной катушки вдоль оси . Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ СОЛЕНОИДАЛЬНЫЕ РЧ-КАТУШКИ Пусть катушка Гельмгольца состоит из двух круговых проводников с током I и радиусом R, расположенных на расстоянии x0 от начала системы координат r , x , . Тогда в произвольной точке пространства M r , x продольная составляющая вектора магнитной индукции определяется выражением (2.2.1) 0 I 2 RR r cosd BX r , x 3/ 2 , 2 2 2 2 0 R r x 2 Rr cos 1 (2.6.23) • где x1 x0 x – расстояние от плоскости витка до точки расчета. Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ После интегрирования получаем выражение B X r , x 0 I 2 R r 2 R 2 r 2 x12 E K 2 2 x12 R r x1 , (2.6.24) • где E и K - полные эллиптические интегралы первого и второго рода с модулем k 4Rr / R r x 2 2 1/ 2 1 . Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ При r 0 , т.е. когда точка расчета находится на оси витка, выражение (2.6.24) принимает вид B X 0, x 0 IR 2 2 R2 2 3/ 2 x1 . (2.6.25) В относительных величинах, после подстановки x1 R , имеем B X 0, 0 I 2R 1 2 3/ 2 . (2.6.26) Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ В центре системы координат B X 0, 0 0 I 2R 1 2 3/ 2 0 , (2.6.27) • где 0 x0 R . Найдем предварительное положение круговых проводников, приравнивая вторую производную функции (2.6.27) нулю • 0 I 3 402 1 2 BX 0 2 7 / 2 2R 1 2 0 0 (2.6.28) Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Отсюда 0 0.5 , что соответствует конфигурации системы Гельмгольца. Соответствующий рас-чет показывает, что относительный рабочий объем такой системы с неоднородностью по-ля не более 10% составляет 57% ее диа-метра. При диаметре системы 200 мм ее чувствительность определяется величиной 9 мкТ/А. Оптимизация положения проводников системы дает . 0 0.517 Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ На рис.2.6.3 приведена карта поля оптимизированной РЧ-системы Гельмгольца. 40 60 80100 Z/R Рис. 2.6.3. Карта поля оптимизированной системы Гельмгольца Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Из рисунка следует, что относительный рабочий объем системы составляет в этом случае 62% ее диаметра. Чувствительность системы при этом практически не меняется. Рассмотрим синтез локальноинтегральным методом РЧ-системы Баркера, состоящей из двух пар круговых проводников. Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Обозначим относительные положения круговых витков 01 , 02 и отношение токов в них через K. Решая систему уравнений вида • 2 2 4 01 1 4 01 1 K 0, 2 7/2 2 7/2 1 02 1 01 2 4 2 4 1 12 01 8 01 K 1 12 02 8 02 0, 2 11 / 2 2 11 / 2 1 02 1 01 (2.6.29) • содержащую суммы вторых и четвертых производных функции индукции поля кругового витка (2.6.27), можно определить предварительные относительные положения витков. Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Необходимо отметить, что коэффициент K удобно иметь равным единице, так как технически трудно обеспечить различные токи в витках катушки, а различное число витков в круговых проводниках ведет к увеличению индуктивности катушки. 40 60 80 100 Z/R Рис. 2.6.4. Карта поля оптимизированной системы Баркера Расчет и проектирование магнитных систем. Лекция 17 РАСЧЕТ РЧ-СИСТЕМ Система (2.6.29) имеет множество решений. Выбираем решение с минимальным соотношением токов 01 0.28 , 02 1.06 , K 2.13 . При этом, относительный рабочий объем системы с неоднородностью поля до 30% составляет 55% ее диаметра. • Производя оптимизацию конфигурации, положив K 1 , получим 01 0.39 , 02 1.07 . Карта поля оптимизированной РЧ-системы Баркера приведена на рис.2.6.4. Из рисунка следует, что относительный рабочий объем с неоднородностью поля до 10% составляет 68% ее диаметра. Чувствительность этой системы при диаметре круговых проводников 200 мм – 14.3 мкТ/А.