файл - Институт исследований природы времени

реклама
Дмитрий Гуревич
Догма Трехмерности
(краткая история «Пространства»)
Доклад на
Российском междисциплинарном семинаре по
темпорологии
Алматы - Москва, 2013
Трехмерность: тела и пространство
Три измерения суть все.
Аристотель
В философии в течении нескольких тысячелетий ведутся споры о
природе и о самом существовании пространства. Оно рассматривается
как «абсолютное» и «относительное», «объективное» и «субъективное»,
«форма существования материи» и чисто геометрическая конструкция.
Трехмёрность выступает в этом многообразии как инвариант:
трехмерны тела в аморфном пространстве, либо трехмерно само
пространство и все его части (тела).
Современная наука признает существование физического пространства
и его собственных свойств – непрерывности, изотропности,
размерности. Размерность – это наиболее определенное, по сути
единственное «позитивное» свойство пространства. Поэтому
проблема размерности допускает нетривиальные решения и может
рассматриваться как ключевая в круге вопросов о Пространстве и,
возможно, более широком.
Антропный принцип и
исторический подход
... язык трех измерений… скопирован с нашего
распределительного щита, а этот щит установлен для
того, чтобы можно было жить в этом мире.
Пуанкаре. Наука и метод
Антропный принцип
Наш Мир таков, каким и должен быть, чтобы обеспечить наше
существование.
Миры с другой размерностью пространства неустойчивы.
Трехмерность пространства – объективное свойство нашего мира.
Принцип Историзма
Наш Мир таков, каким мы его видим и понимаем.
Наше мировоззрение обусловлено историей вида и цивилизации.
Трехмерность пространства – атрибут нашего мировоззрения.
Возможный способ преодолеть субъективизм суждения - рассмотреть
причины и историю его формирования.
Плоская Земля
Основные черты среды обитания
человека были сформированы
миллиарды лет назад. Они обусловлены
Землей и Солнцем, гравитационным и
электромагнитным полями.
Большие размеры Земли обуславливают
восприятие ее поверхности как
плоскости.
Гравитационное поле обеспечивает
вертикальную анизотропию всех
геосфер, постоянную выделенность
прямого угла и поляризацию
направлений «вниз» и «вверх».
Передвижная система прямоугольных
координат
Эволюция вылепила ортогонально-симметричное тело
человека, конформное окружающей среде и его образу
жизни. Эволюция создала эффективный
вестибулярный аппарат - трехплоскостную
ортогональную систему.
верх
назад
вперед
низ
Но организмы и
органы, обладающие
иной симметрией
Свет - прообраз «Пространства»
Зрение поставляет человеку порядка 90% информации. Именно световые
лучи определили основные черты «картины мира». Громадная скорость
распространения света обеспечила возможность выделения громадного
класса «статичных» тел. Скорость нервных реакций определила различие
«неподвижного фона» и «движущихся объектов», заложив фундамент
для будущих идей Пространства и Времени.
Начало Мира Идей
(Поздний Палеолит: 36-10 тыс. лет до н.э.)
Мышление подразумевает создание
абстрактных образов. Процессы
абстрагирования ведут к более полному
и эффективному отражению реальности
по сравнению с наглядно-образным
представлением… Однако
абстрагирование может отдалять
формирующиеся в памяти структуры
от релевантных аспектов реальности.
Дальнейшее абстрагирование на базе этих искусственных категорий
ведет к еще более далеким от реальности «мыслительным
продуктам» (Ф. Кликс. Пробуждающееся мышление). Так формируется
мир «многоуровневых абстракций», связанный с реальностью только в
самом начале цепочки абстрагирования. Понятие размерности – это
понятие высокого уровня абстрагирования: оно опирается на понятия
измерения, универсальных «длин» и «высот», статичных тел и др.
Прообраз системы координат
(Неолит, 10 - 3 тыс. лет до н.э.)
N
Мифологический прообраз системы
координат – это Мировое древо и его
трансформации, такие как «ось мира» (axis
mundi), «мировой столп», «мировая гора»,
храм, обелиск, крест и т. п. Мировое древо
располагается в центре мироздания и
связывает три мира – небесный (мир богов и
героев), земной («физическая реальность») и
подземный (загробный).
небо
север
закат
восход
святилище
юг
подземный
мир
Геометрия как наука о телах
Древний мир (3 тыс. лет - V век до н.э.)
В ответ на запросы практики родилась геометрия,
описывающая формы и взаимоотношениях тел и
фигур. Пространство геометрии Евклида – это чистая
возможность. Аксиома о параллельных касается самих
параллельных – но не пространства, постулат о
равенстве прямых углов («Все прямые углы равны
между собой») касается именно прямых углов – и
ничего более. Свойства пространства в геометрии
Евклида не обсуждаются. Из общих соображений
можно предположить, что оно аморфно и пусто.
Современное понимание «Евклидова пространство» с его
собственными свойствами включая метрику (r2 = (x1 – x2)2 + (y1 –
y2)2 + (z1 –z2)2) сформировалось уже после создания аналитической
геометрии.
Аристотель: Начало топологии
Величина, делимая в одном измерении, есть линия, в двух –
плоскость, в трех – тело, и кроме них нет никакой другой
величины, так как три измерения суть все…
Аристотель
Непрерывность имеет n измерений, когда ее можно разбить на
несколько частей, производя в ней одно или несколько сечений,
которые сами являются непрерывностями n - 1 измерений.
Анри Пуанкаре
Определение топологической размерности Пуанкаре, как и более поздние, по
сути сходны с Аристотелевским, но имеют общий характер и не
ограничиваются трехмерием.
Трехмерность в общей топологии – это частный случай.
Трехмерность в «естественной топологии» – это аксиома:
«три измерения суть все».
Спутанно-волокнистый
агрегат (самородное
серебро)
Ветвление
(дендриты
марганца)
Плоская
спираль
(алмаз)
«Антитопология»
роста
Спираль
(раковина)
Логика и диалектика
топоса
Топологические обоснования трехмерности
сводятся к рассмотрению ряда: пустота
(размерность -1), точка (0), линия (1),
плоскость (2), объем (3).
Однако в реальности мы можем усмотреть
только некие прообразы членов ряда,
например: вершина – ребро – грань –
кристалл. Но кристалл состоит не из граней, а
из объемных молекул, объединенных в
элементарные ячейки. А рост кристаллов и
других объектов – это не только
топологическое «раздувание», но и изменение
размерности : «линии» заполняют
«плоскости», «плоскости» формируют
«объемы» и т.д. Приведенное обоснование
некорректно, так как ряды и объекты
топологии не имеют прямого отношения к
реальным телам и процессам.
«Антитопология» зрения
- Линейные световые лучи отражаются от
поверхностей объемных тел:
- Оптическая система собирает и проецирует
световые лучи на плоскую сетчатку;
-Рецепторы преобразуют световую энергию в
линейные последовательности электрических
импульсов;
- Клетки и отделы головного мозга
восстанавливают и распознают объемные образы;
- Направляют приказы мышечным клеткам в виде
линейных импульсов.
По книге Д. Хьюбела
Глаз, мозг, зрение
Геометризация Картины Мира
(Возрождение, XV— XVI века).
У живописца… нет иной задачи, кроме той, чтобы представить формы
видимых вещей на поверхности картины не иначе, как если бы она была
прозрачным стеклом, сквозь которое проходит зрительная пирамида.
Леон Баттиста Альберти. Альберти. Три книги о живописи.
…предполагается само собою разумеющимся … что все зримое и
воспринимаемое есть только простой материал для заполнения
некоторой общей, извне на него накладываемой схемы упорядочения,
каковою служит канто-евклидовское пространство.
Павел Флоренский. Обратная перспектива
К понятию однородного и изотропного
пространства физику подвело
картинное пространство ренессансной
живописи.
Вячеслав Шевченко. Картина
пространства.
Галилей: «Каркас физического
пространства»
Галилей ввел понятие инерциальной системы отсчета – системы,
относительно которой все тела, не взаимодействующие с другими телами,
находятся в покое или движутся равномерно и прямолинейно.
Он же сформулировал правила преобразований, которые позволяют
переходить от одной инерциальной системы к другой.
Галилей определил и трехмерно-ортогональную структуру этого
пространства: «Тремя перпендикулярами, как тремя линиями,
единственными, определенными и кратчайшими, определяются три
измерения... Так как ясно, что через ту же точку не может проходить еще
какая-нибудь линия, которая образовала бы с данными прямые углы, а
измерения должны определяться только прямыми линиями,
образующими между собой прямые углы, то существуют только три
измерения...».
Совокупность всех трехмерных инерциальных систем отсчета и составляет
«каркас» («строительные леса») того, что в последствии было названо
«евклидово изотропное физическое пространство».
Рене Декарт: Пространствоконтинуум
Идеи: мирового древа, прямого угла, «божественного наблюдения»,
проецирования, измерения и «+» – «-» симметрии - асимметрии,
соединенные Галилеем, Декартом, Ферма и Эйлером, породили
прямоугольную систему координат, координатное пространство и
аналитическую геометрию – универсальный метод описания и
построения тел.
Парадоксальным образом координатное пространство
аналитической геометрии, пространство – числовой
континуум получило название Евклидова.
Клеро и Эйлер в XVIII веке определили правила
преобразований полярных координат в координаты
Z
-Y
прямоугольные и трехмерная ортогональная
-X
система приобрела статус универсальной,
X
0
полностью соответствующей структуре
«реального», трехмерного евклидова пространства.
Y
-Z
Она стала основой классической механики и
механистической парадигмы .
Разные системы
координат
В чем состоит исключительность
трехмерной координатной
системы? Она использует
небольшое число параметров, она
достаточна для геометрического
описания тел, она соответствует
форме и структуре многих
природных и рукотворных
объектов, она психологически,
физиологически и исторически
обусловлена.
Но «3D» система – только одна из
многих. Наиболее рационально
использовать разные системы,
адекватные объекту и
ситуации. Как это нередко и
делают ученые.
Иоганн Кеплер: «Собственные»
системы координат
Использование подходящей
координатной системы,
со-структурной, сосимметричной объекту,
позволяет не только описать
его форму, но и понять его
строение, симметрию и генезис.
Как это сделал 400 лет назад
Кеплер при описании снежинки
и филотаксиса.

=2  * 5/13
  2/ 2
 - золотое
сечение (1.614…)
Иммануил Кант: Доказательство
трехмерности
1) Существуют энантиоморфы - тела
зеркально-симметричные, но не
совместимые пространственным
переносом.
2) Энантиоморфы двумерные могут быть
совмещены при условии «выхода в
третье измерение» – одна из фигур
должна быть перевернута «в воздухе».
3) «Выход во второе измерение»
совмещает линейные энантиоморфы –
равные по модулю, но противоположно
направленные векторы.
4) Объемные энантиомоморфы должны
быть совмещены «через выход в 4-е
измерение».
5) Так как 4) неверно, то пространство не
четырехмерно; так как 2) и 3) верно, то
размерность пространства не 2 и не 1, а 3.
Энантиоморфы и
«Миф о 3D-достаточности»
«Доказательство» не корректно, так как оперирует абстрактными
понятиями. В реальности нет ни двумерных, ни одномерных «фигур».
На самом деле энантиоморфизм демонстрирует недостаточность
системы из трех координат для однозначтного построения
любого тела
Z
-Y
-X
X
0
Y
-Z
«Полная
система»
«Правая
система»
Попытка описать энантиоморфы
заканчивается неудачей:
необходим дополнительный
параметр – знак энантиоморфизма
– «правизны» или «левизны»
координатной системы. Либо
воспользоваться различием
направлений «+» и «-», то есть
признать врожденную
шестимерность (3/6 – мерность)
декартовой системы.
«3» в векторной геометрии
Существуют три линейно независимых вектора,
любые четыре вектора линейно зависимы
Герман Вейль
На самом деле в «трехмерной» векторной геометрии независимых
векторов не три а шесть, так как «+х» и «-х» на деле
используются как независимые векторы. Или же эта
независимость маскируется операцией умножения на -1, которая
позволяет «отождествлять» диаметрально противоположное.
Как и в топологии, как и в аналитической геометрии, число
независимых векторов вводится «директивным методом», то есть как
аксиома. Фактически трехмерность опирается здесь на интуицию
прямого угла и симметрии – не разбиение объема на восемь
равных секторов.
Такова трехмерная векторная геометрия. Насколько она соответствует
реальности?
«Три независимых
вектора»
ax + by
x
y
Постараемся соответствовать идее непредвзятого
объективного исследователя. Откажемся от
«Догмата Прямого Угла» и станем изучать
реальный векторный базис реальных объектов.
Нетрудно видеть, что природа использует разные
векторные базисы. Что снежинка строится в
шестилучевом векторном поле-пространстве, а
морская звезда – в пятилучевом. И это отражает
наиболее важные черты устройства и
происхождения этих объектов!
…Что, наконец, все солнечные лучи независимы
(нет ничего быстрее света чтобы сделать их
зависимыми!). Векторное пространство света –
бесконечномерно.
параллелепипеды
шары
«Кристаллографические»
«Трехмерность
– объем –
объемность»
Природа использует различные
габбро (ув. 100) варианты заполнения объемов.
Но аналитическая геометрия
«разбирает» объект любой
структуры на мельчайшие
кубики. Зачем? Чтобы
пенопласт
«привести к общему
14-гранник
знаменателю», сравнить и
Вильямса
халцедон измерить!
«Клеточные»
(ув. 100) Объемные объекты потому
клетки
называются трехмерными,
ув. 150
что 1) мы хотим их измерять
универсальным образом,
Полицентрические
2) мы располагаем методами
структуры –
их «трёхмеризации».
ромбододекаэдры
плотные упаковки
«Непостижимая эффективность»
3D геометрии
- Многочисленные достоинства Декартовой системы координат;
- Всеобщее стремление к унификации и стандартизации знания;
-Развитие дифференциального исчисления, позволяющего описывать
тела, не обращая внимания на их собственную структуру и форму;
-Развитие методов преобразований – перенормировок - калибровок;
- Отказ от понимания в пользу математического описания;
- Антропогенная «трёхмеризация» среды (особенно в эпоху
конструктивизма) и знания (в нынешний период «3D» моделирования);
все это укрепило исключительный статус 3D геометрии. Любой пример
удачной работы любой координатной системы, эмпирическое
подтверждение чего угодно – от постоянства скорости света до
сферичности гравитационного поля – все стало «доказывать
трехмерность реального пространства». «Реальная геометрия»
стала нефальсифицируема и непроверяема на практике.
Пуанкаре: Логика или и интуиция?!
Пуанкаре: Ни одна математическая теория не может
существовать без интуитивно-ясных аксиом и базисных понятий,
к каковым и относится понятие пространства.
Гедель: Непротиворечивость теории не может быть доказана
средствами этой теории.
Гилберт: Математические теории, как конструкции идеальные,
не имеют непосредственного отношения к физической
реальности.
Это касается и теорий математизированных – классической
механики, теории относительности и всех других фукндаментальных
физических теорий. Трехмерность Физического Пространства (или
4-х мерность континуума) относится к числу базисных понятий всех
современных фундаментальных физических теорий. Трехмерность
пространства не доказывается, не выводится и не ставится под
сомнение. Трехмерность – вещь интуитивно-ясная и принципиально
недоказуемая. То есть в конечном итоге субъективная.
Геометрии «евклидовы» и
«неевклидовы»
Отказ от аксиомы о непересекающихся
параллельных породил в XIX веке так
называемые неевклидовы
(«криволинейные») геометрии, каковые
якобы не имеют отношения к
«реальному евклидову пространству».
На самом деле криволинейные
преобразования подобия,
криволинейные («неевклидовы»)
структурированные поля – вещь хорошо
известная в естествознании.
Отказ от «полускрытой» аксиомы
трехмерности породил в XIX веке
моногомерные геометрии (Кэли,
Грассман, Шлефли). Аппарат
многомерной геометрии интенсивно
используют физики, в то время как
мистики интенсивно спекулируют на
идее «четвертого измерения».
Криволинейные
преобразования симметрии
двустворчатых моллюсков.
По Н.А. Заренкову.
Трехмерность в многомерных
физических теориях
Общая теория относительности: поле-пространство трехмерно как
выделенная часть четырехмерного континуума
Теории калибровочных полей Глешоу - Вайнберга – Салама:
«… речь идет о геометрии 10-, или 11-, или 26-мерного пространства.
Предполагается, что развитие теории приведет к одному измерению,
играющему роль времени и трем измерениям, играющим роль
пространственных координат… Кривизна лишних измерений
воспринимается в обычных 4-х измерениях как поля электромагнитное,
глюонное и т.д.» Я.Б. Зельдович, 1988
Теория струн: «Одна из серьезных проблем… заключается в
описании перехода от 26- и 10-мерной теории к реалистичной 4мерной теории. …пока такая размерная редукция не будет выполнена,
теория не может претендовать на сколько-нирбудь серьезное описание
физической реальности». Michio Kaku, 1999
Нарисовать четвертое измерение?
Размерность 2
3
4
5
Мы не могли нарисовать 4-е измерение только
потому, что пытались пристроить его «где-то
сбоку» к трёхмерию, которым изначально
подменили объемность. И это оказывалось
невозможным – мы не могли мыслить реальными
нереальные образы. Если отказаться от подмены и
Догмы Прямого Угла, то это совсем не сложно.
Принципиальное отличие 4D фигуры (и всех
последующих) от фигуры 3D состоит в наличии у
первой внутренней структуры.
Так открывается еще одна «тайна
трехмерного пространства»:
трехмерная система достаточна (со
всеми оговорками) для описания
форм. Системы более высокого
порядка могут задавать и
описывать и форму, и
внутреннюю структуру.
Эйнштейн: Поле-пространство
(или поле в пространстве?)
Вариация кривизны пространства
отражает то, что действительно
происходит при явлении, которое
мы называем движением материи
Уильям Клиффорд
Пустое пространство ... место, где
нет ничего из того, что, как мы
думаем, должно бы в нем быть
Рене Декарт
Эйнштейн кажется поставил точку в многовековом споре о
пространстве между реляционистами и субстанционалистами.
Пространство – это гравитационное поле. Но физики по-прежнему
описывают поле не иначе как «в изотропном 3D пространстве»! Парадокс
легко преодолеть, если признать, что 1) реальное гравитационное полепространство анизотропно, и что 2) изотропное 3D пространство – это
пространство идеальное (модельное, математическое, абсолютное…).
Кант: Доказательство трехмерности
через силу взаимодействия ( 1/r2 )
1. Сила притяжения двух тел  1/r2.
2. Такая зависимость силы от расстояния объясняется сферическисимметричным распространением поля, т.е. квадратичной зависимостью
площади сферы от ее радиуса.
3. В пространствах иной размерности «площади» соответствующих «сфер»
были бы пропорциональны n-1 степени радиуса. Так, в двумерном
пространстве «площадь» и сила  r1; в четырехмерном они  r3.
4. Последнее противоречит первому, следовательно, пространство трехмерно
(в тех областях, в которых соблюдается пункт 1).
А на самом деле? Сила полевого взаимодействия определяется конкретной
геометрией поля напряженности (это особенно ясно при более
доступном исследовании электрических явлений). Сила взаимодействия
очень длинных проводников с током  r1 , а двух бесконечных заряженных
плоскостей вообще не зависит от расстояния. Пропорциональность 1/r2 –
следствие сферического распространения поля напряженности, то есть
соответствия принципам простоты и симметрии.
Трехмерность как артефакт и догма
Трехмерная система координат, 3D пространство, 3D моделирование –
это инструменты описания, познания, преобразования Мира. Беда в
том, что они стали догмой и фундаментом «3D-мировоззрения» мировоззрения Стандарта - Формы - Формата. Подменяющего реальные
объекты 3D моделями, понимание –3D - описанием. Искажающего и
усложняющего научные теории и уродующего архитектурный ландшафт.
Реальные объекты имеют разные симметрии, разные векторные и
координатные пространства. Чтобы пользоваться этим богатством даже
не надо изобретать новую геометрию (все уже есть!), достаточно
отказаться от Догмы Трехмерности и Догмата Прямого Угла.
Это освободит физические теории от необходимости «сводиться» к
«четырехмерному пространственно-временному континууму». Позволит
вернуть единство «микро-», «макро-» и «мега-» миров. Развяжет руки
биологам, психологам и геологам в их поисках реальных симметрий
изучаемых объектов. Может быть поможет понять пустоту 3D игрушек.
3D загрязнение окружающей среды
Москва
Хабаровск
Стокгольм
Кристчерч. Снос многоэтажек и
восстановление собора после
землетрясения
К счастью в современной
архитектуре наметился
возврат к разнообразию
геометрических форм. В
некоторых местах даже
началось борьба с
«трёхмерным
загрязнением» среды,
которая как правило
совпадает с
восстановлением
исторического облика.
К сожалению
продолжается повальное
увлечение 3D моделями и
играми, которые
подменяют – заменяют
реальность.
3
4
6
«Естественная геометрия
переменной размерности»
…мы возвращаемся к точке зрения древних
греков, согласно которой каждая область
вещей влечет свою, на собственной основе
определяемую числовую систему
Герман Вейль
Координатная размерность – число независимых параметров
в собственной системе координат. То есть в системе
симметричной и со-структурной объекту.
Векторная размерность – число реально
независимых векторов в структуре объекта. Число
степеней свободы.
Топологическую размерность - локальная
величина, характеризующую окрестности данной точки
– число точек, с ней соприкасающихся, т.е. как
координационное число.
Скачать