УДК 681.5.015 К.Н. ЧЕРНЫШОВ K.N. CHERNYSHOV СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ONLINE ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ АСИНХРОННОГО ДВИГАТЕЛЯ COMPARATIVE ANALYSIS OF ONLINE PARAMETER IDENTIFICATION METHODS OF INDUCTION MOTOR В данной статье показана актуальность темы идентификации параметров асинхронного двигателя в процессе работы в настоящее время. Проведено сравнение известных в отечественной и зарубежной научной литературе методов идентификации параметров асинхронного двигателя в процессе работы, указаны преимущества и недостатки каждого метода. Ключевые слова: идентификация параметров, асинхронный двигатель. This article shows the relevance of the topic of online parameter identification of induction motor at the present time. A comparison of online parameter identification methods of induction motor which known in domestic and foreign scientific literature is made, outlines the advantages and disadvantages of each method. Keywords: parameter identification, induction motor. Актуальность online идентификации параметров асинхронного двигателя Одной из основных проблем, связанных с построением бездатчикового электропривода, является его чувствительность к изменению параметров в процессе работы. Прежде всего, это относится к температурным изменениям активных сопротивлений статора и ротора, а также к изменению взаимной индуктивности в зависимости от тока намагничивания. Отсюда следует актуальность задачи идентификации параметров асинхронного двигателя в процессе его работы. При значительном количестве научных публикаций по идентификации параметров асинхронных электродвигателей[2]-[6], до настоящего времени нет приемлемых комплексных решений, которые позволяли бы в реальном времени в процессе эксплуатации промышленных установок определять все необходимые величины. Кроме того, многие решения по идентификации параметров у современных электроприводов составляют коммерческую тайну. В общем случае под идентификацией понимается определение структуры и параметров математической модели динамического объекта, которые обеспечивают наилучшую близость значений выходных величин модели и объекта по заданному критерию подобия при одних и тех же входных воздействиях. В случае асинхронного двигателя под параметрами подразумеваются коэффициенты перед зависимыми переменными динамической модели: сопротивление статорной цепи Rs, индуктивность статорной цепи Ls, сопротивление роторной цепи Rr, индуктивность роторной цепи Lr и индуктивность намагничивания Lm. Рассматриваемую динамическую модель, основанную на теории обобщенной электрической машины[10] можно представить как ds j k s ; dt dr 0 Rr I r j ( k Z p )dr ; dt s Ls I s Lm I r ; U s Rs I s r Lr I r Lm I s ; M L 3 Z p m r I s ; 2 Lr d M Mc; dt Из представленных параметров наиболее подвержены изменению в процессе работы привода Rs и Rr в зависимости от температуры и Lm в зависимости от тока намагничивания. Под реальным временем подразумевается, что скорость изменения текущих значений определяемых величин и длительность процессов их идентификации различаются на величину, допустимую для решения практических задач при дальнейшем использовании результатов идентификации (управление, функциональное диагностирование или защита) [9]. J Активные методы идентификации Идентификацию некоторых параметров, например сопротивления статора, можно производить в реальном времени с помощью активных методов, т.е. вводя дополнительный информационный сигнал в силовую цепь привода. Одним из наиболее известных активных методов идентификации сопротивления статора в процессе работы является введение постоянной составляющей в фазные напряжения[9]. При этом, получившийся измерительный постоянный ток должен быть гораздо меньшей величины чем номинальный, чтобы не вызвать перегрева и насыщения магнитопровода. Последующая обработка измеренных токов и напряжений в этом случае сводится к вычислению постоянных составляющих в фазных токах и напряжениях и дальнейшему расчету сопротивления фазы статора. При этом для вычисления постоянных составляющих требуется применение фильтра низких частот (ФНЧ) с малым значением коэффициента передачи в диапазоне рабочих частот, т.е. с большим наклоном ЛАЧХ. Например, может быть применен фильтр с конечной импульсной характеристикой. С другой стороны, поскольку сопротивление статора меняется во времени очень медленно, то от фильтра не требуется малое время установления, и ФНЧ может быть реализован проще - путем последовательного соединения апериодических звеньев. В работе [9] показано, что хорошие результаты дает применение апериодического звена четвертого порядка. Отметим очевидные недостатки метода: - возможная несимметрия питающего напряжения; - непроизводительные потери мощности на измерительной цепи. Пассивные методы идентификации Другая, наиболее перспективная, группа методов – пассивные методы, основанные на регистрации и обработке легко доступной информации о двигателе в режиме его рабочего функционирования. Под легко доступной информацией будем понимать фазные токи и напряжения. Этому требованию соответствует группа методов идентификации на основе теории адаптивных систем. Адаптивные системы применяют как раз в тех случаях, когда изменения параметров объекта настолько значительны, что классические принципы управления становятся недостаточными. При этом в систему вводится дополнительный контур адаптации, осуществляющий перестройку параметров контура управления согласно имеющемуся показателю качества. Показатель качества часто определяют по эталонной динамической модели объекта управления. В отечественной литературе указанный тип систем известен как самонастраивающиеся системы с эталонной моделью[8]. В зарубежной научной литературе теория адаптивных систем с эталонной моделью известна как Model Reference Adaptive Control (MRAC)[1]. В качестве альтернативы рассматриваются адаптивные системы с настраиваемой моделью, характеристики которой сначала подстраиваются под динамические характеристики объекта и затем используются для оптимизации системы. Процесс подстройки модели под объект представляет собой, по существу, идентификацию системы, в результате которой вырабатываются данные для вычисления на следующем этапе оптимального управления. О близости модели к объекту судят по величине рассогласования между выходом модели и сигналом обратной связи реального объекта. Когда ошибка становится меньше некоторой заданной величины, процесс идентификации заканчивается и автоматически начинается процесс перестройки регулятора основного контура с целью оптимизации. В зарубежной литературе встречаются работы по online идентификации параметров асинхронного двигателя, использующие и тот и другой подход. Механизм настройки может включать в себя различные алгоритмы, главная цель которых – найти такой вектор параметров, чтобы минимизировать невязку между выходами модели и объекта управления. Вычисление параметров указанными алгоритмами при этом представляет собой довольно сложную математическую задачу. Кроме того, получаемая в системе информация часто оказывается недостаточной для немедленного нахождения новых значений необходимых параметров. В таком случае, чтобы решить задачу, необходимо накапливать информацию в процессе работы. Одним из возможных методов вычисления параметров является применение расширенного фильтра Калмана[7]. Модификаций подобных фильтров достаточно много, и под конкретную задачу всегда можно выбрать соответствующий фильтр. Фильтр Калмана является рекурсивным линейным оптимальным алгоритмом обработки измерительной информации и используется для получения оценок параметров динамического объекта при воздействии случайных помех. Алгоритм позволяет эффективно оценивать параметры и переменные состояния объекта, включая и те из них, которые не могут быть измерены непосредственно. Недостатком фильтра является необходимость предварительной настройки, которая заключается в определении ковариационных матриц шума состояния объекта и шума измерительной системы, которые могут изменяться со временем, а их автоматическая корректировка в процессе работы электродвигателя может оказаться затруднительной либо невозможной. В работе [9] показано динамическое оценивание в реальном времени вектора состояния [Ψrα Ψrα ωr Lm Rs Mc] асинхронного двигателя на основе наблюдения фазных токов и напряжений статора с помощью расширенного фильтра Калмана. При попытке добавить в вектор состояния индуктивностей ротора и статора, процесс оценивания становится неустойчивым. Это объясняется тем, что расширенный фильтр Калмана является, по сути, градиентным методом и дает строгое решение только для линейных объектов, а в применении к нелинейным объектам, к которым относятся асинхронные двигатели, возможно не только попадание в локальный экстремум с получением неточных оценок, но и возникновение неустойчивого процесса оценивания. Другой часто используемый метод вычисления параметров - рекуррентный метод наименьших квадратов, который позволяет решить задачу оценивания параметров с минимизацией ошибки по среднеквадратичному критерию. К достоинствам метода следует отнести то, что методу не требуется никакая априорная информация. К недостаткам - модель объекта с достаточной точностью должна быть описана алгебраическими уравнениями. Известны работы[2], в которых используется комбинация фильтра Калмана и рекуррентного метода наименьших квадратов для одновременной идентификации состояния и подстройки параметров. Возможно применение и других алгоритмов поиска параметров. Встречаются работы, в которых применяются искусственные нейронные сети, генетические алгоритмы и др. Как правило, все эти методы используют допущение, что в процессе идентификации одного параметра, другие не изменяются. Однако, известны работы, в которых показана одновременная идентификация нескольких параметров (например, одновременная идентификация сопротивлений статора и ротора[4] на основе адаптивного наблюдателя потокосцеплений). Таким образом, наиболее перспективным на данный момент времени представляется подход к идентификации параметров двигателя в процессе работы на основе пассивных методов, поскольку их применение не требует никаких средств, кроме программных. Отметим только, что при этом одновременное вычисление активного сопротивления ротора Rr и частоты вращения ω невозможно в статическом режиме работы – это обусловлено вырожденностью якобиана соответствующей системы алгебраических уравнений для статического режима работы[9]. В то же время, для динамического режима такого ограничения нет. СПИСОК ЛИТЕРАТУРЫ 1. Model reference adaptive control (MRAC). Drexel University [Электронный ресурс]. Режим доступа – http://www.pages.drexel.edu/~kws23/tutorials/MRAC/MRAC.html . 2. Marino P. Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter [Text] / P. Marino, V. Mungiguerra, F. Russo, F. Vasca // IEEE Annu. Rec., 1996. 3. Noguchi T. Field-oriented control of an induction motor with robust on-line tuning of its parameters [Text] / T. Noguchi, S. Kondo, I. Takahashi // IEEE Trans. Ind. Applicat., vol. 33, 1997. 4. Seok H. Flux observer with online tuning of stator and rotor resistances for induction motors [Text] / H. Seok, K. Kwang, Y. Jin // IEEE Trans. Ind. Electr., vol 49, 2002. 5. Sugimoto H. Secondary resistance identification of an induction motor applied model reference adaptive system and its characteristics [Text] / H. Sugimoto, S. Tamai // IEEE-IAS Annu. Meeting, 1985. 6. Zhen L. A mutual MRAS identification scheme for position sensorless field orientation control of induction machines [Text] / L. Zhen, L. Xu // IEEE-IAS Annu. Meeting, 1995. 7. Браммер К. Фильтр Калмана-Бьюси [Текст] / К. Браммер, Г. Зифлинг; пер. с нем. – М: Наука. Главная редакция физико-математической литературы, 1982. – 199 с. 8. Воронов А.А. Основы теории автоматического регулирования и управления. Учебное пособие для вузов. [Текст] - М: Высшая школа, 1977. - 519 с. 9. Каширских В.Г. Динамическая идентификация асинхронных электродвигателей: монография. [Текст] – Кемерово: ГУ КузГТУ, 2005. – 140 с. 10. Копылов И.П. Электрические машины: учебник для вузов. [Текст] – М: Энергоатомиздат, 1986. – 360 с. Чернышов Константин Николаевич ФГБОУ ВПО "Госуниверситет - УНПК", г. Орел аспирант тел.: +79208299676 e-mail: chernyshov.konst@gmail.com