Моделирование эволюции композиционного

реклама
МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ КОМПОЗИЦИОННОГО
МАТЕРИАЛА, ИМЕЮЩЕГО ВИД ДИНАМИЧЕСКОЙ СИСТЕМЫ С
НЕЛИНЕЙНОСТЬЮ
Корчагин С.А.1, Терин Д.В.1,2, Кондратьева О.Ю.2
1
Энгельсский технологический институт (филиал) ФГБОУ ВПО
«Саратовский государственный технический университет имени
Гагарина Ю.А.», e-mail: korchaginser@gmail.com
2
Саратовский государственный университет им. Н.Г.
Чернышевского
Проектирование и синтез новых поколений функциональных и
конструкционных материалов является одним из важнейших научных
приоритетов [1,2]. Уникальность композитов состоит в том, что можно
заранее спроектировать материал таким образом, чтобы придать изделию
из него свойства, необходимые для конкретной области применения.
Благодаря своим свойствам, композиционные материалы могут
применяться практически во всех отраслях промышленности. [3]
При создании материалов с заданными свойствами, особое внимание
стоит уделять эволюции динамической системы. Нередко временная
эволюция системы при формировании материала оказывается настолько
значимой, что возникает необходимость использовать различные
временные и параметрические диаграммы [4]. Кроме того, в процессе
проектирования материала нельзя упускать из виду то, что различные
эффекты (термодинамические, кинетические, электромагнитные и т.д.)
взаимосвязаны, хотя наличие такой взаимосвязи не всегда означает
возможность управления ею [5]. Разнообразие в проявлении синергизма
как эффекта согласованного поведения отдельных элементов сложной
системы, хаотично ведущих себя на наноуровне, нередко пытаются
анализировать в рамках парадигмы нелинейной динамики.
Объектом исследования является композиционный материал,
состоящий из шаровых включений в матрице.
Рис. 1
В процессе формирования материала, диаметр включений изменяет
свой размер. Эволюция включений описывается одномерным
отображением:
(1),
где
- диаметр включений,
– параметр, определяющий скорость
протекания химической реакции,
- параметр, характеризующий
нелинейность системы (зависит от характера электромагнитного
воздействия, термодинамических, кинетических факторов). Примеры
систем, описываемых уравнением (1) рассмотрены в работах [1, 6-8].
Построена карта динамических режимов, по осям которой находятся
параметры, характеризующие скорость протекания химической реакции и
нелинейность системы. Для каждого цикла периода построены
соответствующие итерационные диаграммы.
Рис. 2
Полученные результаты позволяют наблюдать интересные
особенности динамики исследуемой системы, такие как бифуркации
удвоения периода, области хаоса, квазипериодических движений, линии
циклов максимальной устойчивости. Эволюция рассматриваемой системы
является чувствительной к начальным условиям. Параметры,
характеризующие скорость протекания химической реакции и
нелинейность, являются основообразующими, незначительное изменение
которых может качественно влиять на динамику формирования
композиционного материала и как следствие изменение его
функциональных и конструкционных свойств.
Литература
1. Кольцова Э.М., Третьяков Ю.Д., Гордеев Л.С., Вертегел А.А.
Нелинейная динамика и термодинамика необратимых процессов в химии и
химической технологии. М.: Химия, 2001. с. 193-210
2. Кузнецов, С.П. Динамический хаос. М.: Физмалит, 2001. с. 80-82.
3. Никитин А.С. Перспективы применения композиционных материалов.
Экономика и жизнь.- 2012.- Янв.(N4).- С.6.
4. Третьяков, Ю.Д. Процессы самоорганизации в химии материалов
//Успехи химии. 2003, №72(8). с.731- 763.
5. Thompson, J.M., Stewart H.B. Nonlinear dynamics and chaos-geometrical
methods for engineers and scientists //Chichester: Wiley, 1986. p. 376.
6. Timashev S.F. at al. Evolution of Dynamical Dissipative Systems as a
Temporal “Colour” Fractal // In: Mathematical Models of Non-Linea
Excitations. New York, 1999. P 17-50
7 Tretyakov, Yu.D., Goodilin E.A. Fundamental chemical aspects of the
synthesis of neodymium barium cuprates // Rus. J. Inorg. Chem. 2001. №46(3).
p. 203- 234.
8. Влияние глубины фрактальности на частотную зависимость импенданса
при построении моделей композиционных материалов /Терин Д.В.,
Корчагин С.А., Романчук С.П., Оносов И.А. // Актуальные проблемы
электронного приборостроения (АПЭП-2014) : материалы Международной
научно-технической конференции: в 2 т. Т.1, Саратов. 25-26 сентября 2014
г. - Саратов: ООО "Буква", 2014. - С. 258-259.
Сведения об авторах
Романчук Сергей Петрович
Терин Денис Владимирович
Кондратьева Ольга Юрьевна
Вид доклада: (устный / стендовый)
Скачать