Кибернетический (алфавитный) подход к измерению информации Изучаемые вопросы: Что такое алфавит, мощность алфавита. Что такое информационный вес символа в алфавите. Как измерить информационный объем текста с алфавитной точки зрения. Что такое байт, килобайт, мегабайт, гигабайт. Скорость информационного потока и пропускная способность канала. Рассматриваемый в этой теме подход к измерению информации является альтернативным к содержательному подходу, обсуждавшемуся ранее. Здесь речь идет об измерении количества информации в тексте (символьном сообщении), составленном из символов некоторого алфавита. К содержанию текста такая мера информации отношения не имеет. Поэтому такой подход можно назвать объективным, т.е. не зависящим от воспринимающего его субъекта. Алфавитный подход — это единственный способ измерения информации, который может применяться по отношению к информации, циркулирующей в информационной технике, в компьютерах. Опорным в этой теме является понятие алфавита. Алфавит — это конечное множество символов, используемых для представления информации. Число символов в алфавите называется мощностью алфавита (термин взят из математической теории множеств). В основном содержании базового курса алфавитный подход рассматривается лишь с позиции равновероятного приближения. Это значит, что допускается предположение о том, что вероятности появления всех символов алфавита в любой позиции в тексте одинаковы. Разумеется, это не соответствует реальности и является упрощающим предположением. В рассматриваемом приближении количество информации, которое несет в тексте каждый символ (i), вычисляется из уравнения Хартли: 2i = N, где N — мощность алфавита. Величину i можно назвать информационным весом символа. Отсюда следует, что количество информации во всем тексте (I), состоящем из К символов, равно произведению информационного веса символа на К: I = i х К. Эту величину можно назвать информационным объемом текста. Такой подход к измерению информации еще называют объемным подходом. Полезно обсудить с учениками следующий вопрос: какова минимальная мощность алфавита, с помощью которого можно записывать (кодировать) информацию? Этот вопрос напрямую связан с заданием № 3 к § 3 учебника “KidPix”, которое звучит так: «Докажите, что исходя из алфавитного подхода, сообщение любой длины, использующее односимвольный алфавит, содержит нулевую информацию». Предположим, что используемый алфавит состоит всего из одного символа, например «1». Интуитивно понятно, что сообщить что-либо с помощью единственного символа невозможно. Но это же доказывается строго с точки зрения алфавитного подхода. Информационный вес символа в таком алфавите находится из уравнения: 2i = 1. Но поскольку 1 = 2°, то отсюда следует, что i = 0 бит. Полученный вывод можно проиллюстрировать следующим образным примером. Представьте себе толстую книгу в 1000 страниц, на всех страницах которой написаны одни единицы (единственный символ используемого алфавита). Сколько информации в ней содержится? Ответ: нисколько, ноль. Причем такой ответ получается с любой позиции, как с содержательной, так и с алфавитной. Минимальная мощность алфавита, пригодного для передачи информации, равна 2. Такой алфавит называется двоичным алфавитом. Информационный вес символа в двоичном алфавите легко определить. Поскольку 2i = 2, то i = 1 бит. Итак, один символ двоичного алфавита несет 1 бит информации. С этим обстоятельством ученики снова встретятся, когда будут знакомиться с алфавитом внутреннего языка компьютера — языка двоичного кодирования. Бит — основная единица измерения информации. Кроме нее используются и другие единицы. Следует обратить внимание учеников на то, что в любой метрической системе существуют единицы основные (эталонные) и производные от них. Например, основная физическая единица длины — метр. Но существуют миллиметр, сантиметр, километр. Расстояния разного размера удобно выражать через разные единицы. Так же обстоит дело и с измерением информации. 1 бит — это исходная единица. Следующая по величине единица — байт. Байт вводится как информационный вес символа из алфавита мощностью 256. Поскольку 256 = 28, то 1 байт = 8 бит. Мы снова встречаемся с темой, которая является своеобразной пропедевтикой к будущему изучению компьютера. Уже в рамках данной темы можно сообщить ученикам, что компьютер для внешнего представления текстов и другой символьной информации использует алфавит мощностью 256 (во внутреннем представлении любая информация в компьютере кодируется в двоичном алфавите). Фактически, для выражения объема компьютерной информации в качестве основной единицы используется байт. Представляя ученикам более крупные единицы: килобайт, мегабайт, гигабайт — нужно обратить их внимание на то, что мы привыкли приставку «кило» воспринимать, как увеличение в 1000 раз. В информатике это не так. Килобайт больше байта в 1024 раза, а число 1024 = 210. Так же относится и «мега» по отношению к «кило» и т.д. Тем не менее часто при приближенных вычислениях используют коэффициент 1000. В рамках углубленного курса учитель может изложить алфавитный подход в более адекватном варианте, без допущения равновероятности символов.