Конкурс – игра «ПРИМЕНИ МАТЕМАТИКУ» В конкурсе принимают участие три команды. В жюри приглашаются трое взрослых. Представление команд и членов жюри Учитель. Игру – конкурс открываю, Добрый день, мои друзья! Три команды на турнире, Их сейчас представлю я. №1. Вот команда «Треугольник». Пусть узнает каждый школьник, Будут им, сказать хочу, Все заданья по плечу! №2. Про команду номер два Разошлась уже молва. Называется «Квадрат» Им любой учёный рад! №3. У команды третьей здесь Всех достоинств и не счесть. Номер три зовётся «Кругом» Стойкие и друг за друга! Чтоб игра пошла как надо, Я жюри представить рада: Тот, что справа – Ломоносов – Математик и философ. Лобачевский слева здесь, Гордость русская и честь! Третья им как раз под стать Софьей Ковалевской звать! Итак: турнир я открываю, Всем успехов пожелаю, Думать, мыслить, не зевать, Быстро всё в уме считать! Задание для болельщиков. Шутливая игра «Математические человечки» Правило игры: надо нарисовать одного или нескольких человечков с помощью трёх геометрических фигур: прямоугольника, окружности и треугольника; количество фигур не ограниченно. Жюри подсчитывает количество треугольников, прямоугольников, окружностей по отдельности. Определить какое качество в этом человечке преобладает: если треугольников больше, то ум; окружностей – доброта; прямоугольников – интеллигентность. Первый тур Учитель. Для решения большинства задач недостаточно одних знаний. Необходима ещё и внимательность. С чего начинается решение задачи? Конечно, с условия. Но условие можно читать по-разному: прочтёшь невнимательно – вот и утеряна главная ниточка. № 1. Ну-ка, кто из вас быстрее решит задачу Корнея Ивановича Чуковского: Шёл Кондрат в Ленинград, А навстречу 12 ребят, У каждого по три лукошка, В каждом лукошке – кошка, У каждой кошки – 12 котят, У каждого котёнка В зубах по 4 мышонка. И задумался старый Кондрат: Сколько мышат и котят Ребята несут в Ленинград? Ответ: Глупый, глупый Кондрат! Он один и шагал в Ленинград, А ребята с лукошками, С мышами и кошками Шли навстречу ему – в Кострому. №2. Сколько на берёзе яблок, если 8 сучков, на каждом сучке по 5 яблок. Ответ. Яблоки на берёзе не растут. №3. Что это такое? Две ноги сидели на трёх, а когда пришли четыре и утащили одну, то две ноги, схватив три, бросили их в четыре, чтобы четыре оставили одну? Ответ. Повар сидел на стуле, имеющем три ножки, пришла собака и утащила куриную ногу. Повар бросил стул в собаку. Чтобы она оставила куриную ногу. Второй тур Учитель. Индусская притча. Магараджа выбирал себе министра. Он объявил, что возьмёт того, кто пройдёт по стене вокруг города с кувшином, доверху наполненным молоком, и не прольёт ни капли. Многие ходили, но по пути их отвлекали и они проливали молоко. Но вот пошёл один. Вокруг него кричали, стреляли. Его пугали и отвлекали. Он не пролил молоко. «Ты слышал крики, выстрелы? – спросил потом его магараджа – ты видел, как тебя пугали?» - «Нет, повелитель, я смотрел на молоко». Не слышать и не видеть ничего постороннего – вот до какой степени может быть сосредоточено внимание. Теперь проверим внимание членов команд. №1. Слушай одновременно нескольких. Из одной команды двое говорят одновременно два разных слова, а другая команда должна различить, кто какие слова сказал. Затем трое одновременно говорят три разных слова и т.д. Выигрывает та команда, которая различила больше слов. №2. Каждой руке – своё дело В каждую руку по куску мела. Задание: левой рукой начертить три треугольника, а правой – три окружности. №3. Цепочка слов По одному игроку из команды. Ведущий называет одно слово. Первый игрок повторяет это слово и добавляет своё. Второй игрок повторяет 2 первых слова и добавляет своё и т.д. Один из судей записывает слова по порядку. Выигрывает тот, кто называет больше слов. Третий тур «Конкурс капитанов» №1. В строке написано несколько минусов. Двое по очереди переправляют один или два соседних минуса на плюс. Выигрывает тот, кто переправит последний минус. Ответ. Первый ходит в центр, а затем ходит симметрично второму. №2. Сумеете ли вы разрезать лист из школьной тетради, так, чтобы в итоге образовалось кольцо, через которое мог бы свободно пролезть взрослый человек? №3. В одном из дворцовых садов английского короля Вильгельма III был лабиринт из аллей и изгородей. Аллеи были около полумили длиной, а в центре находились два больших дерева со скамейкой около них. Надо пройти к центру сада. Кто быстрее это сделает. Четвёртый тур №1. Пока капитаны проходят по лабиринту для команд игра Баше на вылет игроков. Имеется 15 предметов. Соперники ходят по очереди, за каждый ход любой из играющих может взять 1, 2 или 3 предмета. Проигрывает тот, вынужден взять последний предмет. Ответ. Выигрышный алгоритм для первого игрока: 1) взять 2 предмета, 2) второй и последующие ходы делать так, чтобы количество предметов, взятых вместе с соперником за ход, в сумме составляло 4. №2. Детская пирамида 8 кружков уменьшающегося диаметра и три вертикальные палочки. Требуется эту пирамиду с одной палочки перенести на другую, пользуясь третьей палочкой и соблюдая следующие условия: 1) не переносить за один раз более одного кружка, 2) класть снятый кружок или на ту палочку, которая свободна, или накладывать его на кружок большего диаметра. Накладывать больший кружок поверх меньшего нельзя. Легенда. Если взять 64 кружка, то получим задачу, связанную с древнеиндийской легендой. Будто в городе Бенаресе, под куполом главного храма, в том месте, где находится середина Земли, бог Брама поставил вертикально на бронзовой площадке три алмазные палочки, каждая длиною в локоть и толщиною в корпус пчелы. При сотворении мира на одну из этих палочек были надеты 64 кружка из чистого золота с отверстиями посередине – так, что они образовали род усечённого конуса, так как диаметры их шли в возрастающем порядке, начиная сверху. Жрецы, сменяемые один другим, днём и ночью без устали трудятся над перенесением этой колонны кружков с первой палочки на третью, пользуясь второй как вспомогательной, причём они обязаны соблюдать условия, т.е. 1) не переносить за один раз более одного кружка и 2) класть снятый кружок или на свободную в этот момент палочку, или накладывать его на кружок только большего диаметра. Когда, соблюдая все эти условия, жрецы перенесут все 64 кружка с первой палочки на третью, наступит конец мира… Подведение итогов Учитель. Вот закончилась игра. Результат узнать пора, Кто же лучше всех трудился И в турнире отличился? Жюри объявляет результаты, называет лучших участников турнира. Награждение победителей.