На правах рукописи Косинский Дмитрий Владимирович ПОСТРОЕНИЕ ЛАЗЕРНОЙ ИЗМЕРИТЕЛЬНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ КОНТРОЛЯ ОТКЛОНЕНИЙ ОТ ПРЯМОЛИНЕЙНОСТИ НА ПРИНЦИПАХ ПОЛЯРИЗАЦИОННОЙ ИНТЕРФЕРОМЕТРИИ С ДИФРАКЦИОННОЙ РЕШЕТКОЙ Специальность 05.11.16 Информационно-измерительные и управляющие системы (по машиностроению и машиноведению) Автореферат диссертации на соискание ученой степени кандидата технических наук Москва — 2011 Работа выполнена на кафедре измерительных информационных систем и технологий ФГБОУ ВПО Московский государственный технологический университет «СТАНКИН». Научный руководитель: доктор технических наук, профессор Телешевский Владимир Ильич Официальные оппоненты: доктор физико-математических наук, профессор Киселев Михаил Иванович ФГБОУ ВПО МГТУ им. Н.Э.Баумана, г. Москва доктор технических наук, профессор Мельников Владимир Павлович ФГБОУ ВПО «Московский авиационный институт (национальный исследовательский университет)», г. Москва Ведущая организация: ОАО «НИИизмерения» Научно-исследовательский и конструкторский институт средств измерений в машиностроении г. Москва Защита состоится «22» декабря 2011 года в 14 часов на заседании диссертационного совета Д212.142.04 при ФГБОУ ВПО «Московский государственный технологический университет «СТАНКИН» по адресу: 127994, г. Москва, ГСП-4, Вадковский пер., 1, ауд. ____. С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО МГТУ «СТАНКИН». Автореферат разослан «___» ноября 2011 года. Ученый секретарь диссертационного совета, к.т.н. Иванов В.И. 2 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы. Измерение отклонений от прямолинейности — одна из важнейших научно-технических задач, возникающих при разработке, изготовлении, калибровке и аттестации машиностроительного оборудования. Особенно это актуально для многокоординатного оборудования (станков, координатно-измерительных машин (КИМ) и других средств координатных измерений, робототехнических систем, реализуемых как в традиционной компоновке в комбинации декартовых и полярных координат, так и в системах с параллельной кинематикой на основе управляемой платформы Стюарта). Во всех этих устройствах, разнообразных по своему применению и кинематике, необходимо обеспечить прямолинейность движения подвижных узлов вдоль осей системы координат, что является важнейшим условием обеспечения точности обработки, контроля и транспортировки изделий в пространстве. Средства измерений отклонений от прямолинейности используются для обеспечения прямолинейности профиля сечения поверхностей и для оценки прямолинейности перемещения исполнительных узлов систем (прямолинейность оси в пространстве). Первый вариант относится к оценке качества изготовления узлов. Второй вариант используется для определения прямолинейности направления, по которому происходит перемещение подвижных узлов оборудования. Важность измерения отклонения от прямолинейности как профиля изделий, так и осей перемещения привела к созданию большого количества средств измерений. Все известные методы базируются на методе сравнения измеряемой линии с образцовой. При этом методы воспроизведения идеальной поверхности и способы определения отклонений измеряемых профилей от образцового профиля могут иметь различную природу. Анализ механических и оптико-механических средств измерения отклонений от прямолинейности показывает, что наиболее перспективными являются оптические методы, где в качестве эталона прямой линии рассматривается энергетическая ось светового 3 пучка. Под последней геометрическое место понимается точек, линия, являющихся представляющая центром собой энергетического распределения светового потока в каждом поперечном сечении в направлении распространения. В настоящее время оптические методы контроля отклонений от прямолинейности (коллимационные, автоколлимационные, интерференционные) достигли высокого совершенства и обеспечивают измерение этих отклонений с погрешностью до 1 мкм/м. Однако, анализ требований, предъявляемых к геометрическим параметрам непрямолинейности изделий и узлов в современном машино- и приборостроении показывает, что при контроле прецизионного технологического и измерительного оборудования (станков классов В, А и С, КИМ и других средств координатных измерений высших классов точности) требуется дальнейшее повышение точности измерения до долей мкм/м. Бурное развитие нанотехнологий, в т. ч. технологии изготовления изделий с нанометрической точностью, также требует в перспективе достижения погрешности измерения отклонений от прямолинейности на уровне десятых — сотых долей мкм/м. Можно сказать, что потенциальная точность известных оптических методов измерения отклонений от прямолинейности практически достигнута, и дальнейшее повышение точности ограничивается свойствами, присущими оптическому измерительному каналу. Это ограничение принципиальное и связано с неоднородностью распределения показателя оптического преломления воздушной среды по трассе измерения. Показатель оптического преломления зависит от распределения температуры, влажности, давления, газового состава среды, в которой распространяется оптическое излучение, несущее измерительную информацию. Дальнейшее повышение точности измерений в известных методах связано с необходимостью стабилизации параметров окружающей среды по трассе измерения, что весьма затратно, а во многих случаях практически невозможно. 4 Кроме того, предъявляются жесткие требования к параметрам излучаемого светового пучка. Энергетическое распределение по сечению пучка должно быть постоянно на всей трассе измерения, а диаграмма направленности светового потока и его расходимость должны сохраняться неизменными. Для любого источника света, как теплового, так и лазерного, эти условия практически не осуществимы. При этом флуктуации энергетических распределений и направленности светового пучка эквивалентны эталонной линии. Факторы, влияющие на отклонения эталонной линии оптического пучка от прямолинейности являются источниками погрешности, целиком входящие в погрешность измерения отклонения от прямолинейности. Таким образом, повышение точности измерения отклонения от прямолинейности связано с поиском такого принципа измерения, при котором влияние этих факторов существенно снижается или исключается. Поэтому актуальной задачей является поиск такого принципа построения оптического средства измерения, при котором перечисленные выше факторы оказывают существенно меньшее влияние на погрешность измерения и, тем самым, открывается путь к достижению погрешности измерения на уровне десятых-сотых долей мкм/м. Цель работы заключается в повышении точности измерений отклонений от прямолинейности по сравнению с традиционными интерферометрическими методами на основе использования принципов поляризационной лазерной интерферометрии с дифракционной решёткой, базирующихся на физическом явлении дифракции когерентного лазерного излучения на фазовой дифракционной решётке, являющейся подвижным индикатором отклонения профиля поверхности или оси от прямолинейности, поляризационном выделении дифракционных одновременным порядков преобразованием их соответствующих поляризации в номеров с ортогональные, коллинеарной интерференции этих дифракционных порядков и последующим гомодинным или гетеродинным детектированием поля интерференции с 5 амплитудным или фазовым цифровым электронным преобразованием измерительной информации. Исходя из указанной цели, основные задачи исследования заключаются в следующем: 1. Исследование фазовой позиционной чувствительности дифракционных решёток. 2. Построение математической модели оптических преобразований и исследование схем поляризационной интерферометрии с целью обеспечения коллинеарной интерференции дифракционных порядков с ортогональными поляризациями. 3. Рассмотрение факторов, влияющих на точность и разрешающую способность ИИС. 4. Рассмотрение факторов, ограничивающих длину трассы измерения и диапазон измерений ИИС. 5. Исследование перспектив развития предложенного метода с целью измерения других параметров геометрических отклонений многокоординатного оборудования (станков, координатно-измерительных машин, роботов и т.п.). Методологической базой исследований послужили работы В. П. Линника, Б. М. Левина, М. А. Палея, В. В. Леонова, T. Pfeifer (ФРГ) и др. в области геометрических измерений; работы Ю. В. Коломийцова, В. И. Телешевского, R. R. Baldwin (США), D. R. McMurtry (Великобритания) и др. в области интерференционных измерений отклонений от прямолинейности. Методы исследования. В работе использованы принципы апланометрии для оценки геометрических отклонений, дифракционной оптики на основе аппарата фурье-оптики, акустооптики, поляризационной оптики с применением матричного аппарата Джонса, Мюллера и Стокса, интерференции света, оптического детектирования и гетеродинирования, теории погрешностей измерений. Математическое моделирование выполнено в средах Maple и MathCAD в сочетании с экспериментальными исследованиями макетных образцов. 6 Научная новизна работы заключается в: 1. определении свойств фазовой позиционной чувствительности дифракционной решётки как индикатора отклонения от прямолинейности; 2. дифракции создании архитектуры поляризационного преобразования порядков на интерференции решётке в с процессе целью получения распространения коллинеарного света с поля их одновременным обеспечением ортогональности их поляризаций; 3. определении способа детектирования поля коллинеарной интерференции ортогонально поляризованных дифракционных порядков на основе гомодинного и гетеродинного акустооптического метода; 4. установлении закономерностей влияния девиации геометрических параметров дифракционной решётки, явления рефракции света по трассе измерения, отклонения характеристик поляризационных элементов и флуктуаций геометрических параметров лазерного излучения на точность и диапазон измерения отклонений от прямолинейности. Практическая значимость работы заключается в: 1. создании практических схем оптического канала ИИС с подвижной дифракционной решёткой, используемой как индикатор отклонения от прямолинейности, и двулучепреломляющими поляризационными элементами, обеспечивающими коллинеарную интерференцию выделенных дифракционных порядков с ортогональными поляризациями; 2. снижении влияния неизбежных в оптических методах погрешностей, связанных с неоднородностью оптических свойств среды в процессе распространения света и флуктуации параметров источника лазерного излучения, что обеспечивает потенциально более высокую точность измерения по сравнению с известными оптическими методами; 3. создании практических схем детектирования поля коллинеарной интерференции дифракционных порядков на основе гомодинного и гетеродинного акустооптического детектирования; 4. создании методики моделирования 7 и экспериментального исследования разработанной лазерной ИИС для контроля отклонений от прямолинейности на принципах поляризационной интерферометрии с подвижной дифракционной решёткой; 5. определении геометрических и оптических параметров фазовой дифракционной решётки для достижения наибольшей чувствительности и точности измерений; 6. определении путей дальнейшего развития разработанной ИИС применительно к задачам измерения отклонений от параллельности, перпендикулярности осей, отклонения от плоскостности, углов поворота и комплексного отклонения от прямолинейности движения. Реализация работы Материалы работы использованы при выполнении государственного контракта с Минпромторгом России № 7410.1003702.06.006 от 19.09.2007 г. «Разработка технологий производства отечественных импортозамещающих лазерных интерференционных измерительных устройств как базовой системы для контроля точности в составе прецизионных станков, координатноизмерительных машин и измерительных приборов». Теоретические исследования, проведённые в данной работе, используются в учебном процессе по направлениям 200100 «Приборостроение» и 221700 «Стандартизация и метрология». Апробация работы и публикации. Основные положения работы докладывались на конференциях: 1. «Машиностроение — традиции и инновации», ГОУ ВПО МГТУ «СТАНКИН», ноябрь-декабрь 2010 г. 2. «Состояние и проблемы измерений», МГТУ им. Н. Э. Баумана, 26- 28 апреля, 2011 г. Основное содержание диссертации опубликовано в трех статьях в изданиях, включённых в перечень ВАК. Для разработанной ИИС получено два патента на полезную модель. 8 Положения, выносимые на защиту: – Принципы построения, структура и архитектура информационной измерительной системы для измерения отклонения от прямолинейности на основе поляризационной интерферометрии с дифракционной решёткой; – Параметры дифракционной решётки, выбранные с точки зрения максимальной энергетической эффективности; – Математическая модель системы для измерения отклонений от прямолинейности; – Результаты реализации измерительной информационной системы в гомодинном и гетеродинном исполнении; – Результаты метрологического анализа влияния различных факторов на результат измерения и возможность измерения; – Метод уменьшения влияния рефракции света на результат измерений; – Пути дальнейшего развития измерительной системы с возможностью расширения номенклатуры измеряемых геометрических величин с сохранением основных принципов построения системы. Структура и объем работы. Диссертация состоит из введения, четырёх глав, основных выводов, списка литературы из 75 наименований и приложения. Общий объём работы 164 страницы. СОДЕРЖАНИЕ РАБОТЫ Во введении показана актуальность темы исследования, научная новизна и практическая значимость работы. В первой главе проведен анализ методов измерения отклонений от прямолинейности, связанных с восстановлением реального профиля поверхности по результатам измерений шаговым методом. Из всех изложенных методов в результате наиболее точным признан оптический f -метод, предусматривающий определение параметров измеряемого профиля напрямую, 9 поскольку основными источниками погрешности в этом случае являются погрешности воспроизведения опорного профиля и погрешности регистрации и преобразования измерительной информации. В результате анализа существующих средств измерения отклонений от прямолинейности измерения установлено обладают также, оптические что методы наименьшей измерения, погрешностью и, в частности, интерферометрические методы измерения. Одновременно с этим существуют методы повышения точности измерения интерферометрическими методами посредством применения оптического гетеродинирования, из которых наиболее перспективным является метод акустооптического сдвига частоты колебаний оптического излучения. Для оптических методов основным фактором, влияющим на погрешность измерения, является влияние рефракции света на путь распространения света в пространстве вследствие наличия оптических неоднородностей, связанных с местными колебаниями давления, влажности, температуры, химического состава атмосферы и других факторов. Уменьшить это влияние возможно с помощью стабилизации микроклимата измерений и создания источников излучения с практически идеальными характеристиками. Для измерения в реальных условиях такие мероприятия достаточно трудоемкие и дорогостоящие, а в ряде случаев и невозможные. Другим возможным путем преодоления воздействия рефракции — применение новых принципов построения измерительных систем для измерения отклонений от прямолинейности. На основе этих выводов выработаны основные положения, по которым строится поиск метода построения измерительной системы для измерения отклонений от прямолинейности: 1. Измерение отклонений от прямолинейности строится по f o -методу. 2. В качестве индикатора отклонения от прямолинейности используется дифракционная решётка соответствующего шага и определенной глубины пространственной фазовой модуляции оптического излучения. 3. Для измерения используется 10 свойство фазовой решётки, заключающееся в том, что при перемещении решётки фаза когерентного оптического излучения в дифракционных порядках изменяется пропорционально этому перемещению. 4. Посредством поляризационной оптики осуществляется выделение и последующая коллинеарная интерференция порядков определённых номеров, в результате которой формируется оптический пучок, содержащий две компоненты с ортогональными поляризациями, разность пространственных фаз которых зависит от перемещения дифракционной решётки. 5. Разность фаз в полученном пучке детектируется гомодинным или гетеродинным методом с дальнейшим электронным цифровым преобразованием фаз. 6. В качестве способа оптического гетеродинирования перспективно акустооптическое преобразование частоты колебаний света. В соответствии с этими принципами строится разработанная информационная измерительная система (ИИС) для контроля отклонений от прямолинейности. Во второй главе приведена принципиальная оптическая схема ИИС (рис.1), построенная в соответствии с этими принципами. 7 6 1 5 2 1 3 4 Рис. 1. Принципиальная оптическая схема измерительной информационной системы 11 Источник стабилизированного лазерного излучения 1 испускает луч с круговой поляризацией, который, проходя через коллиматор 2, падает на подвижный блок 3, закреплённый на измеряемой детали 4. Подвижный блок содержит фазовую дифракционную решётку и набор поляризационных призм. Проходя через дифракционную решётку, луч расщепляется на два луча, отклоняющихся симметрично оптической оси на одинаковый угол, получая при этом фазовый сдвиг оптического излучения, зависящий от положения дифракционной решётки в пространстве. Полученные два луча, имеющие также круговую поляризацию, попадают на первую поляризационную призму, которая вызывает их отклонение в сторону оптической оси. При этом оба пучка получают взаимно ортогональную поляризацию. Затем световые пучки падают на вторую поляризационную призму, главная оптическая ось которой направлена в обратную сторону относительной первой поляризационной призмы. Результатом этого будет один луч, выходящий из подвижного блока и состоящий из двух компонент, несущих в себе информацию в виде фазового сдвига оптического излучения (то есть о положении подвижного узла системы в направлении вертикальной оси Y ). Две компоненты измерительного пучка в ходе своего коллинеарного распространения интерферируют между собой. Причем, при смещении дифракционной решётки в ходе её перемещения по трассе измерения пространственные фазы этих двух компонент изменяются пропорционально перемещению. Затем измерительный пучок через уголковый отражатель 5, предназначенный для возврата луча в сторону, противоположную излучению, попадает в блок измерения фазового сдвига 6, который преобразует фазовый сдвиг оптического излучения в электрический сигнал и передает его на устройство обработки (компьютер) 7. Задача детектирования оптического пространственного фазового сдвига может быть решена двумя способами — гомодинным и гетеродинными. Структурная схема оптических преобразований, производимых в ИИС, приведена на рис. 2. 12 Рис. 2. Структурная схема оптических преобразований в подвижном блоке ИИС Луч падающего излучения последовательно проходит следующие преобразования: 1. Дифракционное, в ходе которого происходит перемножение комплексных амплитуд электромагнитных волн и функции пропускания дифракционной решётки,в результате чего после преобразования Фурье и пространственной фильтрации две дифрагировавшие волны приобретают сдвиг фаз колебаний, пропорциональный перемещению решётки в пространстве; 2. Двойное поляризационное, в первом из них происходит взаимно ортогональная линейная поляризация пучков, а во втором — формирование коллинеарного выходного пучка. 3. Дифракционное акустооптическое, в котором происходит сложение оптических колебаний света и акустических колебаний среды, при котором происходит смещение частоты световых пучков, преобразование Фурье и пространственная фильтрация выходных сигналов. После прохождения этих преобразований производится оптическое детектирование сигнала квадратичным детектором и усиление сигнала. Механизм приобретения фазового сдвига лучей в подвижном блоке при прохождении дифракционной решётки обуславливается теорией дифракции. Выражение распределения оптического поля после решётки описывается выражением 13 k l 2 jkz j 2z ( x + y ) U ( x 0, y 0)= e e × jλ z , (1) Δx ∞ ly0 m jq2π p l × ∑ Jq e sinc (x −qf 0 λ z) sinc 2 λz 0 λz q=−∞ где l - размер стороны решётки, λ - длина волны излучения, z 2 0 2 0 ] ( ) [ ( ) переменная по оси распространения падающего излучения, k - волновое число электромагнитного колебания света, x 0 , y 0 - положение точки наблюдения, p=1/ f 0 - период штрихов дифракционной решётки, J q - функция Бесселя первого рода порядка q , Δ x - измеряемое поперечное смещение решётки, m глубина фазовой модуляции нарезки решётки. Множитель e jq2 π Δx p определяет зависимость фазового сдвига колебаний луча от смещения решётки в пространстве. Значение функций J q определяет амплитуду колебаний q -го порядка дифракции. Подбирая значения m , можно добиться уменьшения амплитуды паразитных порядков дифракции. С точки зрения эффективности использования энергии оптического излучения следует выбирать значение m=3.68236 , соответствующее максимуму функции Бесселя 1-го порядка. В этом случае на 0-й и ±2 -е порядки дифракции придётся по 10% мощности излучения, а суммарно на ±1 -е порядки дифракции — 67,7% энергии. Энергетическую эффективность можно повысить, используя компьютерные методы разработки дифракционных элементов. Поляризационные явления описываются с помощью векторного аппарата Стокса и Джонса. Проходя через поляризационные призмы, лазерные лучи приобретают поляризацию, записываемую вектором Стокса [ ][ ] [ ] [ ][ ] [ ] 1 1 1 R 1= 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 =1 1 и 0 2 0 1 0 1 −1 0 0 1 1 1 −1 1 0 0 0 1 −1 . R 2= = 2 0 0 0 0 0 2 0 0 0 0 0 1 0 14 (2) (3) После преобразования на второй поляризационной призме результирующий пучок будет состоять из двух лучей, распространяющихся коллинеарно, и описываться вектором Джонса [ R Σ= R1+ R 2= Ax e j( ϵx +2 π ν t) 1 1 Ay e j (ϵ y +2 π ν t) 1 2 ] (4) . При этом компоненты имеют взаимно ортогональную поляризацию и соответствуют первым порядкам дифракции с противоположными знаками. Световой луч, проходя через акустооптический модулятор, подвергается дифракционному преобразованию. Вклад n -го порядка дифракции определяется выражением j[(ω+ nΩ)t− kxsin ϕ n− kz cos ϕ n ] (5) e n ( x , z , t )=ℜ {E n e }, где ω - частота колебаний света, Ω - частота колебаний акустической волны, ϕ n=−n π/2+n ϕ s - сдвиг фазы светового излучения, ϕ s начальная фаза колебаний акустической волны. Отсюда видно, что n -й порядок дифракции смещён по частоте на n Ω и по фазе на −n π/2+n ϕs . Функции пучков света, направляемых на фотоприёмник, имеют вид: ' ' j (2 π ν0 t+ k 1 z+ϕ 0+ ϕ1+ϕ 2) , z+ϕ0 −ϕ1 +ϕ2 ) , U 5= E3 p 3 e '' ' ' j (2 π ν t+k U 5 = E 3 p3 e 1 2 (6) где E 3 - новая амплитуда колебаний вектора напряженности поля, ϕ 2 ' сдвиг фазы, приобретенный на акустооптическом модуляторе, p 3 - вектор приобретённой на модуляторе поляризации, ν1=ν0+ f - смещённая частота колебаний оптического излучения, получаемая на первом порядке дифракции на оптическом модуляторе, k 2=2π/λ 2 - волновое число излучения со смещённой частотой колебаний. Фотоприёмник является квадратичным детектором. Выражение интенсивности, являющейся выходной величиной имеет вид ' '' 2 2 2 j( 2 π(ν1 −ν0) t+(k 2−k 1) z−2 ϕ1 ) 2 j(2 π (ν0 −ν1 ) t+(k 1 −k 2 ) z+2 ϕ1 ) I =∣U 5+U 5∣ =2 E 3+ E 3 e + E3 e Поскольку ν1 =ν0+ f , и k 1≈ k 2 , интенсивность примет вид 15 (7) I =2 E 32+E 23 [ e j( 2 π f t−2 ϕ1 ) − j (2 π ft−2 ϕ1 ) +e ] =2 E 23 [ 1+cos (2 π f t−2 ϕ1) ] . (8) И, окончательно, I 1=2 E 23 1+cos 2 π f t−4 π Δ x p [ ( )] . (9) Это выражение показывает, что на выходе фотоприёмника получится синусоидальный колебательный сигнал на разностной частоте, равной частоте накачки акустооптического модулятора, со сдвигом фаз, зависящим от перемещения дифракционной решётки в пространстве. Для опорных значений шага решётки p=0,01 мм и дискретности отсчёта фазометра Δ ϕ=0,1o чувствительность метода составит K =72000 град/ мм , а разрешающая способность Δ x=8⋅10−5 мм=80 нм . В третьей главе приведены результаты практического подтверждения теоретических исследований, результаты испытания двух макетов ИИС и результаты метрологического анализа влияния различных факторов на погрешность измерений. Для подтверждения позиционных свойств дифракционной решётки был построен интерферометр, дифракционную решётку. использующий При в качестве светоделителя перемещении решётки на величину, соответствующую периоду решётки, интерференционная картина смещалась таким образом, что в конце перемещения положение интерференционных полос на экране смещалось на величину, соответствующую одному периоду полос интерференционной картины. Для подтверждения независимости оптического хода лучей от перемещения подвижного блока при проведении измерений был построен макет подвижного блока. Из полученных результатов испытаний макета подвижного блока следует, что оптический путь лучей не изменяется при смещении всего подвижного блока системы в поперечном и продольном направлениях. Это показывает, что прямолинейности возможно на проведение достаточно измерений протяжённых отклонения трассах, фотоприёмник можно установить в фиксированном положении. 16 от поскольку В то же время, на выходе подвижного блока формируется один световой пучок, коллинеарный входящему в систему лучу. Его направление распространения также не изменяется с перемещением подвижного блока вдоль трассы измерений. Для подтверждения теоретических исследований были построены два макета ИИС, один из которых выполнен по гомодинной схеме, второй — по гетеродинной. Испытания макетов проводились с помощью образцового средства измерения — интерферометра Renishaw XL-80, настроенного для измерения отклонений от прямолинейности движения. Схема испытаний макетов приведена на рис. 3. Исследуемый макет ИИС состоит из лазера 1, микровинта подачи 2, подвижного блока ИИС 3, находящегося на подвижной каретке вместе с отражателем 6 образцового интерферометра, образованного лазерной головкой 8 и интерферометром прямолинейности 7, блока детектирования 4 (который имеет различный состав в зависимости от типа ИИС) и фотоприёмника 5. Образцовый интерферометр имеет отражатель, выполненный в виде сложной призмы. При перемещении этой призмы образуется оптическая разность хода, являющаяся функцией измеряемого перемещения. Рис. 3. Принципиальная схема установки для испытаний макетов ИИС При построении макета гомодинной системы для детектирования оптического сигнала перед фотоприёмником в качестве блока 4 должен быть поставлен анализатор. Тогда функция интенсивности примет вид 17 I =4 E 23 cos2 2 π x 0 p . макета гетеродинной системы [ Построение ] (10) производилось по первоначальной схеме гетеродинирования на выходе оптической системы. График функций преобразования, полученных экспериментальным путем, приведены на рис. 4. В ходе метрологического анализа было установлено, что основными факторами, влияющими на результат измерений, являются точность изготовления дифракционной решётки и точность параметров источника излучения. При этом погрешность шага штрихов решётки полностью переносится на результат измерений. Также было установлено, что погрешность поляризации, образующейся при прохождения луча через поляризационные элементы, мала и не оказывает заметного влияния на результат измерений. а) б) Рис. 4. Экспериментальные функции преобразования макетов гомодинной (а) и гетеродинной (б) ИИС. Основным фактором, оказывающим влияние на результат измерений, является рефракция света при прохождении через воздушную среду. Было установлено, что это явление оказывает влияние только на трассе измерений, ограниченной расстоянием между источником излучения и дифракционной решёткой, расположенной в подвижном блоке ИИС. На остальном оптическом 18 пути рефракция не оказывает влияния на результат измерения, поскольку выходной пучок распространяется коллинеарно, а его компоненты претерпевают одинаковые искажения. В то же время, измерительная информация содержится в фазовых сдвигах его компонент. На основе этого факта предложен метод дополнительного уменьшения влияния рефракции посредством шагового перемещения источника лазерного излучения вслед за перемещением подвижного узла при проведении измерений. Также в ходе анализа влияния внешних факторов были выявлены ограничения на длину трассы измерений, появляющиеся в результате расхождения выходного пучка. С этой точки зрения исследовано влияние погрешностей шага нарезки штрихов дифракционной решётки, клиновидности её подложки, угловой погрешности изготовления поляризационных элементов и погрешности длины волны света, испускаемого источником. В четвёртой главе приведены перспективные направления развития предложенной измерительной информационной системы. Первым направлением развития предложенной системы является модификация принципиальной оптической схемы подвижного блока системы с сохранением принципов её построения. Некоторые примеры такой модификации приведены на рис. 5. а) б) Рис. 5. Модифицированные оптические схемы подвижного блока ИИС. Первый вариант модификации (рис. 5, а) позволяет использовать энергию оптического излучения более эффективно 19 посредством применения обращённой оптической схемы. Второй вариант (рис. 5, б) создаёт двойной оптический канал, который может быть использован для измерения дифференциальным методом. Вторым направлением развития системы является её применение для измерения отклонений от перпендикулярности, от параллельности осей и от плоскостности поверхности. Отклонение от перпендикулярности определяется путём сравнения отклонений от прямолинейности двух осей, полученных для каждой оси. Для измерения отклонений от перпендикулярности осей необходимо выстроить схему измерений, в которой номинальное положение задается направление распространения лазерного луча посредством пентапризмы или оптического квадрата. Измерение происходит в две стадии. На первой стадии измеряется отклонение от прямолинейности в первом плече, на второй стадии измеряется отклонение от прямолинейности во втором плече. Отклонение от перпендикулярности определяется как разность между номинальным значением угла и угла между средними прямыми, полученными по результатам измерений с учётом значения угла калиброванной пентапризмы или оптического квадрата по методу наименьших квадратов. Измерение отклонения от параллельности осуществляется аналогичным образом. Создание системы параллельных лучей осуществляется триппельпризмой или системой откалиброванных зеркал. Результаты измерений также определяются в две стадии. По результатам измерений вычисляются прилегающие прямые и определяется значение отклонения от параллельности. Отклонение от параллельности определяется как разность между максимальным и минимальным расстояниями между прилегающими прямыми на длине нормируемого участка. Отклонение от плоскостности определяется как наибольшее отклонение от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка. Поскольку в реальности невозможно оценить поверхность во всех точках, при измерениях отклонений от плоскостности 20 реальную поверхность оценивают по профилям её сечений, задаваемых на измеряемых поверхностях определённым образом. Поэтому, проводя измерения отклонений от прямолинейности набора профилей сечений реальной поверхности с помощью ИИС, можно восстановить форму измеряемой поверхности и оценить её отклонение от плоскостности. Измерение профилей нужно проводить в направлениях, определённых исходя из установленного плана измерений. восстанавливается По результатам рельеф измерений измеряемой профилей поверхности и поверхности определяется максимальное расстояние между прилегающей плоскостью и восстановленным рельефом. Третье направление развития измерительной системы связано с изменением формы дифракционной решётки с целью измерения других геометрических параметров. Пример изменённых решёток приведён на рис. 6. а) б) в) Рис. 6. Пример модифицированных дифракционных решёток Решётка, изображённая на рис. 6,а предназначена для измерения угловых перемещений. Остальные решётки предназначены для измерения отклонения от прямолинейности движения в пространстве, определяя величину отклонения от номинальной оси (рис. 6,б) и в виде суммы отклонений по двум осям (рис. 6,в). Применение решёток, форма которых создаётся расчетными методами компьютерной дифракционной оптики позволит проводить измерения других геометрических велиин. 21 Таким образом, рассматриваемая измерительная система обладает достаточной гибкостью и может быть применена для решения широкого круга измерительных задач, возникающих в машиностроении. В заключении изложены основные выводы и результаты, полученные в работе. ОСНОВНЫЕ РЕЗУЛЬТАТЫ 1. В результате исследований установлено, что сдвиг дифракционной решетки в пространстве вызывает пропорциональный ему сдвиг фазы колебаний пучка света ненулевых дифракционных порядков, детектирование которого можно осуществить амплитудным и фазовым методами. Это позволяет использовать дифракционную решетку как индикатор отклонения от прямолинейности. 2. Разработана методика построения лазерных ИИС для контроля отклонений от прямолинейности, обладающих коллинеарной интерференцией дифракционных порядков с взаимно ортогональной поляризацией. На основе построенной математической модели оптических преобразований, производимых такими системами. установлена потенциальная нанометрическая разрешающая способность измерений. 3. Выявлены основные факторы, влияющие на точность измерений и разрешающую способность системы: точность геометрических размеров поляризационных элементов и дифракционной решетки. Установлено значение глубины фазовой модуляции дифракционной решетки, обеспечивающее максимальную точность измерений. Определены функциональные зависимости между значениями влияющих факторов и погрешностью измерений. 4. рефракции Предложенный в работе метод дополнительного снижения влияния позволит увеличить точность измерения отклонений от прямолинейности. 5. Выявлены основные факторы, ограничивающие длину трассы измерения отклонений от прямолинейности: точность угловых параметров поляризационных элементов и клиновидность подложки дифракционной 22 решетки. Определены зависимости влияния этих факторов на потенциальную длину трассы измерений. 6. Установлена возможность применения разработанной ИИС для измерения комплексного отклонения от прямолинейности движения, отклонений от перпендикулярности осей, отклонений от параллельности осей, отклонения от плоскостности поверхности и угловых отклонений. 7. На основе проведенных исследований установлено, что применение методов построения измерительных систем на основе поляризационной интерферометрии, обладающих свойством коллинеарной интерференции дифракционных порядков позволяет повысить точность измерений отклонений от прямолинейности более, чем в два раза по сравнению с традиционными интерференционными средствами измерения. Основное содержание диссертации опубликовано в следующих работах: Публикации в изданиях, рекомендованных ВАК РФ: 1. Косинский Д. В., Телешевский В. И. Поляризационный гетеродинный интерферометр на дифракционной решётке для измерения отклонений от технический и прямолинейности. справочный // Приборы. Ежемесячный СОО «Международное журнал. научноНТО приборостроителей и метрологов» - 2011. - №6. с. 22 — 26. 2. Косинский Д. В., Телешевский В. И., Соколов В. А. Гетеродинные методы лазерной интерферометрии на основе дифракции Френеля. // Измерительная техника. – Москва: ФГУП «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия». – 2011. – №8. с. 7 — 10. 3. Косинский поляризационных Д. элементах. В. // Построение Вестник МГТУ интерферометров «Станкин». Научный рецензируемый журнал. М.: МГТУ «Станкин». – 2011. - №4(16). с. 31 — 34. 23 на Материалы конференций: 1. Косинский Д. В. Лазерный гетеродинный интерферометр для измерения отклонений от прямолинейности. // Материалы III научнообразовательной конференции «Машиностроение – традиции и инновации» (МТИ – 2010). Секция «МАШИНОСТРОИТЕЛЬНЫЕ ТЕХНОЛОГИИ». Сборник докладов. – Москва: МГИУ «Станкин», 2010 г. - с. 126 — 130. 2. Косинский Д. В. Лазерный интерферометр для измерения отклонений от прямолинейности. // Сборник материалов XI-й Всероссийской научно-технической конференции «Состояние и проблемы измерений». – Москва: МГТУ им. Н.Э.Баумана. – 2011 г . - с. 87 — 90. Патенты: 1. Решение о №2011128894/28(042735) выдаче патента «Гетеродинный на полезную интерференционный модель измеритель отклонения от прямолинейности движения объекта» с приоритетом от 13.07.2011. 2. Решение о выдаче патента на полезную модель №2011128896/28(042737) «Интерференционный измеритель отклонения от прямолинейности движения объекта» с приоритетом от 13.07.2011. 24