Глава 13. Оптимизация конструкций 1

реклама
13.
13.1.
,
,
,
."
!
!
!
!
.
!
.$
,
!
.
,
,
-
!
-
,
!
.%
,
."
,
.& #
.
!
#
"
'
:
,
.
,
!
#
,
,
.(
,
.
,
!
- !
$
,
. $
,
!
,
.
*
#
-
.'
-
!
.)
–
,
,
!
,
-
#
:
x = {x1 , x2 ,
F (x ) , !
*
:
•
!
•
!
•
:
:
j = 1,2,
, ng ;
hk ( x ) = 0 ,
k = 1,2,
, nk ;
!
F (x )
!
–
.%
,
,
,
!
.
≤ xi ≤ xiu ,
.+
i = 1,2,
,
,
.
#
.
,
,
."
-
!
g j (x) = 0 . (
,
,
!
,
!
a=10
− 1. !
,
,
#
–
!
!
,n .
-
j- !
,
!
xil
#
,
! ,
,
=0.
( . 13.1).
a=10
3
2
1
a=10
.
g j (x) ≤ 0 ,
xil
,
, xn } –
u1
θ
u2
P
- . 13. 1. &
.
b1 , b2 , b3 (
#
)
,
!
.
,
!
-
13.
,
/
,
:
F ( x ) = aρ( 2b1 + b2 + 2b3 ) ,
ρ –
!
/
# !
(13.1)
.
!
,
( b1 , b2 , b3 ),
!
u1
!
E,
!
{R} .
u2
a,
-
#
#
"
[ K ]{u} − {R} = 0 .
(13.2)
0
,
#
:
σ1 =
E (u1 + u2 )
Eu2
E (u2 − u1 )
, σ2 =
, σ3 =
.
2a
a
2a
σia ,
!
,
0
E (u1 + u2 )
− σ1a ≤ 0 ,
2a
(13.3)
g2 ≡
Eu2
− σa2 ≤ 0 ,
a
(13.4)
g3 ≡
E (u2 − u1 )
− σ3a ≤ 0 .
2a
(13.5)
:
−b1 ≤ 0 , −b2 ≤ 0 , −b3 ≤ 0 .
(13.6)
,
b1 , b2 ,
# -
(
(13.1)
u1
,
."
.
R = 20000
!
,
-
θ 2 = 3π / 4 . 2
!
2
(13.2), (13.3)–(13.6). 1
!
u2 !
/
:
!
g1 ≡
#
b3 ,
!
!
,
!
,
b1 = b3 . &
,
!
u1 =
,
1
!
a
σ = 20000 . '
. 3
,
(13.2)
σ
P , a, b
5.1,
,
a
g1 ≡
P
b1 + 2b2
,
,
2
,
(13.7)
(13.4):
P
P
+
− σa ≤ 0 ,
2b1 2(b1 + 2b2 )
g2 ≡
-
!
.
aP
aP
, u2 =
.
b1E
(b1 + 2b2 ) E
(13.3)
2.
:
!
:
(
θ1 = π / 4
!
(13.8)
− σa ≤ 0 .
(13.9)
:
−b1 ≤ 0 , −b2 ≤ 0 .
!
aρ
(13.1),
,
F ( x ) = 2 2b1 + b2 .
(9.10)
13.
-
g1 = 0
Excel. /
!
g2 = 0
b2 = f1 (b1 )
b2 = f 2 (b1 ) ,
2b1 (1 − b1 )
,
1 − 2b1
b2 =
2 (1 − b1 )
.
2
b2 =
,
,
!
!
(
). %
.
!
g1 g 2 ( . 13.2). %
,
!
,
,
!
-
Fk ,
-
b2
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
F(x)=2.8
0.3000 F(x)=2.4
F(x)=2.63
0.2000
g1=0
g2=0
0.1000
0.0000
0.700
0.750
0.800
0.850
F (x )
- . 13. 2. 2
b1
0.950
0.900
g1
!
g2
b2
b2 = Fk − 2 2b1 .
Fk
$
b1
{b1 > 0, b2 > 0} !
b2 = Fk − 2 2b1
b2 = f1 (b1 ) . $
!
,
{ b1 = 0.79 , b2 = 0.4045 },
#
g1 = 0 ,
!
.
-
F ( x ) ≡ 2 2b1 + b2 = 2.639
. 13.2.
,
!
g1 –
,
g2 –
.
4
,
."
5 !
"
!
NASTRAN
!
!
!
.
,
!
n
.
,
.
!
:
#
!
!
,
!
.'
,
!
#
!
$
.
-
!
0
,
!
.%
,
#
:
! -
,
!
.
,
13.
F ( x + ∆x1 ) − F ( x )
∆x1
∂F
∂x1
∂F
∂xi
∇F ({x}) =
=
∂F
∂xn
∆xi
!
!
n-
F ( x + ∆xi ) − F ( x )
,
∆xi
F ( x + ∆x n ) − F ( x )
∆x n
xi ,
!
.
2
,
!
.%
.5 !
!
!
-
!
,
. (
.. 13.3 . 0
x2
,
x2
,
!
!
-
g1 ( x )
!
g 2(x)
,
!
,
!
,
. 13.3
F (x ) .
!
,
#
.
!
5 !
-
,
.(
#
,
g 2 ( x)
g2(x)
∇F(x*)
∇F(x*)
g1(x)
g1(x)
x*
∇g 2(x*)
xO
x1
∇g1(x*)
∇g2(x*)
)
- . 13. 3. )
3
%
!
-(
!
!
{x ∗ } ,
!
,
. 13.3 ,
,
∗
{x }
,
,. $
:
x1
∇g1(x*)
)
!
.$ !
x*
,
3
#
!
∗
, {x }
!
."
. - . 13.4
6!
,
!
, λ1 > 0
.
-
!
-(
λ2 > 0 . &
.1
-
13.
∇F(x*)
λ1∇g1(x*)
∇g2(x*)
λ2∇g2(x*)
∇g1(x*)
−∇F(x*)
- . 13. 4.
{x ∗ }
(
.
(
. 13.3 ,
, . .
,
!
-(
{x } ,
3
!
$
,
. .'
,
#
#
. 3 !
#
-
.
,
. 0
#
,
#
,
!
,
!
,
!
!
!
50
#
,
.
!
,
.
,
!
.
NASTRAN
,
!
.'
!
#
'
8
!
!
,
!
#
.)
!
!
#
!
.
-
!
!
#
.7
,
!
.(
,
!
,
!
,
,
&
.*
!
.
#
.'
100
,
!
.
#
-
,
. .
,
,
$
,
.'
!
"
!
-
!
,
!
,
.'
.
!
!
,
,
!
g2
!
g1
!
.
,
-
3
o
!
,
,
!
.'
,
3 -(
)
-(
3
-
Скачать