Арифметической прогрессией - Средняя школа №23 г. Могилева

реклама
”Арифметическая прогрессия, n-й член арифметической прогрессии ”.
Цели урока:
Образовательная:
1. Ознакомление учащихся с новым видом последовательности – арифметической
прогрессией;
2. Знакомство учащихся с формулой n-го члена арифметической прогрессии, с
определением разности арифметической прогрессии;
3. Развитие умений применять ранее изученный материал;
Развивающая:
1. Развитие умений анализировать, сравнивать, обобщать;
2. Развитие математической логики, самостоятельности, речи, внимания и кругозора,
познавательного интереса к предмету.
Воспитательная:
1. Воспитание целеустремленности, организованности, ответственности, самостоятельности, умение общаться;
2. В процессе урока воспитание дисциплины, добросовестности к подготовке к уроку.
Оборудование: Учебник ”Математика 10”, авторы Латотин Л. А., Чеботаревский Б. Д.
Тип урока: урок изучения нового материала и первичного закрепления.
План урока:
1. Организационный момент. (1 мин.)
2. Вводная часть (исторические сведения о прогрессиях). (2 мин.)
3. Актуализация знаний. (5 мин.)
4. Этап получения новых знаний. (15 мин.)
5. Физкультминутка (1 мин.)
6. Закрепление учебного материала. (10 мин.)
7. Тест (8 мин)
8. Информация о домашнем задании. (1 мин.)
9. Рефлексия, подведение итогов. (2 мин.)
Содержание урока.
1. Организационный момент.
- Здравствуйте, ребята! Садитесь. Сегодня урок я хочу начать с таких слов:
Закончился двадцатый век,
Куда стремиться человек?
Изучены и космос и моря,
Строенье звёзд и вся земля.
Но математиков зовёт
Известный лозунг:
«Прогрессио – движение вперёд»!
На предыдущих уроках мы с вами познакомились с определением числовой последовательности. А сегодня на уроке мы рассмотрим новый вид последовательности,
который называется арифметической прогрессией. В конце урока мы с вами должны:
Знать:
1. определение арифметической прогрессии;
2. определение разности арифметической прогрессии;
3. формулу n-го члена арифметической прогрессии
Уметь:
1. определять, является ли последовательность арифметической прогрессией;
2. находить разность арифметической прогрессии;
3. находить любой член арифметической прогрессии.
Достаньте, пожалуйста, свои рабочие тетради и запишите число и ”Классная работа” и
тему нашего сегодняшнего урока ”Арифметическая прогрессия”.
2. Вводная часть (исторические сведения о прогрессиях).
- Первые представления об арифметической прогрессии были еще у древних народов.
В клинописных вавилонских табличках и египетских папирусах встречаются задачи на
прогрессии и указания, как их решать. О прогрессии знали также и древнегреческие
ученые. Так, им были известны формулы n первых чисел последовательности
натуральных, четных и нечетных чисел.
Задачи на арифметические прогрессии имеются и в древнекитайском трактате
«Математика в девяти книгах». Первые из дошедших до нас задач на прогрессии
связаны с запросами хозяйственной жизни и общественной практики, как, например,
распределение продуктов, деление наследства и т.д.
- Термин “прогрессия” латинского происхождения, буквально означает «движение
вперед» (как и слово прогресс») и впервые был введен римским автором Боэцием (в 6
веке) и понимался в более широком смысле, как бесконечная числовая последовательность. В конце средних веков и в начале нового времени этот термин перестает быть
общеупотребительным. В XVII в., например, Дж. Грегори употребляет вместо
прогрессии термин «ряд». В настоящее время мы рассматриваем прогрессии как
частные случаи числовых последовательностей.
Названия “арифметическая” было перенесено из теории непрерывных пропорций,
которыми занимались древние греки.
- Известна интересная история о знаменитом немецком математике К. Гауссе (1777 1855), который в детстве обнаружил выдающиеся способности к математике.
Однажды на уроке, чтобы занять первоклассников, пока он будет заниматься с
учениками третьего класса, учитель велел сложить все числа от 1 до 100, надеясь, что
это займет много времени, но маленький Гаусс сразу сообразил, что 1+100=101,
2+99=101 и т.д. И таких чисел будет 50. Осталось умножить 101 • 50. Это маленький
мальчик сделал в уме. Едва учитель закончил чтение условия, он предъявил ответ,
записанный на грифельной доске, Изумленный учитель понял, что это самый
способный ученик в его практике. В дальнейшем Гаусс сделал много замечательных
открытий. Его даже называли “царем математики”.
Иначе говоря, он заметил закономерность, которая присуща арифметической
прогрессии.
3. Актуализация знаний.
- А сейчас давайте вспомним знания полученные на предыдущих уроках:
1. Какая функция называется последовательностью?
2. Как называются числа, образующие последовательность? Как они обозначаются?
3. Какой член последовательности а1, а2, а3, а4 … -- следует за а89, аn-1, аn+3 ;
-- предшествует а100, аn+1, аn-3 ?
4. Заданы последовательности:
а) c1 = 4, cn+1 = 6 cn + 3; Назовите первых 5 членов последовательности и ее свойства.
(4, 27, 165, 663, 2655)
б) последовательность трёхзначных чисел, кратных 125; Назовите все её члены.
(125, 250, 375, 500, 625, 750, 875,)
в) dn = 10 – 5n. Назовите первых 5 членов и её свойства. Можно ли сразу найти 25
член последовательности? (5, 0, -5, -10, -15)
Учащимся предлагается устно решить 1 задачу:
Задача №1: Курс воздушных ванн начинается с 15 минут в первый день и
увеличивают время этой процедуры каждый день на 10 минут. Какова продолжительность таких ванн во 2-й день, 3-й день, 4-й день, 5-й день?
Ответы учащихся записываются на доске: Задача №1: 25 мин., 35 мин., 45 мин., 55
мин.
- На доске мы с вами записали последовательность чисел. Что интересного вы увидели
у этой последовательности?
(- каждый член больше предыдущего на одно и то же число.)
-Есть ли среди записанных на доске аналогичные? (ДА, 2-я и 3-я)
-Так вот именно такие последовательности чисел и будут называться арифметической прогрессией.
- Кто может сделать вывод: какие последовательности называются арифметической
прогрессией?
4. Этап получения новых знаний.
- Итак, определение: Арифметической прогрессией называется последовательность,
каждый член которой, начиная со второго, равен предыдущему члену, сложенному с
одним и тем же числом.
- Иначе говоря, последовательность (an) – арифметическая прогрессия, если для
любого натурального n выполняется условие an+1=an+d, где d – некоторое число.
- Скажите, а сможете ли вы найти это число d, если известны первые члены прогрессии? Как? (От второго отнять первый, от третьего – второй и т.д.)
- Итак, из определения арифметической прогрессии следует, что разность между
любым ее членом, начиная со второго, и предыдущим членом равна d, т.е. при любом
натуральном n верно равенство an+1-an=d.
Число d называют разностью арифметической прогрессии.
- При d>0 прогрессия является возрастающей, при d<0 – убывающей, при d=0 –
постоянной.
- Чтобы задать арифметическую прогрессию, достаточно указать ее первый член и
разность. Зная первый член и разность арифметической прогрессии, можно найти
любой ее член, вычисляя последовательно второй, третий, четвертый и т.д. члены.
Однако для нахождения члена прогрессии с большим номером такой способ неудобен.
Постараемся отыскать способ, требующий меньшей вычислительной работы.
Вернёмся к нашей задаче:
Курс воздушных ванн начинается с 15 минут в первый день и увеличивают время
этой процедуры каждый день на 10 минут. Сколько дней следует принимать ванны,
чтобы достичь их максимальной продолжительности 1ч 45 минут?
а1 = 15
а2 = 15+10
а3 = (15+10)+10=15+2·10
а4 = (15+10+10)+10=15+3·10
а5 = (15+10+10+10)+10=15+4·10
- Какую закономерность вы видите? () 1о минут умножается на число, на 1 меньшее
чем день.
- Как в общем виде можно записать количество минут для n-го дня?
аn = 15+(n-1)·10
- Теперь давайте ответим на вопрос задачи.
105 = 15+(n-1)·10
90 = 10(n-1)
n-1=9
n = 10.
- Теперь давайте попробуем в общем виде найти формулу n-го члена арифметической
прогрессии. Может кто-нибудь сам?
- По определению арифметической прогрессии
a2 = a1 + d,
a3 = a2 + d = (a1 + d) + d = a1 + 2d,
a4 = a3 + d = (a1 + 2d) + d = a1 + 3d,
a5 = a4 + d = (a1 + 3d) + d = a1 + 4d.
Точно так же находим, что a6 = a1 + 5d, и вообще, чтобы найти an, нужно к a1 прибавить
(n-1)d, т.е.n-й член арифметической прогрессии равен ее первому члену, увеличенному на произведение ее разности и количества предыдущих членов
an = a1 + d(n - 1).
- Мы получили формулу n-го члена арифметической прогрессии.
5. Физкультминутка ( Сели ровно , закрыли глаза, представили, что вы на море,
слушаем шум морского прибоя, крики чаек и считаем волны, разбившиеся у ваших
ног. )
6. Закрепление учебного материала.
Для закрепления полученных на сегодняшнем уроке знаний об арифметической
прогрессии решим задачи №940 (а), 943 (а), 948 (а) из учебника.
№940 (устно).
Установите, является ли арифметической прогрессией конечная последовательность:
а) 17, 27, 37, 47, 57 –является;
б) -19, -9, 9, 19, 29, 39 – не является;
в) 2, 22, 222 – не является.
№943.
Найдите разность и седьмой член арифметической прогрессии, учитывая, что первый
и второй ее члены соответственно равны:
а) а1=50, а2=110
d=а2-а1=110-50=60
а7=а1+d(n-1)
а7=50+60(7-1)=410
№948.
Найдите первый член c1 арифметической прогрессии (cn), у которой:
а) с10=142, d=12
cn=c1+d(n-1)
c1=cn-d(n-1)
c1=c10 - d(n-1)
c1=142-12(10-1)=34
7. Тест. Правильные ответы запишите в столбик справа.
Вариант 1.
1. Арифметическая прогрессия задана последовательностью чисел: 8;11;14;17; 20…
Укажите верные высказывания:
а) арифметическая прогрессия убывающая;
б) арифметическая прогрессия возрастающая;
в) первый член арифметической прогрессии равен 5;
г) разность арифметической прогрессии равна
3.
2. Найдите двадцать третий член арифметической прогрессии (аn), если а1= -15, d = 6.
а) 117; б) -127; в) 147;
г) -117.
3. Шестой член арифметической прогрессии:
9; 4; … равен
а) 34; б) -16;
в) -21;
г) -5.
4. Найдите разность арифметической прогрессии, если а1= -10, а16 = 20
а) 2;
б) 4;
в) -2;
г) 5.
5. Найти номер члена арифметической прогрессии (аn) равного -35, если а5= 1, d = -4.
а) 18;
б) 12;
в) 14;
г) 17.
Вариант 2.
1. Арифметическая прогрессия задана последовательностью чисел: 25;20;15;10; 5…
Укажите верные высказывания:
а) арифметическая прогрессия возрастающая;
б) арифметическая прогрессия убывающая;
в) первый член арифметической прогрессии
равен 25;
г) разность арифметической прогрессии равна
5
2. Найдите двадцать третий член арифметической прогрессии (аn), если а1= 15, d = -6.
а) -117; б) -127;
в) 147;
г) 117.
3. Шестой член арифметической прогрессии:
3; 7; … равен
а) -17;
б)19;
в) 23;
г) 27.
4. Найдите разность арифметической прогрессии, если а1= 8, а15 = -76.
а) 6; б) -6; в) 7; г) -8.
5. Найти номер члена арифметической прогрессии (аn) равного 47, если а4= -3, d = 5.
а) -18;
б)12;
в) 13;
г) 14.
Обменяйтесь с соседом, за каждый правильный номер -2 балла, в первом номере за
каждый правильный ответ – 1 балл. Проверьте результаты соседа:
Вариант 1.
№1
№2
№3
№4
№5
Ответы
б,г
а
б
а
в
Вариант 2.
№1
№2
№3
№4
№5
Ответы
б,в
а
в
б
г
А сейчас вернёмся к целям нашего урока: всё ли мы выполнили? Учащиеся отвечают
на вопросы.
8. Подведение итогов. «Прогрессио» - движение вперёд. Восхождение на гору –
одно из самых трудных движений вперёд. Каждый из вас сейчас подойдет к горе и
оставит свой флажок на том уровне, где он оказался в итоге нашего урока.
9. Информация о домашнем задании.
На дом задаются аналогичные задания, чтобы проверить, как ученики усвоили
новый материал: №941, 943 (б), 948 (б) из учебника.
Спасибо за работу на уроке!!!
Учитель: Астапова И.И.
Скачать