ВЗАИМОСВЯЗЬ СОСТАВА , СТРУКТУРЫ И ХИМИЧЕСКИХ

advertisement
549.221
. .
V.A. Zhilyaev
, .
Institute of Solid State Chemistry Ural Branch of RAS, Yekaterinburg
,
.
I.
INTERRELATION OF COMPOSITION, STRUCTURE
AND CHEMICAL PROPERTIES OF REFRACTORY
INTERSTITUAL PHASES. PART I. REGULARITIES
OF REACTIONS OF REFRACTORY INTERSTITIAL PHASES
WITH SOLID REAGENTS
(
V
,
(
)–
.
(
IV, V
,
,
MeC–MeN–MeO
,
,
).
,
-
.
,
,
.
.
:
–
NaCl)
IV,
-
,
–
–
,
.
The interrelation of composition, structure and chemical properties cubic (type NaCl) refractory
interstitial phases (RIP) – carbides, nitrides and monoxides transitive metals IV, V groups is investigated. Regularities of reactions of RIP with various solid reagents (transitional metals of IV, V groups,
their oxides, carbon) are discussed. It is established that chemical activity of RIP components is function
their thermodynamic activity. It is shown that chemical activity of RIP components is function their
thermodynamic activity. It is noted that regularities of change of the RIP chemical activity in the field
of their homogeneity and in the rank MeC–MeN–MeO are in good agreement with the solid solution
nature of these phases.
Keywords: refractory interstitial phases, composition – structure – chemical property, solid-solid
type reactions, regularities.
7
[1]
(
(
IV, V
)–
NaCl)
,
.
,
(
)
,
,
-
,
-
,
,
. .
Me–Me- ,
-
,
.
,
-
,
Me–X –
- .
,
,
(
,
)
,
,
,
-
,
,
,
.
[2].
«
»
,
,
.
(
).
,
.
-
IV, V
VIII
,
),
.
1.
:
–
–
?
–
?
,
8
,
(
2.
3.
,
,
,
-
?
-
.
.
(
–
)
→,
.
,
-2,0
Stadi P),
JCXA-733).
–
(
(
(
-
Thermoflex),
-
.
IV, V
,
,
-
,
-
.
.
(d = 1…3
),
20
/
,
,
.
,
.
200
/
5-
.
.
/
,
.
,
,
(1)
(2),
.1
-
(
2).
(
)
4,469 Å
.
4,68 Å
NbC0,97 + Zr s NbC0,97–x + ZrC~0,6,
(1)
4,68 Å
* C + Zr s ZrC~0,6.
ZrC0,97 + Nb s ZrC0,97–x + Nb2C,
(2)
* C + Nb s Nb2C.
9
(
(3)–(6)),
:
4,165 Å
4,31 Å
4,326 Å
4,31 Å
VC0,87 + Ti s VC0,87–x + TiC~0,6,
(3)
TiC0,96 + Ti s TiC0,96–x + TiC~0,6,
(4)
* C + Ti s TiC~0,6.
TiC0,96 + V s TiC0,96–x + V2C,
(5)
VC0,87 + V s VC0,87–x + V2C,
(6)
* C + V s V2C.
. 1.
–
10
NbC0,97 + Zr:
(750 ° , 3×5
–
;
)
. 2.
ZrC0,97 + Nb: –
(920 ° , 2×5
)
–
;
.
,
-
,
IV, V
-
(
).
,
(T ≥ 0,5
(T ≈ 0,3
),
,
) [3, 4].
,
(
.,
, [5, 6]),
,
,
(
.
),
. .
,
-
[7],
11
,
,
.
,
).
(
,
IV
,
,
V
–
-
Me2C.
.
,
. .
[8, 9] (
-
-
).
,
MeC~1,0
, . .
.
-
[10–13].
,
IV,V
. 3.
TiC, TiN
12
(
TiO
Me–X- ,
-
. 3–6).
. 4.
VC, VN
VO
. 5.
.
–124
. 6.
TiC, TiN
TiO
,
/
VC, VN
VO
,
.
TiC, TiN
TiO
[14],
NaCl (–98
/
,
Me–X- –46, –81
-
[15]).
Me–X- ,
.
(
,
.,
-
[16–20])
,
,
V, Me–X- .
VC–VN–VO
(Ti, V)
,
Me–X- .
MeC–MeN–MeO,
Me = Ti
. 3–6
.
,
(Zr)
,
,
.
:
Me–X- .
TiC–TiN–TiO
,
Me–X- (
,
-
[15]),
,
Me–X- ,
-
.
13
,
.
Me–X- ,
Me–Me- .
Me3d-
J. Yamashita [21])
,
–
(
,
,
,
Me–Me- Me–X- MeC–MeN–MeO, . .
-
.
-
.
VIII
MeCx–Ni.
,
.
50–63
20, 50
1150 °
)
.7
,
,
80 %
5–100
.
-
«
MeCx+80%Ni.
MeCx (xs1)–Ni
0,9 %
,
.
–
,
(
8
»,
.
,
.
0,4
.
-
.
MeCx (xs1)–Ni
,
,
-
.
IV, V
(
,
VIII
)
,
.
(
14
(
.
(MeCx
IV, V
VIII
,
x s 1),
),
).
. 7.
TiCx + Ni
. 8.
x
,
VCx + Ni
[10–13].
(
,
(
VCx
.
-
.
.
-
.
-
).
,
,
-
ZrCx)
–
NbCx + Ni
MeCx
–
ZrCx + Ni
(
(7)–(9)):
15
TiC0,96 + NiO s TiC0,96–x + COr + Ni,
(7)
TiC0,80 + NiO s TiO2 + COr + Ni,
(8)
TiC0,52 + NiO s Ti2O3 + C + Ni.
(9)
,
,
(
,
,
),
–
(
-
).
,
.
(8),
.
,
-
,
(
)
.
,
,
[22].
-
.
,
,
,
-
,
,
.
,
TiC0,96
TiC0,96 + TiO1,03.
,
,
Ti2O3
.
Ti2O3
(1100 °C, 5
–
( . 9).
1,08 2/ )
,
TiO1,03
-
),
(
100 °C)
.
16
1–5 .
(10)–(13).
0,77
,
(1200–1700 °C).
(
-
. 9.
TiC0,96 + TiO1,03:
(1100 ° , 3×5
–
TiC0,96
–
)
;
. 10.
TiO1,03
+ TiC
4,24 Å
TiC0,2O0,8 + COr
4,272 Å
TiC0,96 + TiO1,03 s COr + Ti2O3 + g-Ti
+ TiC
. 10.
TiC0,96
TiC0,42O0,46
TiC0,6
4,31 Å
TiO1,03
17
:
C + TiO1,03 s COr + Ti2O3 + g-Ti,
4,326 Å
(10)
4,31 Å
g-Ti + TiC0,96 s TiC0,6 + TiC0,96–x ,
4,326 Å
(11)
4,26 Å
Ti2O3 + TiC0,96 s TiC0,3O0,7 + COr,
4,300 Å
(12)
4,21 Å
Ti2O3 + TiC0,52 s TiC0,1O0,9 + COr.
(13)
,
TiCx
TiOy
[C] + [O] s COr.
TiCx
(14),
(
4,314 Å
4,192 Å
TiC0,65 + TiO0,78
. 11.
–
. 11).
-
4,256 Å
TiC0,65–xOy + TiO0,78–yCx
.
TiC0,32O0,39.
(14)
TiC0,65 + TiO0,78
.
18
TiOy
,
, . .
(d = 1…3
(S
= 19,0
2
/ ).
-
,
( . .
TiNz
)
z
,
-
[Ti] + C
( . 12).
.
. 12.
TiNz+C,
TiC~0,6 ( = 4,31 Å).
Ti+C, V
.
IV, V, VIII
,
IV,
NaCl)
,
,
.
,
,
.
MeC–MeN–MeO
-
.
(
) –
.
(
)
=
,
.
,
//
.
,
.–
, 2011. – . 13, ヽ 3. – . 106–116.
2.
. .,
.C.,
. .
//
,
.
. – 1982. –
. 6. – . 53–57.
3.
. .,
. .
. – .:
, 1984. – 124 .
4.
.,
.
. – .:
, 1991. – 448 .
1.
. .
-
-
19
5.
. .
. –
:
, 1992. – 128 .
6.
. – .:
, 2003. – 527 .
7.
. .
«
» « » //
.
.
. –
1954. – . 24, ヽ 3. – . 375–387.
8.
. .
//
.
.
..
. – 1923. – . 55,
. 5/9. – . 342–367.
9.
. .
,
//
.
.
..
. – 1926. – . 58,
. 8. – . 947–956.
10.
. .,
. .
//
.
,
. – 1969. – ヽ 2. – . 183–187.
11. Storms E., Calkin B., Yenche A. The Vaporization Behavior of the Defect
Carbides. Part I. The Nb–C System // High Temp. Sci. – 1969. – Vol. 1. –
P. 430–455.
12.
. .,
. .
. . . //
.
.
. – 1971. – . 45, ヽ 8. – . 2044–2046.
13. Guillermet A.F. Analysis of thermochemical properties and phase stability
in the zirconium – carbon system // J. Alloys and Compounds. – 1995. – Vol. 217. –
P. 69–89.
14.
,
. – .:
, 1986. – 928 .
15.
. .
. – .:
, 1962. – 96 .
16.
. .,
. .,
. .
. – .:
, 1990. –
224 .
17. Mizuno M., Tanaka I., Adachi H. Chemical bonding in titanium-metalloid
compounds // Phys. Rev. B. – 1999. – Vol. 59, ヽ 23. – P. 15033–15047.
18. A theoretical study on the chemical bonding of 3d-transition metal carbides / Y. Zhang, J. Li, L. Zhou, S. Xiang // Solid State Communication. – 2002. –
Vol. 121. – P. 411–416.
19. First-principles calculations of mechanical properties of TiC and TiN /
Y. Yang, H. Lu, C. Yu, J.M. Chen // J. Alloys and Compounds. – 2009. – Vol. 485. –
P. 542–547.
20. Electronic structure and elastic constants of TiCxN1–x, ZrxNb1–x and
HfCxN1–x alloys: A first-principles study / W. Weng, S. Cui, H. Hu, G. Zhang, Z. Li //
Physica B. – 2011. – Vol. 406. – P. 3631–3635.
20
21. Yamashita J., Asano S. Electronic structure of CsCl-type transition metal
alloys // Progr. Theor. Phys. B. – 1972. – Vol. 48. – P. 2119–2131.
22. . .,
. .,
. .
IVa Va
. – .:
, 1981. – 144 .
3.09.2012
–
(620990, .
, 91, -mail: zhilyaev@ihim.uran.ru).
,
,
,
.
-
Zhilyaev Victor Aleksandrovich – Doctor of Technical Sciences, Leading
Research Associate, Institute of Solid State Chemistry, Ural Branch of RAS
(620990, Yekaterinburg, Pervomayskaya st., 91, -mail: zhilyaev@ihim.uran.ru).
21
Download