To Title !"# $ %# $$% &' ( )*+) %$ % $ ,*)-$ . %/ 0&&' 10 1$ % / %/ 2&&& 1 " %%/ . % &#34& ' 5 . 1(6#708 / !'''"3#++9)*04/ !'''" 4+#03 %%/ $ $ %% %%/ :&&# 2&&& ; [9.2]. ,*)$*2- . % < /$ = >Hg199 (0.18%), Hg198 (10.01%), Hg199(16.93%), Hg200(16.93%), Hg201(13.19%), Hg202(29.72%), Hg203 57+7?8 5. / /%8 @ = 200.59 0.03 A#&;=0.1 1V0 = 13.786 &&&3 3B ( &;s = 64530 :&" B5 8 ( # = 4.154 &&);51(6708 ( - %- = 79 2; ' #%> = 0.1 1 t = - 38.86 0.01 , =0.1 1 = 11.442 0.01 " B$ A5= 0.1 18V - V =V = (2.535 0.005) 10-6 3B$ % &' (0 ) = 756.86 0.02 1 <5= 0.101325 18 (t ( 1 8C3474:& 0.003 C ( r(1 8C2*:* 0.3 " B ' 2&'C&)&)324> = 13545.88 &&)B3, %%/ . = (1.81103 0.0001) 10 -4 ;-1, %%/ T = - V-1 (V/p)T = (4.013 0.01) 10-5 1-1, =1451.4 )B $ = 0.1396 0.0002 " B5;8$ v = 0.1219 0.0004 " B5;8$ = (0.95833 0.00003) 10-6D$ = 8.45 &&0B5;8$ = 1.559 0.005 1 ; ,*3-> = 1751 10 K, = 167.3 1 1$ = ( 5.8 0.5) 103B3. 1 %,*)-..3& $@$!$E . $ $ % F 2&&& G' 4&&1H $ . < 0#* B 3$ . 5## 8 D PVT# a(p,T) I 3 B 3$ ,*:- < 5J'8 F(p,v,T, b)$ b – $ . = ,*)-)& J' %/ # %%/ Bp (T), Cp (T), Dp (T): pV 1 B p (T ) p C p (T ) p 2 D p (T ) p 3 RT %%/ = %%/B, C, D $ / " / %/U(r, bu) K L " m#7 b1= d L $b2 = L/$b3 = m L ,*)$*2- $ / m /mC)2M /P. Reipert,*4-$B(T*)$C(T*)D(T*) %%/ T* = kT/ / K# " m C )2$ m = *$)2$)0N%%/ . /d, , m / 1%%/ ,*4- D %%/$ /3&? ,*7-$ /K- " *#7 %%/ = $ /K#" )2#7%%= N $ $ O P %%/ C(T*)D(T*) [9.5]. ( / d, , m $ 5 8$ = . = > PVT#>' @1 ,*+-$ < '1 ,*0-$ Götzlaff W. et. al [9.3]; ; Q ,*0- 3&7&1)2+7#)*&&;R = 2&&# )3+& G' ,*)$*3- = = = 1(6#70L= t = 356.540 C [9.1]; :&&#)4&& ; ,*2-$ = R % Cs' 5(8 % ,*)- I 0&& GC$ $ (,*)&-5 8 /58! = ' = ,*)$*2- 1/! Cs' T , b c $/! = = / . 53S48$= /b4 = sH0 & ;$% b5 S ' bc = [b6 , b7 , b8] Cs' . DPVT#= . 2#)&?1 / $ $/ $ / b1– b8$ $= % $ / . > b1 = d= 2.798 0.03 b2 = 818.4 50 K b3 = m = 8.4 0.6 b4 = sH0 = 64530 42 " / b5 = 59.355 &)2" B5;8 Cs' = $ b6 - b8 <b1 - b5 . = = / ,*)$*2-$ / < >5)8/ 2&&#)30&G'5&&&23#)2:31), 528/ $ 3B 3$538/ %%/ 5 $ $ %%/ %%82&&#)0&&G'$ = / ,*2- "/ %%/$ $ B B %%/$ /K- " )2#75 )2#78,*))-( (/9.1a - ps (18$ V(10-5 3 -1), V 53 -1), h, h, r (" -1), s s (" -1 ;-1) (/*1b - Cs' , C 'p' , CV'' ( " -1 ;-1), a '' 5 -1). PROPERTY % $ % PROPERTY D PROPERTY % PROPERTY_descr PROPERTY_descr K )1$M@1$E@($QK(% >M# $)*+)5)*+38 2QK$K= T(/ $ !'''" 4+#03 ;%%/ $ $ %% %%/ 400- 2000 ; >M# $)*04 3. Götzlaff W., Schöenherr G., Hensel F. Thermopower and conductivity behavior near the gas-liquid critical point of mercury. Z. phys. Chem. Neue folge, 1988, v. 156, pp. 219-224. a) Götzlaff W. Doctoral Thesis. Univ. Marburg, 1988. 4. Hensel F., Uchtmann H. The metal-insulator transition in expanded fluid metals. Ann. Rev. Phys. Chem., 1989, v. 40, pp. 61-83. 5. Reipert P. Zustandgleichungen für die gemishen von gasformigen He, Ne und Ar. Diss.- Univ. Stuttgard, 1978. 6. Sherwood A.E., DeRocco A.E., Mason E.A. Nonadditivity of intermolecular forces effects on the third virial coefficient. J. Chem. Phys., 1966, v. 44, U0$VV2*0:#**: 7. ;M;$'@1N &#2&&&W'2&&#4&&& % Q$)*7+$2:$U4$ 0:3#040 8. ; M;$ ' @1$ < '1$ ! N1 1 # 1M@N#23)& >M $)*+3 ) Kozhevnikov V.F., Naurzakov S.P , Senchenkov A.P. Thermodynamic properties of cesium in the liquid phase and in the vicinity of the critical point. Appendix. The experimental values of the density of mercury. J. Moscow Phys. Soc., 1991, . 1, . 171-197. 9. Kozhevnikov V.F., Arnold D.I., Briggs M.E., Naurzakov S.P., Viner J.K., Taylor P.C. A pulsed phase-sensitive technique for acoustical measurements. J. XYZ[\]^ZYX_`a$)***$b)&7$U7$VV3:2:#3:33 10. Levin M., Schmutzler R.M. Heat capacity of mercury at sub- and supercritical regions. J. Non-Cryst. Solids, 1984, v. 61/62, pp. 83- 88. 11. Rainwater J.C. On the phase space subdivision of the second virial coeffiYc`d]edfc]\YZd\`g[`dY`\hZaicd`]cY]j`Zaklmj`_njk\$)*0:$b0)U)$ pp. 495- 510. To Top