5.8. Энтропия и вероятность Среди прочих есть два раздела

реклама
5.8. Энтропия и вероятность
Среди прочих есть два раздела физики, которые изучают одни и те же явления, получая
при этом отличающиеся принципиально результаты. Речь идёт о термодинамике и статистической физике. В частности, статистическая физика в ряде вопросов вступает в противоречие со вторым началом термодинамики. Процессы запретные по второму началу, например
переход тепла от холодного тела к нагретому телу в статистической физике рассматриваются как возможные, но с очень малой вероятностью.
При рассмотрении термодинамических законов вопросы молекулярного строения вещества не рассматривались. Развивался, так сказать, феноменологический подход. Первым кто
решился объединить термодинамические законы с методами и средствами молекулярнокинетической теории, был Людвиг Больцман, который в 1872 г. призвал своих коллег пересмотреть существующую теорию тепла. Коллеги по началу не возрадовались, а даже совсем
наоборот. Больцман усмотрел, что энтропия может рассматриваться с позиций молекулярно-кинетической теории как результат проявления вероятностных законов. Энтропию предлагалось рассматривать как величину, характеризующую степень порядка в системах, которые было принято рассматривать исключительно с позиций классической механики.
Людвиг Больцман создание теории начал с постулирования утверждения, что энтропия пропорциональна логарифму
от вероятности состояния данной термодинамической системы, как правило, огромного ансамбля частиц с взаимными
связями
S = k B ln W + const ,
(5.78)
где kB − постоянная имени Больцмана, появившаяся естественным образом в кинетической теории, как результат комби- Рис. 5.32. Людвиг Больцман
нации двух констант: универсальной газовой постоянной и
числа Авогадро k B = R N A , W − термодинамическая вероятность, характеризующая число
микросостояний системы, т.е. число распределений молекул по энергиям и пространству,
посредствам которых может осуществляться данное микросостояние.
В формулировке Больцмана второе начало формулируется так [1]: «Все процессы в природе протекают в направлении, приводящем к увеличению вероятности состояния».
Рассмотрим два тела температурами 300 0К и 301 0К, находящихся в тепловом контакте.
Предположим, что от одного тела к другому передаётся количество тела δQ = 10 − 7 Дж. Сначала рассмотрим вероятность такой процедуры при переходе δQ от более нагретого тела к
более холодному, а затем наоборот, памятуя, что в соответствии с формулировкой второго
начала термодинамики такой процесс не возможен. Пусть вероятность пребывания тела с
температурой 300 0К равна W2, соответственно для второго тела вероятность − W2. Формулу
Больцмана применительно к рассматриваемому случаю можно представить следующим образом
δQ δQ 10−7 10 −7
W
−
=
−
= k B ln 2 .
ΔS = S2 − S2 =
(5.79)
T2
T1
300 301
W1
Выразим из уравнения (5.79) отношение вероятностей
⎛ ΔS ⎞
⎛
⎞
W2
10 −11
⎟⎟ = exp⎜⎜
⎟ ≈ 1 ⋅ 1013 .
= exp⎜⎜
(5.80)
− 23 ⎟
W1
⎝ 9 ⋅ 1,38 ⋅ 10 ⎠
⎝ kB ⎠
B
Это означает, что на 1013 случаев перехода тепла от одного тела к другому телу возможна одна переброска δQ от тела с температурой 301 0К к телу с температурой 300 0К. Другими
словами, несмотря на возможность по теории Больцмана перехода тепла от «холодного» к
233
«горячему», такое событие наблюдается с такой мизерной вероятностью, что выходит прав
всё-таки Клаузиус, который такие процессы попросту запрещает.
Результат вероятностных оценок разительно меняется, если рассматривать очень малые
порции тепла. Например, при δQ ≅ 10-12 Дж, отношение вероятностей станет равным
W2
(5.81)
≅ 2,7 ,
W1
что означает ни много, ни мало, а примерно треть из возможных случаев перехода будет
протекать в направлении, запрещённом вторым началом термодинамики в формулировке
Клаузиуса и иже с ним. Рассмотренный порядок теплообмена δQ ≅ 10-12, характерен для
энергетических процессов на уровне единичных молекул при температурах в несколько тысяч градусов.
С вероятностных позиций второе начало термодинамики можно рассматривать как статистический закон, который не запрещает процессы в изолированной термодинамической
системе, направленные к уменьшению энтропии не только для объектов микромира, но и в
масштабах макроскопических явлений. Вместе с тем, вероятность таких событий в земных
условиях ничтожно мала, чего нельзя сказать о Вселенной в целом, где имеет место образование новых звёзд. А каждая новая звезда, подобная нашему родному Солнцу, представляет
собой, прежде всего, концентрацию энергии в локальной области.
Следующим случаем отклонения реального мира от диктата второго начала являются
флуктуации энергии и плотности. Под флуктуациями понимаются непрерывно возникающие
и исчезающие отступления от равномерного распределения молекул по объёму (флуктуации
плотности), случайные скопления в локальных объёмах на непродолжительное время более
быстрых или более медленных молекул (флуктуации энергии, сопровождающиеся флуктуациями температуры). Больцман полагал, что в редких районах Вселенной могут иметь место
значительные в космических масштабах флуктуации энергии и плотности, нарушающие
земные представления о втором начале термодинамики. В таких процессах энтропия должна
уменьшаться. Однако энтропия достигает максимума при наиболее вероятном состоянии
системы.
Кстати и первое начало термодинамики δQ = dU + δA на уровне микромира не вполне
адекватно закону сохранения энергии. Для отдельно рассматриваемой молекулы понятия
теплоты и работы эквивалентны, их принципиально нельзя различить. Первое начало, так же
как и второе начало, не имеют такого универсального характера как законы сохранения (импульса, момента импульса и энергии), которые применимы как к огромному числу составляющих элементов термодинамической системы, так и к единичным актам взаимодействия
этих самых элементов.
Если в некотором объёме идеального газа температуру понизить до абсолютного нуля, то
этот газ превратится в твёрдое образование с фиксированным положением молекул. Все молекулы прекратят своё тепловое движение, и можно будет определить однозначно их местоположение. Представится возможность иметь о газовых молекулах максимальную информацию (скорости нулевые, координаты известны), что соответствует устремлениям энтропии к
нулю. Простая взаимосвязь. Информация об объекте максимальна, когда энтропия равна
нулю. Кстати, именно об этом говорит уравнение Больцмана. При очень высоких температурах положение хаотически движущихся молекул совершенно не определенно, единственная информация о них, что они движутся, следовательно, информация, практически нулевая,
а энтропия максимальна.
234
Скачать